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Abstract. In this talk, we will study the mod 2 cohomology of some classifying spaces of certain compact

Lie groups. Our topological groups will come from automorphism groups of Rn instead of the usual Cn,

the latter of which is an easier story. The study of these spaces will be done primarily through looking at
homogeneous spaces once we quotient out a “maximal torus,” so these intermediate spaces will also be of

interest.

1. Introduction

All cohomology will be taken with F2 coefficients.

Theorem 1. H•(BO(n);Z/2) ≃ SZ/2[y1, . . . , yn] with |yi| = 1. Further, the map ι : (Z/2)n ↪→ O(n) induces
inclusion of the Σn-fixed points of Z[x1, . . . , xn] with

H•(B(Z/2)n;Z/2) ≃ Z/2[x1, . . . , xn]

Further, it sends the i-th Stiefel-Whitney class wi to the i-th elementary symmetric function σi.

All cohomology will be taken mod 2.
Why should we care about this? The story is much easier when we work over C. Before we get to that,

let’s review some fibrations:

1.1. Fibrations. Pick a (topological) group G and subgroup H. Then, pick some EG (up to H-equivariant
homotopy). One model for BH is EG/H. Therefore, we get the following:

G/H → EG/H → EG/G

We will write this thing as:

G/H → BH → BG

Note this is unexpected: there is a map BH → BG induced by the inclusion H ⊂ G. This goes in the
opposite direction.

1.2. The complex case. Pick a field – for this section alone we will work over coefficients in your favorite
field (yes, yours specifically!) We will try to calculate H•(BU(n)) using the fibration sequence. The claim is
that it is given by:

k[x1, . . . , xn] |xi| = 2i

When n = 1, we have H•(BU(1)) = H•(BS1) = H•(CP∞) = k[x1] with |x1| = 2. Now, we proceed
inductively. By including U(n− 1) ⊂ U(n), we have a fibration sequence:

S2n−1 → BU(n− 1) → BU(n)

Draw spectral sequence
We can deduce BU(n) from BU(n− 1) given we know what has to survive. We can also say a lot using

Lie theory, which I won’t get into since I know nothing about it. However, it is utterly useless for BO(n).
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2. Poincaré series

For a space X, we define its Poincaré series as a formal power series:

PK(X) =
∑
i

ti dimkH
i(X;k)

Notice that Poincaré series are multiplicative according to the Künneth theorem.
We can actually generalize this:

Proposition 1. For a fibration, the Serre spectral sequence collapses at the E2 page and has trivial local
coefficient system if and only if the Poincaré series is multiplicative. We will need F to be compact and
everything to be connected. We will only prove the only if direction

Proof. Let Cq(F ) be the largest subgroup of Hq(F ) acted on trivially by π1(B). Notice that:

E0,q
2 = H0(X; Hq(F )) = Cq(F )

Why? Here is my best explanation. The E2 page is full of honest groups, not local coefficients. Therefore,
H0(...) picks out the “global” bits – cohomology classes from the local coefficient system that can be globally
extended. These are precisely the π1(B)-invariant ones. If I say the words sheaf and global section this
might resonate more with some of you.

With that aside, we will induce over q to show Cq = Hq. Note that:

kE2 =
⊕
i

Hi(B; Hk−i(Fb))

At i = 0, we get Cq, and elsewhere we get a trivial local coefficient system, and thus Hi(B) ⊗ Hk−i(F ) So
that:

dimk E2 = dimHk(B × F )− dimHk(F ) + dimCq(F )

If the spectral sequence collapses at E2, then this is:

dimk E2 = dimk E∞ − dimHk(F ) + dimCq ≥ dimk E∞

Therefore proving that Cq(F ) = Hq(F ). Therefore, we have multiplicativity of the Poincaré series. □

3. BO(n)

Let Q(n) = (Z/2)n ⊂ O(n) and Fn = O(n)/Q(n) as groups.
Grad student enrichment activities:

BZ/2 = RP∞ =⇒ H•(BZ/2) = Z/2[x]

Because B is multiplicative, we have:

H•(B(Z/2)n) = ⊗n
Z/2Z/2[xi] = Z/2[x1, . . . , xn]

where all |xi| = 1. The Poincaré polynomial of RP∞ is 1 + t + t2 + · · · = (1 − t)−1. By multiplicativity
(products collapse at E2), we have:

P (BQ(n)) = (1− t)−n

3.1. Some fibrations.

Fn → BQ(n) → BSO(n)

Fn−1 =
O(n− 1)

Q(n− 1)
→ Fn =

O(n)

Q(n)
→ O(n)

Z/2×O(n− 1)
≃ RPn−1

BQ(n) → BO(n) → O(n)/Q(n)
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3.2. Some results. To study H•(BO(n)), we will need to understand the cohomology of Fn. Here’s a
proposition:

Proposition 2. H•(Fn) is generated by its elements in degree ≤ 1, and has Poincaré polynomial:

P (Fn) = (1− t2)(1− t3) . . . (1− tn)(1− t)1−n

Proof. Fact: dimH1(Fn) ≥ n− 1. Why? Look at the fibration:

Fn → BQ(n) → BSO(n)

In fact, a consequence of the Poincaré polynomial is that this is an equality.
Also fact: F2 ≃ S1, so the proposition is true at n = 2. We can embed Z/2×O(n− 1) ⊂ O(n) by putting

±1 on the upper-left corner. We have the following fibration:

O(n− 1)

Q(n− 1)
→ O(n)

Q(n)
→ O(n)

Z/2×O(n− 1)
≃ RPn−1

At the E2 page, we have, at dim 1:

dim1 E2 = 1 (from RP) + (≤ n− 2)(from C1) ≤ n− 1

But in fact H1(Fn) ≥ n−1, so this is the 1-dim part of the E∞ page. Therefore, we have equality. Further, C1

must be everything, and everything in dim 1 persists until E∞. The image of H•(Fn) → H•(Fn−1) contains
H1(Fn−1) and thus everything. Therefore, the image surjects onto H•(Fn−1) and no other differentials
happen – it collapses at the E2 page. Therefore, the local coefficient system is trivial, and

E2 = H•(Fn)⊗H•(RPn−1)

Both of these things are generated by deg ≤ 1 elements, and thus so is the left, and therefore so is H•(Fn).
We can check the Poincaré polynomial inductively. I don’t want to do that.

□

Lets go back to the Main Theorem now.

Proof. a. We will show that the Poincaré series for BO(n) is:

P (BO(n), t) = (1− t)−1(1− t2)−1 . . . (1− tn)−1

Further, we can include O(n− 1) ↪→ O(n). (Bι)∗ will be shown to be injective.
Consider the following fibration sequence:

Fn =
O(n)

Q(n)
→ BQ(n) =

EO(n)

Q(n)
→ EO(n)

O(n)

Spectral sequence:
Ep,q

2 = Hp(BO(n),Hq(Fn))

At dimension 1, we have rank:

dim1 E2 = dimH1(BO(n)) + dimH0(BO(n);H1(Fn)) ≤ n

(the second bit is ≤ n− 1 and the first bit is equal to 1 as π1(BO(n)) = π0(O(n))). But in fact, we
know H•(BQ(n)) – at dim 1, its rank is n exactly. Therefore, the thing on the right is just H1(Fn),
and these remain cocycles forever. Because the degree ≤ 1 elements generate all of it, we actually
get that this spectral sequence collapses at E2. In this case, it is known that p∗ is injective – the
differentials are the only thing generating the kernel, and there aren’t any.

b. Let N(Q(n)) be the normalizer of Q(n) in O(n) and Ψn be the Weyl group:

Ψn =
N(Q(n))

Q(n)
≃ Σn

It acts on (RP∞)n by permuting the factors, and therefore on cohomology permutes xi.

The fibration Fn → BQ(n) → BO(n) can be thought of Σn-equivariantly. What is the action of
Σn on BO(n)? Σn acts on O(n) by conjugation. For a group G, conjugation by g gives a functor
BG → BG. In fact, g defines a natural transformation g(−)g−1 =⇒ id. This becomes a homotopy
equivalence when passing to BG: conjugation acts trivially on BG up to homotopy. Therefore, it acts
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trivially on its cohomology. The upshot is that H•(BO(n)) → H•(BQ(n)) is injective (from earlier)
and the image lands in the Σn-invariants. In fact, by a dimension argument using the Poincaré
polynomials which we know, we also get surjectivity. Therefore,

H•(BO(n)) ≃ S(x1, . . . , xn)

[typed notes ended here. I had handwritten notes I did not get to during the presentation. Here
is a summary of those handwritten notes]

c. We want to show wi → σi, the i-th elementary symmetric polynomials. We will need the fact that
wi+1 is the only non-zero element of degree i + 1 killed by H•(BO(n)) → H•(BO(i)), which I will
not prove.

H•(BQ(i)) H•(BQ(n))

H•(BO(i)) H•(BO(n))

α∗

ρ∗
i ρ∗

n

β∗

Using the previous fact: note that α∗ ◦ ρ∗n(wi+1) = ρ∗i ◦ β∗(wi) = 0. We are looking for a symmetric
polynomial in degree i+ 1 killed by the right things – therefore, this is precisely the image of wi+1.

□

4. Fun facts

Theorem 2.

Sqiwj =
∑

0≤t≤i

(
j − i+ t− 1

t

)
wi−twi+t

Proof idea: We know what it is for BQ(n), and we know the Cartan formula + Main Theorem

Proposition 3. H•(BO(n)) → H•(BSO(n)) has kernel w1.

Proposition 4. H•(BQ(n)) → H•(BSQ(n)) has kernel x1 + . . .+ xn.

Proposition 5. H•(BSO(n)) → H•(BSQ(n)) is injective, and its image if the quotient S(x1, . . . , xn)/(x1+
. . .+ xn).

Theorem 3. H•(Vn,n−k) (Stiefel variety, total space above Grassmanian) is generated by hk, . . . , hk−1.

Sqihj =

(
j

i

)
hi+j i+ j ≤ n− 1
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