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As the title suggests, this talk is all about the moduli stack of formal groups. I’ll begin by presenting the moduli
stack of formal groups as a quotient stack. Then I’ll discuss the height filtration and some of its basic proper-
ties. One of my main goals is to present some theorems about quasi-coherent sheaves on the stack of formal
group which will serve as inspiration for some corresponding results in chromatic homotopy theory. Finally I
will discuss the Landweber exact functor theorem.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better
exposition, and there may be errors in my liveTEXing

1. Formal Group Laws

Reminder 1.1. Last time, we saw that the functor:

Fgl : Aff→ Set

R 7→ {formal group laws over R}

is representable by the Lazard ring. ◁

Question 1.2. Consider the category fibered in groupoids FGL→ Aff whose objects are pairs (S,F) (ring,

formal group law over S) and whose morphisms (S,F)→ (S ′ ,F′) are pairs (f ,φ) where S ′
f
−→ S is a ring map

an φ : F→ f ∗F′ is an isomorphism of formal group laws. Is this a stack? ◁

Answer 1.3. No, descent fails. We will see two fixes ◁

Construction 1.4. Let F ∈ RJxK be a formal group law. We define a functor:

SF : Aff/R→ Ab

S 7→Nil(S)

where the group law on Nil(S) is given by x+ y = F(x,y). ◁

Note 1.5. This is an fpqc sheaf. ◁

Definition 1.6. We say that a sheaf of abelian groups G on (Aff/R)fpqc is a formal group law if G ≃ GF for
some formal group law F(x,y) ∈ RJx,yK.

We say that G is a formal group if it is fpqc-locally isomorphic to a formal group law, and we say that a
formal group G is coordinatizable if ∃F such that G ≃ GF . ◁

Remark 1.7. This all works if you replace fpqc with the Zariski topology (Lurie does this). An fpqc-sheaf
is a Zariski sheaf. Being Zariski-locally a formal group law is a priori stronger, but we will see that these
are equivalent. ◁

Remark 1.8. There are a lot of definitions of formal groups. This definition will be exactly what we need
to turn the category from (Question 1.2) into a sheaf. ◁

Definition 1.9 (Fix 1). The moduli stack of formal groupsMfg is the category fibered in groupoids, whose
objects are pairs (S,G) (ring, formal group) and whose morphisms “are isomorphisms.” ◁

Remark 1.10. This will be the stackification of the category from (Question 1.2) from earlier. ◁
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Definition 1.11 (Fix 2). Ms
fg is the category fibered in groupoids whose objects are formal group laws and

whose morphisms are strict isomorphisms. ◁

Remark 1.12. The stackification ofMs
fg is notMfg, these are two different stacks. ◁

Theorem 1.13. Mfg andMs
fg are stacks in the fpqc topology. The natural mapMs

fg →Mfg is a Gm-bundle.
Mfg areMs

fg are both quotient stacks.

Remark 1.14. There are not algebraic stacks, we are quotienting out by a group scheme that is not locally
in finite presentation. ◁

Let G+ be the group scheme whose group of R-points is

{g ∈ RJtK | g(t) = b0t + b1t
2 + . . . ,b0 ∈ R×}

and:
(f · g)(t) = f (g(t))

Then, G+ acts on SpecL
(g ∈ G(R), f ∈ RJyK) 7→

(
g
(
f
(
g−1(x), g−1(y)

)))
We can view Gm as the subgroup of G+ consisting of those power series such that bi = 0 for i > 0.
Let G be the subgroup of those power series such that b0 = 1.

Note 1.15. G+ is the semidirect product of Gm, G. ◁

Theorem 1.16. Mfg ≃ [FGL/G+]

Proof. We can construct a mapMfg→ [FGL/G+]. Let S/R be a formal group. We can define an fpqc sheaf:

CoordG(S) = {F ∈ FGL(S) : SF ≃ S}

G+ acts on CoordG making the inclusion map FGL-equivariant. This section makes CoordG into a G1-torsor
in the fpqc topology, so it is a scheme.

Now, we have a diagram

CoordG FGL

SpecR

We want a morphism in the other direction: [FGL/G+]→Mfg. Let P /R be a G+-torsor with an equivariant
map to FGL (i.e., a point of [FGL/G+](R)).

Let f : U → Spec(R)B S be an fpqc morphism trivializing P . Then, the fiber P (U,f ) of P (U )→ R over f
is a free G+(U )-set.

We now get:

P (U,f ) FGL(U )

P (U,f )
G+(U ) = ∗ FG(U ) {set of formal groups}

The right arrow kills the G+-action, so it factors through the bottom-left. This specifies a formal group Gf

over U , so Gf is a formal group law. The fiber of the right arrow over Gf is the free G1(U )-set CoordGf
(U ).

The top arrow defines a G+(U )-equivariant morphism P (U,f )→ CoordGf
(U ). They both have transitive

G-actions, so it is an isomorphism.
We can use descent, glue results together, and get the desired results. □

Note 1.17. Does anyone want to see descent?
(No answer)
Exactly. ◁

Theorem 1.18. [Ms
fg] = [FGL/G]
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Definition 1.19. Let G be a formal group law over R. The Lie algebra of G is:

g = ker
(
G
(
R[t]/t2

)
→G(R)

)
(1) g is an R-module. Let λ ∈ R. λ acts on R[t]/t2 by t 7→ λt. This gives the action on g.
(2) Suppose G = GF . G

(
R[t]/t2

)
= {λt : λ ∈ R}. So when G ≃ GF , g ≃ R. That is to say, g is an invertible

R-module which is trivial if G is coordinatizable.

◁

Remark 1.20. There may be other nilpotents in R, but taking the kernel gives only those that are multiples
of t. ◁

Theorem 1.21. A formal group is coordinatizable if and only if its Lie algebra is trivial.

Sending a formal group to its Lie algebra defines an invertible sheaf ω−1 onMfg. It is the inverse of a
line bundle.

Note 1.22. Ms
fg→Mfg is the Gm-bundle associated to the line bundle ω. A point inMs

fg is a formal group
law which has a trivialization of the Lie algebra. The isomorphisms preserve the trivializations. ◁

Remark 1.23. This is why it doesn’t matter if we use the Zariski topology. This happens for line bundles.
◁

2. Height

Theorem 2.1. Let R be a Q-algebra. Any formal group laws over R are isomorphic (namely, to the additive one).
In fact,Mfg ⊗ SpecQ ≃ BGm.

The multiplicative formal group law x + y + xy is isomorphic, over Q, to the additive formal group law
via the power series:

g(t) = t +
t2

2
+
t3

6
+ . . .

This isomorphism doesn’t work in positive characteristic.
Motivation: We want an invariant to tell formal group laws in positive characteristic apart. One such

invariant is height.

Definition 2.2. Let F(x,y) ∈ RJx,yK be a formal group law. For each n ≥ 0, define its n-series [n](t) ∈ RJtK
as:

[n](t) =

0 n = 0
F([n− 1]t, t) otherwise

In other words, F-add t to itself n times.

[n] = t +F t +F +F . . .+t

◁

Proposition 2.3. Let R ∈ CRing in which p = 0, and F be a formal group law over R. Either [p](t) = 0, or:

[p](t) = λtp
n

+O
(
tp

n+1
)

for some λ , 0 and for some n.

Definition 2.4. Let R ∈ CRing, and fix a prime p, and F be a formal group law over R. Let vn defnote the
coefficient of tp

n
in [p](t). We say F has height n if vn , 0 mod p and vi = 0 mod p for all i < n. ◁

Example 2.5. Here are two examples:

(1) F(x,y) = x+ y + xy has height 1. In this case, [p](t) = (1 + t)p − 1 = tp mod p.
(2) F(x,y) = x+ y, then [p](t) = 0 when p = 0. The height is∞.

◁
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We will now look at the height filtration. We can extend the notion of height to arbitrary formal groups
by saying:

height(G) = height(GF)

where G
∣∣∣∣
S

= GF where S→ Spec(R) is a trivializing fpqc cover.

Fix a prime p. For every n, let vn ∈ L be the coefficient of tp
n

in the p-series of the universal formal group
law. over the Lazard ring. For each n, letM≥nfg = [Spec(L/(p,v1, . . . , vn))/G+] be the moduli stack of formal
group laws over height ≥ n. We should check this is a G+-invariant closed subscheme of SpecL. The vns in
another ring R are pulled back from the universal ones.

Mfg ≥M≥1
fg ≥M

≥2
fg ≥ . . .

Theorem 2.6 (Thick Subcategory Theorem). We say a full abelian subcategory C ⊂ QCoh
(
Mfg ⊗ SpecZ(p)

)
is

thick if A⊕B ∈ C implies A ∈ C or B ∈ C. The thick subcategories of QCoh
(
Mfg ⊗Z(p)

)
are

(1) itself
(2) Cn = {F : supp(F) ⊂M≥nfg }
(3) It is the trivial subcategory (0).

There is a famous analog of this in homotopy theory.
Let X be a spectrum. There is a spectrum BP such that:

(1) p-localized MU, MU(p) is the sum of copies of BP.
(2) Spec(BP∗) is the moduli space of p-typical formal group laws.
(3) Ms

fg ⊗Z(p) is the satck associated to the flat Hopf algebroid (BP∗,BP∗BP).

By (−)∗ we mean π∗(−). p-localized means Bousfield localization at the Moore specturm SZ(p).
For any spectrum, X→ BPeven(X) is a quasi-coherent sheaf onMfg ⊗Z(p).
We can look at the full subcategory of finite spectra such that the associated sheaf lives in Cn.

Theorem 2.7. These are all the thick triangulated subcategories of Spω.
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