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In the previous talk, we saw that the behaviour of the complex cobordism spectrum MU controls homotopy
groups of spheres via the Adams-Novikov spectral sequence. In this talk, I will further discuss how MU can be
used to relate topology and algebra via formal group laws. This will lead to defining the moduli stack of for-
mal groups, which will be a central focus of the remaining talks. Finally, via the theory of Hopf algebroids, we

will show how one can associate, to any spectrum, certain quasi-coherent sheaves on the moduli stack of formal
groups.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better
exposition, and there may be errors in my liveTgXing

Notartion 1. Let E be a commutative ring spectrum (E;-algebra should be enough, but everything we’ll do
isEg). <

DerINtTION 2. A complex orientation on E is a choice of class xg € E%(CP>) such that the restriction map:

E*(CP®) - E(CP') = E°(S°) = o (E)

These cohomology classes classify complex line bundles, which is why these are complex orientations.
ExampLE 3. For Eilenberg-MacLane spectra HR, we have:
HR’(CP®) = H2(CP™,R) = R

The map R — R is an isomorphism, so we have one choice of orientation. <
ExampLE 4. E is a spectrum with 7, E even, then we have:

2®72CP' > E
The obstruction to lifting to CP? lives in 13E, so we have a lift:

T®2CP® > E
For example, for E = KU (complex K-theory), we have:

KU?(CP>) = KU(CP™) = [O(1)] -1

ProrosrtioN 5. If (E,xg) is a complex-oriented ring spectrum, then:
(1) E*(CP*) = E*[xg]
(2) E*(CP™® xCP®) = E*[1 ®xg, xp ® 1]

Remark 6. This is kind of a lie, it is not a power series ring. What we mean is:
E*[xg] = lim E*[xg]/(x}:)

in GrRing.
However, we will treat these objects as honest power series rings. <
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Proor. We wil use the Atiyah-Hirzebruch Spectral Sequence.
EbT = HP(CP*,E%) = E1®yP*Z — EP*1(CP™)

The powers of 1 ® y generate the E, page, and y remains on the spectral sequence forever due to the fact it

lives on by definition. [Proposition 5] O
<

ReMINDER 7. CP* = BU(1) is the classifying space for complex line bundles. The multiplication map:

m:B(U(1)x U(1)) ~BU(1)x BU(1) - BU(1)
classify tensor products of line bundles. <

Therefore, for E a complex-oriented ring spectrum, we have, pulling back along m,
m*E*[t] — E*[u,v]
Tensor products of line bundles are commutative, so we get:
F=m"(t) = F(u,v)=F(v,u)
The fact there is a unit means
F(O,u)=F(u,0)=u
Associativity of the tensor product gives us:
F(u,F(v,w)) = F(F(u,v),w)

DeriniTION 8. For R a ring, then a formal group law on R over R is a formal power series F € R[x,y] such
that:

0 0,x) =
(x,y)= ( ,X)
F =F(F(x,9),2)

ExampLE 9. Here are some examples of formal group laws:
(1) The complex orientation of E induces a formal group law
(2) F=x+y (additive formal group law)
(3) F=x+79v+xy (multiplicative formal group law)
<

Remark 10. The multiplicative formal group law never will come from topology, as we would require
homogenous degrees of 0. <

Remark 11. The axioms of formal group laws give us some equations in coefficients, so we can form the
Lazard Ring:
L = Z[{a; j}; j>0]/(equations coming from axioms)

F = Z ai,jxiyj

i,j>0

with the formal group law:

Then, the set of formal group laws over R is corepresented by L:
FGL(R) = {formal group laws over R} = Hom(L, R)
<
We can give the Lazard ring a grading, by imagining degx = degy = -2 and F homogenous of degree —2.
Then,
deg(al]) 2(a+j-1)
You can check this is consistent with the axioms: F(x, F(y,z)) = F(F(x,v),z) have homogenous degree -2, so

that the coefficient of x'y/z* is 2(i + j + k— 1). Therefore, the grading descends to a grading on L, which is
non-negatively graded with Ly = Z.
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TueoreM 12 (Lazard). There is an isomorphism of graded rings:
L— Z[tl,tz,...]
with deg(t;) = 2i.

Proor 1pEA. One way to get any formal group law is to take a power series h. If we take the additive formal
group law, another one is given by:

W (h(x) + ()
In fact, this is an isomorphism of formal group laws over Q. We need to show it is an isomorphism over Z

for L. Therefore, we will need some good choice of coordinates. O
<

DeriniTION 13. Let X be a topological space and
E:V-oX

be a real vector bundle that admits a Riemannian metric. Then, we have two fiber bundles associated to it:
(1) S(&)={xe V||xl][=1}
(2) D(&) ={xe V[|xll <1}
We define the Thom space of £ as:
Th(&) =D(&)/5(€)

In fact, this is well-defined and functorial. <

ProrositiON 14. If we have two vector bundles £ : V — X and n: W — Y, then we can take:

Th(& x17) = Th(E) A Th(n)

For each n >0, let £" : E(n) — BU(n) denote the universal complex vector bundle of rank #.
Let MU (n) = Th(£"). We want a suspension spectrum with spaces:

MU ={MU(0),EMU(0),MU(1),EMU(1),...}
The even maps are obvious, for odd maps we need:
Y2MU(n-1) - MU(n)

Using the proposition, we can take add a factor of C and have:

E(n-1)@#¢C —— E(n)

é)l*l ®1Cl énl

BU(n-1) —— BU(n)
(the bottom map is induced by the inclusion of R"~! < IR"). After taking Thom spaces, we get a map:

Th(£") ATh(1¢) — Th(") = MU(n)

MU(n-1)AS?
ZzMJ’(n -1)
Therefore, we get a spectrum MU. We can check that the map BU(n) x BU(m) — BU(n + m) induces a map:
MU xMU — MU
Further, we have BU(0) = %, so that MU(0) = S0 so we get a unit map:
S$—->MU
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Therefore, MU is a commutative ring spectrum (in fact, E.,-ring).
We will see that MU gives complex orientations.

We have a unit section BU(1) - M U(1), and we have the associated bundle construction:

S(EM)=EU(n) x §*!
Ul

n)
Specifically,
S(&')=EU(1) x S'=EU(1)=»
u(1)
Therefore, we have CP*™ ~ BU(1) ~ MU(1), and we have a map:
CP*® > MU(1)=MU,
which gives a complex orientation:
xXyu € MU’ (CP%)
Denote Fyy € MU*[x, y] associated to the induced formal group law. We get an induced map:
L —-MU"

However, the grading is wrong since MU" is cohomologically graded. As ungraded rings, it is the same as
MU,, so we have a map:
L —- MU,

TuaeoreM 15 (Quillen). The map L — MU, ~ .MU is a graded isomorphism. <
By a computation of Milnor, there are generators Z[t{, t,,...] that have deg(¢;) = 2i.
THEOREM 16 (Adams). MU completely determines complex orientations:
{¢ : MU — E map of commutative ring spectra} — {complex orientations on E}
¢ = MU
where ¢, : MU’ (CP>) — E2(CP®). This map is a bijection. <
DerInITION 17. A homomorphism of formal group laws /i : F — G over R is a power series h € R[t] with:
h(F(x,v)) = G(h(x), h(y)) such that h(0) = 0

It is a strict isomorphism is such a map such that #’(0) = 1. <
Remark 18 (Obvious). A homomorphism is invertible if and only if the coefficient of t is invertible. <

If h: F — G is a (strict) isomorphism, then G is completly determined by being:
G =h(F(h™ ()17 (y)))

Specifying h from F — G is equivalent to specifying a formal group, so a map L — R, and a map
B = Z[b*',b,,b,,...] — R such that h = Zhiti”
i>0
For a strict isomorphism, the corepresenting object is B = Z[by,...]. This is all the same as a map:
LB® R LB =LgB"
That is,
mor(FGL(St)/ :) = Hom(LB(+),—)
The source is given by:
s:L—LB

(inclusion, representing) source formal group law.
For the target map,
t:L— LB

There is a formal group law on LB[x,y] given by h(l-"(h‘l(x),h‘1 (y))), corepresenting f.
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There is an identity:
1:IB—>1L

that is like projection.
We will also want inverses. We have h~!(t) € B[t] which is corepresented by a map i : B— B which, by
tensoring, gives a map:

i:LB—LB
Also, h(K’(t)) € (B® B)[t] which is corepresneted by a map B — B® B. This gives a map:

o:LB—LB®LB
L

Taking Spec everywhere:

s i
e
SpecL —— SpecLB <°>— SpecLB%)LB
R

t

DeriniTION 19. A Hopf algebroid (A, B) is a groupoid object in affine schemes where A are the objects, and
B are morphisms. The associated groupoid object is denoated as Spec(A, B). <
ExampLE 20. Here are some examples:

(1) (L,LB)is a Hopf algebroid
(2) For E aring spectrum, then: (E,, E.E) where E.E = n,(E®E). If E is a flat ring spectrum, then this
is a Hopf algebroid.

s:E=S®E >E®E

t:E=E®S —>EQ®E

flat here means s is flat.
(3) (case of above), E = MU.

We want to show that B for MU is in fact LB.

Remark 21. Let E be a complex-oriented ring spectrum. Then, EQ MU has two complex orientations given
by xg and xpy-

Fact 22. There exists a strict isomorphism h in (E @ MU),[[t] = E.MU[¢t] such that xyy = h(xg). <
If we take:
h=1+) bt
i>1

Therefore, we get a map:

E.®B— EMU
For MU, we get a map:
LB - MUMU
One can check with the Atiyah-Hirzebruch Spectral Sequence that this is an isomorphsim. <

THEOREM 23. The map (L, LB) — (MU,,MU,MU) is an isomorphism of Hopf algebroids.

Proor 1pEa. The source has to be the same. For the target, you pick up a formal group law, with the first
component giving you the source and the second is the target. O
<



6 COMPLEX ORIENTATIONS, FORMAL GROUP LAWS, AND MU

DerINITION 24. Let (A, B) be a Hopf algebroid. Then a comodule is an A-module M with a map (a coaction)
M — B® M. It must have a unit coming from the unit map in the Hopf algebroid. The action should be

A
compatible with the composition. Explicitly,

M —"— BeM
A
| g
B®M — — BQBQM
A A A
where we tensor along the source. <

Prorosition 25. If B is a flat A-module (over the source map), then CoMod 4 p) is an abelian category and has
enough injectives. <

ProrosiTION 26. If (A, B) is a Hopf algebroid then we have a prestack M, py given by s points of the groupoid
object in affine schemes. Also, QCoh(/\/l(A,B)) = CoMod4,p)- <
By this construction, if X is any spectrum and E is a flat ring spectrum, we have a quasi-coherent sheaf:
Fx € QCoh(M4,5))
and E,X carries a comodule structure.

DeriNiTION 27. A formal group (commutative, one-dimensional) over R is a Zariski sheaf G on SpecR such
that locally on SpecR, G = Gf for a formal group law F over R. Here, Gr is the Zariski sheaf given by
SpfR[t] with group multiplication given by (a,b) — F(a, b). <
DEerFINITION 28. My, the moduli stack of formal groups, is the functor that sends:

Mg : R — {formal groups over R with isomorphisms}

<

Remark 29. For a formal group, you cannot globally choose a coordinate, whereas you can for formal group
laws. <

ConstruUcTION 30. Some equivalent constructions:
(1) If you sheafify FGL up to isomorphism, we get Mj,: FGLY = Mg
(2) SpecB* =[SpecL/G*] = M,
(3) [Mfg]/Gm] = Mg (strict isomorphisms have invertible coefficients, so we quotient out scaling)
(4) If we stackify, M) = Mg

<

Tueorem 31. My, is a stack for the fpqc topology. It is also “algebraic” (representable qcqs diagonal and a flat
surjective qc cover by a scheme). <

ProposiTION 32. Sheaves on Mg, should be G,,-equivariant sheaves on M. Because of even grading, we have:

QCoh(My,) = CoMod(MU,, MU,MU)*Y

Given X a spectrum, we have two quasi-coherent sheaves on Mj,:
F = (MU, X®)
FP4d = (MU, X)[1]



