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In the previous talk, we saw that the behaviour of the complex cobordism spectrum MU controls homotopy
groups of spheres via the Adams-Novikov spectral sequence. In this talk, I will further discuss how MU can be
used to relate topology and algebra via formal group laws. This will lead to defining the moduli stack of for-
mal groups, which will be a central focus of the remaining talks. Finally, via the theory of Hopf algebroids, we
will show how one can associate, to any spectrum, certain quasi-coherent sheaves on the moduli stack of formal
groups.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better
exposition, and there may be errors in my liveTEXing

Notation 1. Let E be a commutative ring spectrum (E2-algebra should be enough, but everything we’ll do
is E∞). ◁

Definition 2. A complex orientation on E is a choice of class xE ∈ Ẽ2(CP∞) such that the restriction map:

Ẽ2(CP∞)→ Ẽ
(
CP 1

)
= Ẽ0

(
S0

)
= π0(E)

◁

These cohomology classes classify complex line bundles, which is why these are complex orientations.

Example 3. For Eilenberg-MacLane spectra HR, we have:

H̃R
2
(CP∞) = H̃2(CP∞,R) = R

The map R
∼−→ R is an isomorphism, so we have one choice of orientation. ◁

Example 4. E is a spectrum with π∗E even, then we have:

Σ∞−2
CP 1→ E

The obstruction to lifting to CP 2 lives in π3E, so we have a lift:

Σ∞−2
CP∞→ E

For example, for E = KU (complex K-theory), we have:

KU2(CP∞) = KU(CP∞) = [O(1)]− 1

◁

Proposition 5. If (E,xE) is a complex-oriented ring spectrum, then:

(1) E∗(CP∞) = E∗JxEK
(2) E∗(CP∞ ×CP∞) = E∗J1⊗ xE ,xE ⊗ 1K

Remark 6. This is kind of a lie, it is not a power series ring. What we mean is:

E∗JxEK � limE∗[xE]/
(
xnE

)
in GrRing.

However, we will treat these objects as honest power series rings. ◁
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Proof. We wil use the Atiyah-Hirzebruch Spectral Sequence.

E
pq
2 = Hp(CP∞,Eq) = Eq ⊗ yp/2Z =⇒ Ep+q(CP∞)

The powers of 1⊗ y generate the E2 page, and y remains on the spectral sequence forever due to the fact it
lives on by definition. [Proposition 5] □

◁

Reminder 7. CP∞ = BU (1) is the classifying space for complex line bundles. The multiplication map:

m : B(U (1)×U (1)) ≃ BU (1)×BU (1)→ BU (1)

classify tensor products of line bundles. ◁

Therefore, for E a complex-oriented ring spectrum, we have, pulling back along m,

m∗E∗JtK→ E∗Ju,vK

Tensor products of line bundles are commutative, so we get:

F = m∗(t) =⇒ F(u,v) = F(v,u)

The fact there is a unit means
F(0,u) = F(u,0) = u

Associativity of the tensor product gives us:

F(u,F(v,w)) = F(F(u,v),w)

Definition 8. For R a ring, then a formal group law on R over R is a formal power series F ∈ RJx,yK such
that:

(1) F(x,0) = F(0,x) = x
(2) F(x,y) = F(y,x)
(3) F(x,F(y,z)) = F(F(x,y), z)

◁

Example 9. Here are some examples of formal group laws:
(1) The complex orientation of E induces a formal group law
(2) F = x+ y (additive formal group law)
(3) F = x+ y + xy (multiplicative formal group law)

◁

Remark 10. The multiplicative formal group law never will come from topology, as we would require
homogenous degrees of 0. ◁

Remark 11. The axioms of formal group laws give us some equations in coefficients, so we can form the
Lazard Ring:

L = Z[{ai,j }i,j≥0]/(equations coming from axioms)

with the formal group law:

F =
∑
i,j≥0

ai,jx
iyj

Then, the set of formal group laws over R is corepresented by L:

FGL(R) = {formal group laws over R} = Hom(L,R)

◁

We can give the Lazard ring a grading, by imagining degx = degy = −2 and F homogenous of degree −2.
Then,

deg
(
ai,j

)
= 2(a+ j − 1)

You can check this is consistent with the axioms: F(x,F(y,z)) = F(F(x,y), z) have homogenous degree −2, so
that the coefficient of xiyjzk is 2(i + j + k − 1). Therefore, the grading descends to a grading on L, which is
non-negatively graded with L0 = Z.
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Theorem 12 (Lazard). There is an isomorphism of graded rings:

L→Z[t1, t2, . . .]

with deg(ti) = 2i.

Proof idea. One way to get any formal group law is to take a power series h. If we take the additive formal
group law, another one is given by:

h−1(h(x) + h(y))

In fact, this is an isomorphism of formal group laws over Q. We need to show it is an isomorphism over Z
for L. Therefore, we will need some good choice of coordinates. □

◁

Definition 13. Let X be a topological space and

ξ : V → X

be a real vector bundle that admits a Riemannian metric. Then, we have two fiber bundles associated to it:
(1) S(ξ) = {x ∈ V | ||x|| = 1}
(2) D(ξ) = {x ∈ V | ||x|| ≤ 1}

We define the Thom space of ξ as:
Th(ξ) = D(ξ)/S(ξ)

In fact, this is well-defined and functorial. ◁

Proposition 14. If we have two vector bundles ξ : V → X and η : W → Y , then we can take:

Th(ξ × η) = Th(ξ)∧Th(η)

◁

For each n ≥ 0, let ξn : E(n)→ BU (n) denote the universal complex vector bundle of rank n.
Let MU (n) = Th(ξn). We want a suspension spectrum with spaces:

MU = {MU (0),ΣMU (0),MU (1),ΣMU (1), . . .}

The even maps are obvious, for odd maps we need:

Σ2MU (n− 1)→MU (n)

Using the proposition, we can take add a factor of C and have:

E(n− 1)⊕C E(n)

BU (n− 1) BU (n)

ξn−1⊕1
C

ξn

(the bottom map is induced by the inclusion of Rn−1 ↪→R
n). After taking Thom spaces, we get a map:

Th
(
ξn−1

)
∧Th(1

C
) Th(ξn) = MU (n)

MU (n− 1)∧ S2

Σ2MU (n− 1)

Therefore, we get a spectrum MU. We can check that the map BU (n)×BU (m)→ BU (n+m) induces a map:

MU×MU→MU

Further, we have BU (0) = ∗, so that MU (0) = S0, so we get a unit map:

S→MU
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Therefore, MU is a commutative ring spectrum (in fact, E∞-ring).

We will see that MU gives complex orientations.

We have a unit section BU (1)→MU (1), and we have the associated bundle construction:

S(ξn) = EU (n) ×
U (n)

S2n−1

Specifically,
S

(
ξ1

)
= EU (1) ×

U (1)
S1 = EU (1) ≃ ∗

Therefore, we have CP∞ ≃ BU (1) ≃MU (1), and we have a map:

CP∞→MU (1) = MU2

which gives a complex orientation:

xMU ∈ M̃U
2
(CP∞)

Denote FMU ∈MU∗Jx,yK associated to the induced formal group law. We get an induced map:

L→MU∗

However, the grading is wrong since MU∗ is cohomologically graded. As ungraded rings, it is the same as
MU∗, so we have a map:

L→MU∗

Theorem 15 (Quillen). The map L→MU∗ ≃ π∗MU is a graded isomorphism. ◁

By a computation of Milnor, there are generators Z[t1, t2, . . .] that have deg(ti) = 2i.

Theorem 16 (Adams). MU completely determines complex orientations:

{φ : MU→ E map of commutative ring spectra} → {complex orientations on E}
φ 7→ π∗xMU

where φ∗ : M̃U
2
(CP∞)→ Ẽ2(CP∞). This map is a bijection. ◁

Definition 17. A homomorphism of formal group laws h : F→ G over R is a power series h ∈ RJtK with:

h(F(x,y)) = G(h(x),h(y)) such that h(0) = 0

It is a strict isomorphism is such a map such that h′(0) = 1. ◁

Remark 18 (Obvious). A homomorphism is invertible if and only if the coefficient of t is invertible. ◁

If h : F→ G is a (strict) isomorphism, then G is completly determined by being:

G = h
(
F
(
h−1(x),h−1(y)

))
Specifying h from F→ G is equivalent to specifying a formal group, so a map L→ R, and a map

B+ = Z[b±1
0 ,b1,b2, . . .]→ R such that h =

∑
i≥0

hit
i+1

For a strict isomorphism, the corepresenting object is B = Z[b1, . . .]. This is all the same as a map:

LB(+)→ R LB(+) = L⊗B(+)

That is,
mor

(
FGL(st)/ ≃

)
= Hom

(
LB(+),−

)
The source is given by:

s : L→ LB

(inclusion, representing) source formal group law.
For the target map,

t : L→ LB

There is a formal group law on LBJx,yK given by h
(
F
(
h−1(x),h−1(y)

))
, corepresenting t.
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There is an identity:

1 : LB→ L

that is like projection.
We will also want inverses. We have h−1(t) ∈ BJtK which is corepresented by a map i : B→ B which, by

tensoring, gives a map:

i : LB→ LB

Also, h(h′(t)) ∈ (B⊗B)JtK which is corepresneted by a map B→ B⊗B. This gives a map:

◦ : LB→ LB⊗
L
LB

Taking Spec everywhere:

SpecL SpecLB SpecLB⊗
L
LB1

t

s i

◦

Definition 19. A Hopf algebroid (A,B) is a groupoid object in affine schemes where A are the objects, and
B are morphisms. The associated groupoid object is denoated as Spec(A,B). ◁

Example 20. Here are some examples:

(1) (L,LB) is a Hopf algebroid
(2) For E a ring spectrum, then: (E∗,E∗E) where E∗E = π∗(E ⊗E). If E is a flat ring spectrum, then this

is a Hopf algebroid.

s : E = S⊗E→ E ⊗E

t : E = E ⊗S→ E ⊗E

flat here means π∗s is flat.
(3) (case of above), E = MU.

◁

We want to show that B for MU is in fact LB.

Remark 21. Let E be a complex-oriented ring spectrum. Then, E⊗MU has two complex orientations given
by xE and xMU.

Fact 22. There exists a strict isomorphism h in (E ⊗MU)∗JtK = E∗MUJtK such that xMU = h(xE). ◁

If we take:

h = 1 +
∑
i≥1

bit
i+1

Therefore, we get a map:

E∗ ⊗B→ E∗MU

For MU, we get a map:

LB→MU∗MU

One can check with the Atiyah-Hirzebruch Spectral Sequence that this is an isomorphsim. ◁

Theorem 23. The map (L,LB)→ (MU∗,MU∗MU) is an isomorphism of Hopf algebroids.

Proof idea. The source has to be the same. For the target, you pick up a formal group law, with the first
component giving you the source and the second is the target. □

◁
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Definition 24. Let (A,B) be a Hopf algebroid. Then a comodule is an A-module M with a map (a coaction)
M → B⊗

A
M. It must have a unit coming from the unit map in the Hopf algebroid. The action should be

compatible with the composition. Explicitly,

M B⊗
A
M

B⊗
A
M B⊗

A
B⊗

A
M

ρ

ℓ

m

where we tensor along the source. ◁

Proposition 25. If B is a flat A-module (over the source map), then CoMod(A,B) is an abelian category and has
enough injectives. ◁

Proposition 26. If (A,B) is a Hopf algebroid then we have a prestackM(A,B) given by s points of the groupoid
object in affine schemes. Also, QCoh

(
M(A,B)

)
= CoMod(A,B). ◁

By this construction, if X is any spectrum and E is a flat ring spectrum, we have a quasi-coherent sheaf:

FX ∈QCoh
(
M(A,B)

)
and E∗X carries a comodule structure.

Definition 27. A formal group (commutative, one-dimensional) over R is a Zariski sheaf G on SpecR such
that locally on SpecR, G = GF for a formal group law F over R. Here, GF is the Zariski sheaf given by
SpfRJtK with group multiplication given by (a,b)→ F(a,b). ◁

Definition 28. Mfg, the moduli stack of formal groups, is the functor that sends:

Mfg : R→ {formal groups over R with isomorphisms}
◁

Remark 29. For a formal group, you cannot globally choose a coordinate, whereas you can for formal group
laws. ◁

Construction 30. Some equivalent constructions:
(1) If you sheafify FGL up to isomorphism, we getMfg: FGL#

≃ =Mfg
(2) SpecB+ = [SpecL/G+] =Mfg
(3) [Mfgl/Gm] =Mfg (strict isomorphisms have invertible coefficients, so we quotient out scaling)
(4) If we stackify,M##

fgl =Mfg
◁

Theorem 31. Mfg is a stack for the fpqc topology. It is also “algebraic” (representable qcqs diagonal and a flat
surjective qc cover by a scheme). ◁

Proposition 32. Sheaves onMfg should be Gm-equivariant sheaves onMfgl. Because of even grading, we have:

QCoh
(
Mfg

)
≃ CoMod(MU∗,MU∗MU)ev

◁

Given X a spectrum, we have two quasi-coherent sheaves onMfg:

F ev
X = (MU∗X

ev)

F odd
X = (MU∗X)[1]ev


