THE UNREASONABLE EFFECTIVENESS OF NILPOTENCE IN STABLE HOMOTOPY THEORY

You Will Care About Morava K-theory MIT/Harvard Babytop Seminar, Spring 2025 Tuesday, March 11th, 2025 LiveT_EX by Howard Beck

Abstract. Speaker: Natalie Stewart (Harvard)

It's a classical result due to Nishida that $H\mathbb{F}_p$ detects nilpotence of simple *p*-torsion elements in the homotopy groups of a ring spectrum – as a corollary, one finds that all elements of $\pi_*\mathbb{S}$ are nilpotent. In this talk, we'll sketch Devanitz-Hopkins-Smith's more advanced proof of this fact: *MU* detects arbitrary nilpotence. We'll also discuss various corollaries in stable homotopy theory.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better exposition, and there may be errors in my liveT_EXing

References

- Douglas C Ravenel. Localization with respect to certain periodic homology theories. American Journal of Mathematics, 106(2):351–414, 1984
- Ethan S Devinatz, Michael J Hopkins, and Jeffrey H Smith. Nilpotence and stable homotopy theory i. *Annals of Mathematics*, 128(2):207–241, 1988
- Michael J Hopkins and Jeffrey H Smith. Nilpotence and stable homotopy theory ii. *Annals of mathematics*, 148(1):1–49, 1998

0. Facts and Notations

- MU = Th(BU)
- BP := indecomposable component of MU $\pi_*(BP) \simeq \mathbb{Z}_{(p)}[v_1, v_2, ...], |v_i| = 2(p^i - 1)$
- $E(n)_* := \mathbb{Z}_{(p)}[v_1, \dots, v_n, v_n^{-1}]$, kill of higher v_i s and invert the top degree. $E(n)_*$ are the topological lifts of the moduli stack of *p*-typical formal groups. These are spectra whose Bousfield classes tell you about support in these strata.
- $P(n+1)_* := \mathbb{F}_p[v_{n+1}, v_{n+2}, ...]$ these correspond to higher strata.
- $K(n)_* := \mathbb{F}_p[v_n^{\pm 1}]$ these correspond to locally closed strata. This is constructed by killing all other v_i s and inverting v_n .

All of these are ring spectra. By $Sp^{\omega}_{(p)}$ we will mean compact *p*-local spectra. By compact, we will mean in the categorical sense, which will also mean (perfect) finite in the sense of their CW structure.

REMARK 0.1 (Andy Senger). *Ps* and *Ks* depend on your choice of v_i s. We will ignore this.

۹

0.1. Ravenel's Correct Conjectures.

Nilpotence

- a. BP detects nilpotence (we will implicitly assume *p*-locality if not, put in *MU*)
- b. $X \to Y \to Z \xrightarrow{f} \Sigma X$ such that $BP \otimes f \simeq 0$, then $\langle Y \rangle = \langle X \rangle$
- c. $x \in \langle K(n) \rangle^c \cap \langle K(n-1) \rangle^{\omega}$ is equivalent to X has "type n". That is, X has a " v_n -self map".

Realizability

There exists finite type *n* spectra.

Class invariance and boolean algebra

The lattice of Bousfield of finite *p*-local spectra is:

 $0 \subset \ldots \subset \langle K(n) \rangle^{\omega} \subset \langle K(n-1) \rangle^{\omega} \subset \ldots \subset \langle K(0) \rangle^{\omega} \subset \operatorname{Sp}_{(p)}^{\omega}$

DEFINITION 0.2. The **Bousfield class** of *X* is given by $\langle X \rangle = \{E \text{-acyclic objects (such as spectra)}\}$. Two spectra are **Bousfield equivalent** if they have the same Bousfield class.

⊲

⊲

⊲

REMARK 0.3. The Bousfield class measures how much your cohomology theory can see.

EXERCISE 1.1. Prove or disprove: $\pi_n(S^k)$ is torsion when $n \neq k$.

ANSWER 1.2. The Hopf fibration $\eta \in \pi_3(S^2)$ generates $\pi_3(S^2) \simeq \mathbb{Z}$.

THEOREM 1.3 (Serre '53). The rank

$$\pi_k(S^n) = \begin{cases} 1 & n = k \text{ or } k \text{ even and } n = 2k - 1 \\ 0 & otherwise \end{cases}$$

PROOF IDEA. Apply the Serre spectral sequence to the path space fibration to compute rational homotopy of Eilenberg-Maclane spaces.

We start at $K(\mathbb{Z}, 1)$, and by chasing differentials around:

$$\mathrm{H}^*(K(\mathbb{Z},k);\mathbb{Q}) \simeq \begin{cases} \Lambda[i_k] & k \text{ odd} \\ \mathbb{Q}[i_k] & k \text{ even} \end{cases}$$

where i_k is a generator in degree k.

When k is odd, $S^k \to K(\mathbb{Z}, k)$ is a Q-equivalence. When k is even, $F \to S^k \to K(\mathbb{Z}, k)$ has the attaching map be null. By rotating it once, we get the fiber sequence:

$$K(\mathbb{Z}, k-1)_{\mathbb{Q}} \xrightarrow{0} K(\mathbb{Z}, 2k-1)_{\mathbb{Q}} \to S_{\mathbb{Q}}^{k}$$

The additive structure cannot then give us too much.

COROLLARY 1.4. The stable homotopy groups $\pi_{\geq 1} \mathbb{S}$ are torsion.

How far can we go by multiplication? For example, we can ask if η is nilpotent. In fact, the strongest possible thing is true:

THEOREM 1.5 (Nishida). $\pi_{\geq 1} \mathbb{S}$ is nilpotent.

PROOF. This is inspired by Jeremy Hahn's notes from a previous Juvitop: https://math.mit.edu/juvitop/pastseminars/notes_2016_Fall/Nishida.pdf.

We will want $H\mathbb{F}_p$ to "detect nilpotence" among simple *p*-torsion elements in π_*R for a ring spectrum. That is, we have a unit map:

$$\mathbb{S} \xrightarrow{\eta} \mathrm{H}\mathbb{F}_p$$

which induces a Hurewicz map:

$$\pi_*(R) \xrightarrow{\eta_*} H_*(R; \mathbb{F}_p)$$

that is a ring map. If x is in the kernel of this map has simple p-torsion px = 0, then x is nilpotent. This is proven using power operations on $H\mathbb{F}_p$. We might need power operations on R, so we may need to require it to have an H_{∞} structure.

How do we get rid of the simple *p*-torsion requirement? This doesn't happen in general, S is special.

2. Nilpotence

DEFINITION 2.1. A commutative ring spectrum $E \in CAlg(HoSp_{(p)})$ **detects nilpotence** if $\forall R \in Alg(HoSp_{(p)})$, $ker(\pi_*R \to E_*R)$ consists of nilpotent elements. We will not require R to be commutative – it will be important to allow tensor algebras, for example.

E is **cool** if it detects smash nilpotence: if for all maps $f : F \to Y$ for *F* finite, if we have:

$$E \otimes f : E \otimes F \rightarrow E \otimes Y$$
 is nullhomotopic

 $\downarrow f^{\otimes n}: F^{\otimes n} \to Y^{\otimes n} \text{ is nullhomotopic for large } n$

REMARK 2.2. The hard thing in this implication is the word "ring". *Y* does not need to be a ring, so we have to get a ring structure out of nowhere that lets us say something about maps $F \to Y$.

PROPOSITION 2.3 (DHS = Devinatz-Hopkins-Smith).

- a. Cool things detect nilpotence.
- b. If E_*R is always torsion free, and E detects nilpotence, then

Proof.

- a. Set $F = \Sigma^k \mathbb{S}$.
- b. For $f : F \to Y$, let

$$T = \bigoplus_{n \in \mathbb{N}} (\mathbb{D}F \otimes Y)^{\otimes n}$$

where $\mathbb{D}E$ is the S-linear dual – the Spanier-Whitehead dual $\mathbb{D}E = \operatorname{Map}(E, \mathbb{S})$.

$$(f^{\otimes}: \mathbb{S} \to T) \longrightarrow (\mathbb{D}F \otimes Y)^{\otimes n}$$

$$(Mate f)^{\otimes n}$$

so that $f^{\otimes n} \sim 0$ is equivalent to f^{\otimes} is nilpotent.

$$f^{\otimes}$$
 is nilpotent \hat{f}

$$f^{\otimes} \in \ker(\pi_*T \to E_*T)$$
$$\Uparrow$$
$$E \otimes f \simeq 0$$

⊲

THEOREM 2.4 (DHS). BP detects nilpotence of p-local finite spectra.

REMARK 2.5. *p*-localized *MU* is a bunch of copies of shifted BPs.

COROLLARY 2.6 (DHS). Let Y be a finite p-local spectra, $f \in \text{End}_*(Y)$ be a graded self-map. That is, f is some map $Y \to \Sigma^k Y$. BP $\otimes f \simeq 0$ is equivalent to $f^{-1}Y = 0$, by which we mean:

$$f^{-1}Y \coloneqq \operatorname{colim}\left(Y \xrightarrow{f} \Sigma^k Y \xrightarrow{\Sigma^k f} \Sigma^{2k} Y \to \cdots\right)$$

This is the localization to invert f.

⊲

PROOF IDEA. We will start with this claim: if X is a *p*-local spectrum such that $H^*(X;\mathbb{Z}_{(p)})$ is finite-dimensional and torsion-free, then $\langle X \rangle = \{0\} = \langle S \rangle$. To see this, by shifting we will assume without loss of generality that $H_*(X;\mathbb{Z}_{(p)}) \simeq 0$. Then, we have $H_0(X;\mathbb{Z}_{(p)}) \simeq BP_0(X)$. We choose an element of $\delta \in \pi_0(X)$ that is non-zero in $H_0(X;\mathbb{F}_p)$. Then, we have a fiber sequence:

$$\mathbb{S} \xrightarrow{\delta} \mathbb{S} \to X$$

We get that BP $\otimes \delta \sim 0$ if and only if $H\mathbb{Z}_{(p)} \otimes \delta \sim 0$. If we choose things correctly, we can choose δ to be tensor-null. We find then that every *X*-acyclic has to be 0.

Once that is established, we need to construct *X* satisfying $f^{-1}Y \otimes X = 0$. We can find this with a vanishing line in the *BP*-based Adams spectral sequence (ANSS) that has arbitrarily small slope ε . The telescope acts on the ANSS by sending things to zero faster than ε , after tensoring with *X*.

Upsнот 2.7. BP detects nilpotence in 3 different ways. It does so via smash nilpotence, on homotopy groups of ring spectra, and on endomorphism rings.

DEFINITION 2.8. Let supp(X) = {n such that $K(n) \otimes X \neq 0$ }.

PROPOSITION 2.9. If X is finite, then there a type $(X) \in [0, \infty]$ such that:

$$supp(X) = [type(X), \infty]$$

THEOREM 2.10 (Hopkins-Smith '98). The fact that BP detects nilpotence implies that $\bigoplus K(n)$ detects nilpotence.

REMARK 2.11. The claim is that the Bousfield class $\langle BP \rangle = \langle K(0) \rangle \cup ... \cup \langle K(n) \rangle \cup \langle P(n+1) \rangle$. There is a compactness argument where you can check acylicity against finitely many of these.

THEOREM 2.12 (stronger result, also HS). Knowing that BP detects nilpotence (we haven't proved it yet), then we have that E detects nilpotence for arbitrary E if and only if E is fully supported: $E \otimes K(n) \neq 0$ for all n.

3. Field Theory

DEFINITION 3.1. $E \in Alg(HoSp)$ is a field if E_* is a graded field. That is, all the homogenous elements of $\pi_*(E)$ are invertible.

PROPOSITION 3.2. (1) Free E-modules for a field E in spectra are free in graded sets.

- (2) That is, as an E_* -module, they split into copies of shifted E_*s .
- (3) *Retracts of free E-modules are free*
- (4) We have a Kunneth isomorphism, $E_*(X) \underset{F}{\otimes} E_*(Y) \simeq E_*(X \times Y)$.

PROPOSITION 3.3. If *E* is a field then $\exists h$ such that *E* is a free K(h)-module.

PROOF. K(h) jointly detect nilpotence, so that the non-nilpotent map that is the unit is not zero. Then,

$$\bigoplus_{j} \Sigma^{n_{j}} K(n) \simeq E \otimes K(n) \simeq \bigoplus_{i} \Sigma^{m_{i}} E \leftrightarrows E$$

The proposition before gives us that $E \simeq \bigoplus \Sigma^{p_k} K(h)$, so we are done.

PROOF OF STRONGER THEOREM. If *E* detects nilpotence, then if $x \otimes E \simeq 0$, then $X \otimes E \otimes K(n) \simeq 0$ for all *n*. Then $X \otimes K(n) = 0$ for all *n*, so *X* is nilpotent. This is one direction, the other isn't too hard.

UPSHOT 3.4. K(n) are prime fields, they are positive height versions of \mathbb{F}_p or \mathbb{Q} . We can study spectra by studying heights at each prime. They also completely classify nilpotence, and it is relatively easy to compute K(n) homology due to its field properties.

⊲

4. Thickness

DEFINITION 4.1. We call a subcategory $\mathcal{C} \subset Sp^{\omega}_{(p)}$ thick if it is closed under:

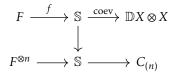
- fibers
- cofibers
- extensions

THEOREM 4.2 (Hopkins-Smith). The lattice of thick subcategories of $Sp^{\omega}_{(p)}$ is:

$$0 \subset \ldots \subset \langle K(n) \rangle^{\omega} \subset \langle K(n-1) \rangle^{\omega} \subset \ldots \subset \langle K(0) \rangle^{\omega} \subset \operatorname{Sp}_{(n)}^{\omega}$$

PROOF. Mitchell showed these subcategories are different from each other. If we assume type(Y) \ge type(X), then Y is in the thick subcategory generated by X.

Take the coevaluation map and its fiber:



We know that $C_{(1)}$ is in the thick subcategory generated by *X*, so that $Y \otimes C_{(1)}$ also is. We claim that we have a cofiber sequence

$$Y \otimes C_{(n)} \to C_{(n)} \to Y^{\otimes n} \otimes C_{(1)}$$

Inductively, $C_{(n)}$ and $C_{(n+1)}$ are in the thick subcategory generated by *X*. Due to type considerations, $f \otimes K(n) \otimes Y = 0$ for all n – if not for K(n), then for *Y*. Then, $f \otimes Y$ is tensor-nilpotent. Thus, for n large, the cofiber of the tensor power has:

$$\operatorname{cofib}(f^{\otimes n} \otimes Y) = Y \oplus \Sigma(Y \otimes F^{\otimes n})$$

This is proven with homological algebra.

5. Sketch of Nilpotence

Define $X(n) := \text{Th}(\Omega S U(n) \rightarrow \Omega S U \simeq B U)$. Observe that $X(0) \simeq S$, and we have maps:

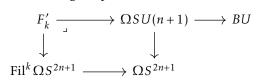
 $X(0) \rightarrow X(1) \rightarrow X(2) \rightarrow \cdots$

Further, the colimit $\operatorname{colim}(X(0) \to X(1) \to \cdots) \xrightarrow{\sim} MU$. You prove it going down, using a compactness argument.

We need a refinement of this for the inductive step.

RECALL 5.1. There is an equivalence $\Omega \Sigma S^{2n} = \Omega S^{2n+1}$ and $\operatorname{colim}_{k \to \infty} \prod_{\ell < k} (S^{2n})^{\ell}$.

We get a filtration $\operatorname{Fil}^k \Omega S^{2n+1}$. We then get a pullback



We have a filtration $\operatorname{Fil}^{k} X(n+1)$ as the Thom spectrum of the top. Observe that we have a filtration of X(n+1) by X(n)-modules that is exhaustive and whose zero-th component is X(n).

Step II. Show that $X(n+1)_*\alpha$ is nilpotent, so $\operatorname{Fil}^{p^k-1} X(n+1)_{(p)} \otimes \alpha^{-1} R = 0$ for large *k*.

<u>Step III</u>. Show $\left(\operatorname{Fil}^{p^k-1} X(n+1)_{(p)}\right) = \left(X(n)_{(p)}\right)$.

⊲

References

- Ethan S Devinatz, Michael J Hopkins, and Jeffrey H Smith. Nilpotence and stable homotopy theory i. *Annals of Mathematics*, 128(2):207–241, 1988.
- Michael J Hopkins and Jeffrey H Smith. Nilpotence and stable homotopy theory ii. *Annals of mathematics*, 148(1):1–49, 1998.
- Douglas C Ravenel. Localization with respect to certain periodic homology theories. *American Journal of Mathematics*, 106(2):351–414, 1984.