STACK TO THE FUTURE MIT/Harvard Babytop Seminar, Spring 2025 Tuesday, March 04th, 2025 LiveT_EX by Howard Beck

Abstract. Speaker: Tyler Lane (Harvard)

As the title suggests, this talk is all about the moduli stack of formal groups. I'll begin by presenting the moduli stack of formal groups as a quotient stack. Then I'll discuss the height filtration and some of its basic properties. One of my main goals is to present some theorems about quasi-coherent sheaves on the stack of formal group which will serve as inspiration for some corresponding results in chromatic homotopy theory. Finally I will discuss the Landweber exact functor theorem.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better exposition, and there may be errors in my liveT_EXing

1. Formal Group Laws

REMINDER 1.1. Last time, we saw that the functor:

Fgl : Aff \rightarrow Set $R \mapsto \{\text{formal group laws over } R\}$

is representable by the Lazard ring.

QUESTION 1.2. Consider the category fibered in groupoids FGL \rightarrow Aff whose objects are pairs (S, F) (ring, formal group law over S) and whose morphisms $(S, F) \rightarrow (S', F')$ are pairs (f, ϕ) where $S' \xrightarrow{f} S$ is a ring map an $\phi : F \rightarrow f^*F'$ is an isomorphism of formal group laws. Is this a stack?

ANSWER 1.3. No, descent fails. We will see two fixes

CONSTRUCTION 1.4. Let $F \in R[x]$ be a formal group law. We define a functor:

$$S_F : \operatorname{Aff}_{/R} \to \operatorname{Ab}$$

 $S \mapsto \operatorname{Nil}(S)$

where the group law on Nil(*S*) is given by x + y = F(x, y).

NOTE 1.5. This is an fpqc sheaf.

DEFINITION 1.6. We say that a sheaf of abelian groups \mathcal{G} on $(Aff_{/R})_{fpqc}$ is a **formal group law** if $\mathcal{G} \simeq \mathcal{G}_F$ for some formal group law $F(x, y) \in R[x, y]$.

We say that \mathcal{G} is a **formal group** if it is fpqc-locally isomorphic to a formal group law, and we say that a formal group \mathcal{G} is **coordinatizable** if $\exists F$ such that $\mathcal{G} \simeq \mathcal{G}_F$.

REMARK 1.7. This all works if you replace fpqc with the Zariski topology (Lurie does this). An fpqc-sheaf is a Zariski sheaf. Being Zariski-locally a formal group law is a priori stronger, but we will see that these are equivalent.

REMARK 1.8. There are a lot of definitions of formal groups. This definition will be exactly what we need to turn the category from (Question 1.2) into a sheaf.

DEFINITION 1.9 (Fix 1). The **moduli stack of formal groups** \mathcal{M}_{fg} is the category fibered in groupoids, whose objects are pairs (*S*, *G*) (ring, formal group) and whose morphisms "are isomorphisms."

REMARK 1.10. This will be the stackification of the category from (Question 1.2) from earlier.

۷

⊲

<1

⊲

DEFINITION 1.11 (Fix 2). \mathcal{M}_{fg}^s is the category fibered in groupoids whose objects are formal group laws and whose morphisms are strict isomorphisms.

REMARK 1.12. The stackification of \mathcal{M}_{fg}^s is *not* \mathcal{M}_{fg} , these are two different stacks.

THEOREM 1.13. \mathcal{M}_{fg} and \mathcal{M}_{fg}^s are stacks in the fpqc topology. The natural map $\mathcal{M}_{fg}^s \to \mathcal{M}_{fg}$ is a \mathbb{G}_m -bundle. \mathcal{M}_{fg} are \mathcal{M}_{fg}^s are both quotient stacks.

REMARK 1.14. There are not algebraic stacks, we are quotienting out by a group scheme that is not locally in finite presentation.

Let G^+ be the group scheme whose group of *R*-points is

$$\{g \in R[[t]] \mid g(t) = b_0 t + b_1 t^2 + \dots, b_0 \in R^{\times}\}$$

and:

$$(f \cdot g)(t) = f(g(t))$$

Then, G^+ acts on Spec L

$$(g \in G(R), f \in R\llbracket y \rrbracket) \mapsto \left(g\left(f\left(g^{-1}(x), g^{-1}(y)\right)\right)\right)$$

We can view \mathbb{G}_m as the subgroup of G^+ consisting of those power series such that $b_i = 0$ for i > 0. Let *G* be the subgroup of those power series such that $b_0 = 1$.

NOTE 1.15. G^+ is the semidirect product of \mathbb{G}_m , G.

Theorem 1.16. $\mathcal{M}_{fg} \simeq [FGL/G^+]$

PROOF. We can construct a map $\mathcal{M}_{fg} \rightarrow [FGL/G^+]$. Let S/R be a formal group. We can define an fpqc sheaf:

$$Coord_{\mathcal{G}}(S) = \{F \in FGL(S) : S_F \simeq S\}$$

 G^+ acts on Coord_G making the inclusion map FGL-equivariant. This section makes Coord_G into a G^1 -torsor in the fpqc topology, so it is a scheme.

Now, we have a diagram

$$\begin{array}{c} \operatorname{Coord}_{\mathcal{G}} \longrightarrow \operatorname{FGL} \\ \downarrow \\ \operatorname{Spec} R \end{array}$$

We want a morphism in the other direction: $[FGL/G^+] \rightarrow M_{fg}$. Let P/R be a G^+ -torsor with an equivariant map to FGL (i.e., a point of $[FGL/G^+](R)$).

Let $f : U \to \operatorname{Spec}(R) \coloneqq S$ be an fpqc morphism trivializing *P*. Then, the fiber P(U, f) of $P(U) \to R$ over *f* is a free $G^+(U)$ -set.

We now get:

$$\begin{array}{ccc} P(U,f) & \longrightarrow & \mathsf{FGL}(U) \\ & & & \downarrow \\ & & & \downarrow \\ \frac{P(U,f)}{G^+(U)} = * & \longrightarrow & \mathbb{F}_G(U) = & \{ \text{set of formal groups} \} \end{array}$$

The right arrow kills the G^+ -action, so it factors through the bottom-left. This specifies a formal group G_f over U, so G_f is a formal group law. The fiber of the right arrow over G_f is the free $G^1(U)$ -set $Coord_{G_f}(U)$.

The top arrow defines a $G^+(U)$ -equivariant morphism $P(U, f) \rightarrow \text{Coord}_{G_f}(U)$. They both have transitive *G*-actions, so it is an isomorphism.

We can use descent, glue results together, and get the desired results.

NOTE 1.17. Does anyone want to see descent? (No answer) Exactly.

Theorem 1.18. $[\mathcal{M}_{fg}^{s}] = [FGL/G]$

٩

⊲

DEFINITION 1.19. Let \mathcal{G} be a formal group law over R. The Lie algebra of \mathcal{G} is:

$$\mathfrak{g} = \operatorname{ker}(\mathcal{G}(R[t]/t^2) \to \mathcal{G}(R))$$

- (1) \mathfrak{g} is an *R*-module. Let $\lambda \in \mathbb{R}$. λ acts on $\mathbb{R}[t]/t^2$ by $t \mapsto \lambda t$. This gives the action on \mathfrak{g} .
- (2) Suppose $\mathcal{G} = \mathcal{G}_F$. $\mathcal{G}(R[t]/t^2) = \{\lambda t : \lambda \in R\}$. So when $\mathcal{G} \simeq \mathcal{G}_F$, $\mathfrak{g} \simeq R$. That is to say, \mathfrak{g} is an invertible *R*-module which is trivial if \mathcal{G} is coordinatizable.

REMARK 1.20. There may be other nilpotents in *R*, but taking the kernel gives only those that are multiples of *t*.

THEOREM 1.21. A formal group is coordinatizable if and only if its Lie algebra is trivial.

Sending a formal group to its Lie algebra defines an invertible sheaf ω^{-1} on \mathcal{M}_{fg} . It is the inverse of a line bundle.

NOTE 1.22. $\mathcal{M}_{fg}^s \to \mathcal{M}_{fg}$ is the \mathbb{G}_m -bundle associated to the line bundle ω . A point in \mathcal{M}_{fg}^s is a formal group law which has a trivialization of the Lie algebra. The isomorphisms preserve the trivializations.

REMARK 1.23. This is why it doesn't matter if we use the Zariski topology. This happens for line bundles.

2. Height

THEOREM 2.1. Let R be a Q-algebra. Any formal group laws over R are isomorphic (namely, to the additive one). In fact, $\mathcal{M}_{fg} \otimes \operatorname{Spec} \mathbb{Q} \simeq \mathbb{B} \mathbb{G}_m$.

The multiplicative formal group law x + y + xy is isomorphic, over \mathbb{Q} , to the additive formal group law via the power series:

$$g(t) = t + \frac{t^2}{2} + \frac{t^3}{6} + \dots$$

This isomorphism doesn't work in positive characteristic.

Motivation: We want an invariant to tell formal group laws in positive characteristic apart. One such invariant is **height**.

DEFINITION 2.2. Let $F(x, y) \in R[[x, y]]$ be a formal group law. For each $n \ge 0$, define its *n*-series $[n](t) \in R[[t]]$ as:

$$[n](t) = \begin{cases} 0 & n = 0\\ F([n-1]t, t) & \text{otherwise} \end{cases}$$

In other words, *F*-add *t* to itself *n* times.

$$[n] = t +_F t +_F +_F \dots +_t$$

PROPOSITION 2.3. Let $R \in \text{CRing}$ in which p = 0, and F be a formal group law over R. Either [p](t) = 0, or:

$$[p](t) = \lambda t^{p^n} + O(t^{p^{n+1}})$$

for some $\lambda \neq 0$ and for some *n*.

DEFINITION 2.4. Let $R \in \text{CRing}$, and fix a prime p, and F be a formal group law over R. Let v_n definite the coefficient of t^{p^n} in [p](t). We say F has height n if $v_n \neq 0 \mod p$ and $v_i = 0 \mod p$ for all i < n.

EXAMPLE 2.5. Here are two examples:

- (1) F(x,y) = x + y + xy has height 1. In this case, $[p](t) = (1+t)^p 1 = t^p \mod p$.
- (2) F(x, y) = x + y, then [p](t) = 0 when p = 0. The height is ∞ .

⊲

We will now look at the height filtration. We can extend the notion of height to arbitrary formal groups by saying:

$$height(\mathcal{G}) = height(\mathcal{G}_F)$$

where $\mathcal{G}|_{S} = \mathcal{G}_{F}$ where $S \to \operatorname{Spec}(R)$ is a trivializing fpqc cover.

Fix a prime *p*. For every *n*, let $v_n \in L$ be the coefficient of t^{p^n} in the *p*-series of the universal formal group law. over the Lazard ring. For each *n*, let $\mathcal{M}_{fg}^{\geq n} = [\operatorname{Spec}(L/(p, v_1, \dots, v_n))/G^+]$ be the moduli stack of formal group laws over height $\geq n$. We should check this is a G^+ -invariant closed subscheme of $\operatorname{Spec} L$. The v_n s in another ring *R* are pulled back from the universal ones.

$$\mathcal{M}_{fg} \geq \mathcal{M}_{fg}^{\geq 1} \geq \mathcal{M}_{fg}^{\geq 2} \geq \dots$$

THEOREM 2.6 (Thick Subcategory Theorem). We say a full abelian subcategory $C \subset \operatorname{QCoh}(\mathcal{M}_{\operatorname{fg}} \otimes \operatorname{Spec} \mathbb{Z}_{(p)})$ is thick if $A \oplus B \in C$ implies $A \in C$ or $B \in C$. The thick subcategories of $\operatorname{QCoh}(\mathcal{M}_{\operatorname{fg}} \otimes \mathbb{Z}_{(p)})$ are

- (1) itself
- (2) $C_n = \{F : \operatorname{supp}(F) \subset \mathcal{M}_{\operatorname{fg}}^{\geq n}\}$
- (3) It is the trivial subcategory (0).

There is a famous analog of this in homotopy theory.

Let *X* be a spectrum. There is a spectrum BP such that:

- (1) *p*-localized MU, $MU_{(p)}$ is the sum of copies of BP.
- (2) Spec(BP_*) is the moduli space of *p*-typical formal group laws.
- (3) $\mathcal{M}_{fg}^{s} \otimes \mathbb{Z}_{(p)}$ is the satck associated to the flat Hopf algebroid (BP_{*}, BP_{*}BP).
- By $(-)_*$ we mean $\pi_*(-)$. *p*-localized means Bousfield localization at the Moore spectrum $S\mathbb{Z}_{(p)}$. For any spectrum, $X \to BP_{even}(X)$ is a quasi-coherent sheaf on $\mathcal{M}_{fg} \otimes \mathbb{Z}_{(p)}$. We can look at the full subcategory of finite spectra such that the associated sheaf lives in \mathcal{C}_n .

THEOREM 2.7. These are all the thick triangulated subcategories of Sp^{ω} .