
THE UNREASONABLE EFFECTIVENESS OF NILPOTENCE IN STABLE HOMOTOPY THEORY
You Will Care About Morava K-theory

MIT/Harvard Babytop Seminar, Spring 2025
Tuesday, March 11th, 2025
LiveTEX by Howard Beck

Abstract. Speaker: Natalie Stewart (Harvard)

It’s a classical result due to Nishida that HFp detects nilpotence of simple p-torsion elements in the homotopy
groups of a ring spectrum – as a corollary, one finds that all elements of π∗S are nilpotent. In this talk, we’ll
sketch Devanitz-Hopkins-Smith’s more advanced proof of this fact: MU detects arbitrary nilpotence. We’ll also
discuss various corollaries in stable homotopy theory.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better
exposition, and there may be errors in my liveTEXing
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0. Facts and Notations

• MU = Th(BU )
• BPB indecomposable component of MU

π∗(BP) ≃ Z(p)[v1,v2, . . .], |vi | = 2
(
pi − 1

)
• E(n)∗ B Z(p)[v1, . . . , vn,v

−1
n ], kill of higher vis and invert the top degree. E(n)∗ are the topological lifts

of the moduli stack of p-typical formal groups. These are spectra whose Bousfield classes tell you
about support in these strata.

• P (n+ 1)∗ B Fp[vn+1,vn+2, . . .] – these correspond to higher strata.
• K(n)∗ B Fp[v±1

n ] – these correspond to locally closed strata. This is constructed by killing all other
vis and inverting vn.

All of these are ring spectra. By Spω(p) we will mean compact p-local spectra. By compact, we will mean in
the categorical sense, which will also mean (perfect) finite in the sense of their CW structure.

Remark 0.1 (Andy Senger). P s and Ks depend on your choice of vis. We will ignore this. ◁

0.1. Ravenel’s Correct Conjectures.
Nilpotence

a. BP detects nilpotence (we will implicitly assume p-locality – if not, put in MU )

b. X→ Y → Z
f
−→ ΣX such that BP⊗ f ≃ 0, then ⟨Y ⟩ = ⟨X⟩

c. x ∈ ⟨K(n)⟩c ∩ ⟨K(n− 1)⟩ω is equivalent to X has “type n”. That is, X has a “vn-self map”.

Realizability
There exists finite type n spectra.

1
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Class invariance and boolean algebra
The lattice of Bousfield of finite p-local spectra is:

0 ⊂ . . . ⊂ ⟨K(n)⟩ω ⊂ ⟨K(n− 1)⟩ω ⊂ . . . ⊂ ⟨K(0)⟩ω ⊂ Spω(p)

Definition 0.2. The Bousfield class of X is given by ⟨X⟩ = {E-acyclic objects (such as spectra)}. Two spectra
are Bousfield equivalent if they have the same Bousfield class. ◁

Remark 0.3. The Bousfield class measures how much your cohomology theory can see. ◁

1. Pop Quiz

Exercise 1.1. Prove or disprove: πn

(
Sk

)
is torsion when n , k. ◁

Answer 1.2. The Hopf fibration η ∈ π3

(
S2

)
generates π3

(
S2

)
≃ Z. ◁

Theorem 1.3 (Serre ’53). The rank

πk(Sn) =

1 n = k or k even and n = 2k − 1
0 otherwise

Proof idea. Apply the Serre spectral sequence to the path space fibration to compute rational homotopy
of Eilenberg-Maclane spaces.

ΩK(Z, k) Map∗(I,K(Z, k)) K(Z, k)

K(Z, k + 1) ∗ K(Z, k)

∼

We start at K(Z,1), and by chasing differentials around:

H∗(K(Z, k);Q) ≃

Λ[ik] k odd
Q[ik] k even

where ik is a generator in degree k.
When k is odd, Sk → K(Z, k) is a Q-equivalence. When k is even, F→ Sk → K(Z, k) has the attaching map

be null. By rotating it once, we get the fiber sequence:

K(Z, k − 1)Q
0−→ K(Z,2k − 1)Q→ Sk

Q

□

The additive structure cannot then give us too much.

Corollary 1.4. The stable homotopy groups π≥1S are torsion.

How far can we go by multiplication? For example, we can ask if η is nilpotent. In fact, the strongest
possible thing is true:

Theorem 1.5 (Nishida). π≥1S is nilpotent.

Proof. This is inspired by Jeremy Hahn’s notes from a previous Juvitop: https://math.mit.edu/juvitop/
pastseminars/notes_2016_Fall/Nishida.pdf.

We will want HFp to “detect nilpotence” among simple p-torsion elements in π∗R for a ring spectrum.
That is, we have a unit map:

S
η
−→HFp

which induces a Hurewicz map:

π∗(R)
η∗−−→H∗

(
R;Fp

)
that is a ring map. If x is in the kernel of this map has simple p-torsion px = 0, then x is nilpotent. This is
proven using power operations on HFp. We might need power operations on R, so we may need to require
it to have an H∞ structure. □

https://math.mit.edu/juvitop/pastseminars/notes_2016_Fall/Nishida.pdf
https://math.mit.edu/juvitop/pastseminars/notes_2016_Fall/Nishida.pdf
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How do we get rid of the simple p-torsion requirement? This doesn’t happen in general, S is special.

2. Nilpotence

Definition 2.1. A commutative ring spectrum E ∈ CAlg
(
HoSp(p)

)
detects nilpotence if ∀R ∈ Alg

(
HoSp(p)

)
,

ker(π∗R→ E∗R) consists of nilpotent elements. We will not require R to be commutative – it will be impor-
tant to allow tensor algebras, for example.

E is cool if it detects smash nilpotence: if for all maps f : F→ Y for F finite, if we have:

E ⊗ f : E ⊗F→ E ⊗Y is nullhomotopic

=⇒

f ⊗n : F⊗n→ Y ⊗n is nullhomotopic for large n

◁

Remark 2.2. The hard thing in this implication is the word “ring”. Y does not need to be a ring, so we have
to get a ring structure out of nowhere that lets us say something about maps F→ Y . ◁

Proposition 2.3 (DHS = Devinatz-Hopkins-Smith).

a. Cool things detect nilpotence.
b. If E∗R is always torsion free, and E detects nilpotence, then

Proof.

a. Set F = ΣkS.
b. For f : F→ Y , let

T =
⊕
n∈N

(DF ⊗Y )⊗n

where DE is the S-linear dual – the Spanier-Whitehead dual DE = Map(E,S).

(f ⊗ : S→ T ) (DF ⊗Y )⊗n

(Mate f )⊗n

so that f ⊗n ∼ 0 is equivalent to f ⊗ is nilpotent.

f ⊗ is nilpotent

=⇒

f ⊗ ∈ ker(π∗T → E∗T )

=⇒

E ⊗ f ≃ 0

□

Theorem 2.4 (DHS). BP detects nilpotence of p-local finite spectra.

Remark 2.5. p-localized MU is a bunch of copies of shifted BPs. ◁

Corollary 2.6 (DHS). Let Y be a finite p-local spectra, f ∈ End∗(Y ) be a graded self-map. That is, f is some
map Y → ΣkY . BP⊗ f ≃ 0 is equivalent to f −1Y = 0, by which we mean:

f −1Y B colim
(
Y

f
−→ ΣkY

Σkf
−−−→ Σ2kY → ·· ·

)
This is the localization to invert f .
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Proof Idea. We will start with this claim: if X is a p-local spectrum such that H ∗
(
X;Z(p)

)
is finite-dimensional

and torsion-free, then ⟨X⟩ = {0} = ⟨S⟩. To see this, by shifting we will assume without loss of generality that
H∗

(
X;Z(p)

)
≃ 0. Then, we have H0

(
X;Z(p)

)
≃ BP0(X). We choose an element of δ ∈ π0(X) that is non-zero in

H0

(
X;Fp

)
. Then, we have a fiber sequence:

S δ−→ S→ X

We get that BP ⊗ δ ∼ 0 if and only if HZ(p) ⊗ δ ∼ 0. If we choose things correctly, we can choose δ to be
tensor-null. We find then that every X-acyclic has to be 0.

Once that is established, we need to construct X satisfying f −1Y ⊗X = 0. We can find this with a vanishing
line in the BP -based Adams spectral sequence (ANSS) that has arbitrarily small slope ε. The telescope acts
on the ANSS by sending things to zero faster than ε, after tensoring with X. □

Upshot 2.7. BP detects nilpotence in 3 different ways. It does so via smash nilpotence, on homotopy groups
of ring spectra, and on endomorphism rings. ◁

Definition 2.8. Let supp(X) = {n such that K(n)⊗X , 0}. ◁

Proposition 2.9. If X is finite, then there a type(X) ∈ [0,∞] such that:

supp(X) = [type(X),∞]

Theorem 2.10 (Hopkins-Smith ’98). The fact that BP detects nilpotence implies that
⊕
n
K(n) detects nilpotence.

Remark 2.11. The claim is that the Bousfield class ⟨BP⟩ = ⟨K(0)⟩ ∪ . . . ∪ ⟨K(n)⟩ ∪ ⟨P (n+ 1)⟩. There is a
compactness argument where you can check acylicity against finitely many of these. ◁

Theorem 2.12 (stronger result, also HS). Knowing that BP detects nilpotence (we haven’t proved it yet), then
we have that E detects nilpotence for arbitrary E if and only if E is fully supported: E ⊗K(n) , 0 for all n.

3. Field Theory

Definition 3.1. E ∈ Alg(HoSp) is a field if E∗ is a graded field. That is, all the homogenous elements of
π∗(E) are invertible. ◁

Proposition 3.2. (1) Free E-modules for a field E in spectra are free in graded sets.
(2) That is, as an E∗-module, they split into copies of shifted E∗s.
(3) Retracts of free E-modules are free
(4) We have a Kunneth isomorphism, E∗(X) ⊗

E∗
E∗(Y ) ≃ E∗(X ×Y ).

Proposition 3.3. If E is a field then ∃h such that E is a free K(h)-module.

Proof. K(h) jointly detect nilpotence, so that the non-nilpotent map that is the unit is not zero. Then,⊕
j

ΣnjK(n) ≃ E ⊗K(n) ≃
⊕
i

ΣmiE E

The proposition before gives us that E ≃
⊕

ΣpkK(h), so we are done. □

Proof of Stronger Theorem. If E detects nilpotence, then if x⊗E ≃ 0, then X⊗E⊗K(n) ≃ 0 for all n. Then
X ⊗K(n) = 0 for all n, so X is nilpotent. This is one direction, the other isn’t too hard. □

Upshot 3.4. K(n) are prime fields, they are positive height versions of Fp or Q. We can study spectra
by studying heights at each prime. They also completely classify nilpotence, and it is relatively easy to
compute K(n) homology due to its field properties. ◁
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4. Thickness

Definition 4.1. We call a subcategory C ⊂ Spω(p) thick if it is closed under:

• fibers
• cofibers
• extensions

◁

Theorem 4.2 (Hopkins-Smith). The lattice of thick subcategories of Spω(p) is:

0 ⊂ . . . ⊂ ⟨K(n)⟩ω ⊂ ⟨K(n− 1)⟩ω ⊂ . . . ⊂ ⟨K(0)⟩ω ⊂ Spω(p)

Proof. Mitchell showed these subcategories are different from each other. If we assume type(Y ) ≥ type(X),
then Y is in the thick subcategory generated by X.

Take the coevaluation map and its fiber:

F S DX ⊗X

F⊗n S C(n)

f coev

We know that C(1) is in the thick subcategory generated by X, so that Y ⊗C(1) also is. We claim that we have
a cofiber sequence

Y ⊗C(n)→ C(n)→ Y ⊗n ⊗C(1)

Inductively, C(n) and C(n+1) are in the thick subcategory generated by X. Due to type considerations, f ⊗
K(n)⊗ Y = 0 for all n – if not for K(n), then for Y . Then, f ⊗ Y is tensor-nilpotent. Thus, for n large, the
cofiber of the tensor power has:

cofib
(
f ⊗n ⊗Y

)
= Y ⊕Σ

(
Y ⊗F⊗n

)
This is proven with homological algebra.

□

5. Sketch of Nilpotence

Define X(n)B Th(ΩSU (n)→ΩSU ≃ BU ). Observe that X(0) ≃ S, and we have maps:

X(0)→ X(1)→ X(2)→ ·· ·

Further, the colimit colim(X(0)→ X(1)→ ·· · ) ∼−→MU . You prove it going down, using a compactness argu-
ment.

We need a refinement of this for the inductive step.

Recall 5.1. There is an equivalence ΩΣS2n = ΩS2n+1 and colimk→∞
∏
ℓ<k

(
S2n

)ℓ
. ◁

We get a filtration FilkΩS2n+1. We then get a pullback

F′k ΩSU (n+ 1) BU

FilkΩS2n+1 ΩS2n+1

⌟

We have a filtration FilkX(n+ 1) as the Thom spectrum of the top. Observe that we have a filtration of
X(n+ 1) by X(n)-modules that is exhaustive and whose zero-th component is X(n).

Step II. Show that X(n+ 1)∗α is nilpotent, so Filp
k−1X(n+ 1)(p) ⊗α−1R = 0 for large k.

Step III. Show
〈
Filp

k−1X(n+ 1)(p)

〉
=

〈
X(n)(p)

〉
.
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