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1. Introduction

X based space, we can attach homotopy groups πn(X), and it is a group when n ≥ 1 and is further
abelian when n ≥ 2. The group structure comes from a structure ΩnX = Map∗(S

n,X). This space is called
an En-algebra.

There is a category Diskn of n-dimensional disks and framed embeddings, with disjoint unions.

Definition 1.1. An En-algebra is:
AlgEn

(C) = Fun⊗(Diskn,C)

where C is a symmetric monoidal ⊗-category. ◁

The recognition principle says that the En-algebra structure retains the deloopings.

We can ask whether all En-algebras in spaces are n-th loop spaces. Not all are - in fact, the only obstruction
is that we need π0 to be a group, instead of just a monoid.

Definition 1.2. An En-algebra in spaces A is called group-like if π0(A) is a group. ◁

Theorem 1.3 (Recognition Principle, May-Segal). There is an equivalence of categories:

(Spaces∗)≥n
∼−→ Alggp

En
(Spaces)

of n-th connected based spaces and group-like En-algebras in spaces.

2. Equivariant Setting

Let G be a finite group.

In equivariant homotopy theory, we have loop spaces indexed not by integers but by representations. Thus,
we also fix a finite-dimensional real G-representation.

We have the V -fold loop space of a G-space X ∈ SpacesG:

ΩVX = Map∗
(
SV ,X

)
where SV is the representation sphere of V - its one-point compactification. π0 of this is the V -th homotopy
group.

To make an analogous theory, we will need G-symmetric monoidal G-categories.

We want to construct G-spaces.
Idea: we want to model topological spaces with an action of G.

Here is an attempt: SpacesBG. This is called Borel-equivariant, but is not good enough – we cannot take
arbitrary fixed points.
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Definition 2.1. Let the orbit category OG be the category of finite transitive G-sets. In other words, these
are G/H for some subgroups H ⊂ G. G-spaces are given by:

SpacesG = Fun
(
Oop
G ,S

)
where we send G/H to XH . ◁

Definition 2.2. A G-category is Oop
G → Cat. ◁

Example 2.3. G/H 7→ SpacesH ◁

Example 2.4. For V a G-representation, we can take DiskHV to be the category of H-disks framed in ResGH V
and embeddings.

For example, you can take the free embedding of two disjoint disks (with the C2 action) into the disk
with a C2 action via the sign representation. ◁

For a symmetric monoidal structures, we need norms

Definition 2.5. For a commutative monoid X ∈ CMon(Top) with a G-action, we get a map:

Me→MG

m 7→
∑
g∈G

g ·m

This should be part of the definition. ◁

Recall 2.6. The category of symmetric monoidal categories:

Cat⊗ = CMon(Cat) = Fun
∏

(Span(FinSet),Cat)

Span(FinSet) has objects finite sets and morphisms S← T → S ′ . Because this is product preserving:

⟨1⟩ 7→ C

⟨n⟩ 7→ Cn

We have a special morphism ⟨2⟩ = ⟨2⟩ → ⟨1⟩. The map C2→C is multiplication. ◁

Definition 2.7. A G-symmetric monoidal G-category is this but with G-sets:

Fun
∏

(Span(FinSetG),Cat)

G/H goes to some category CH , and these can be chosen freely. The rest are built from products (disjoint
unions). ◁

There is the span G/e = G/e→ G/G that gives you:

Ce
NmG

e−−−−→ CG

This is called a norm map and is just part of the data.
We can also compose spans like this:

G/e ×G/e

G/e G/e

G/e G/G G/e

⌟

NmG
e ResGe

We get that:

ResGe NmG
e (x) ≃

⊗
g∈G

gx

(in Ce)
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Example 2.8 (Spaces). The G-category with SpacesH = SpacesH has a G-symmetric monoidal structure
for K ⊂H ⊂ G:

NmH
K : SpacesK → SpacesH

X 7→MapK (H,X)

◁

Example 2.9. We take DiskV with norms.

DiskKV → DiskHV
D 7→H ×

K
D

This is a topological induction, not a representation-theoretic one. Note that D is a manifold ◁

Definition 2.10. An EV -algebra in C (a G-symmetric monoidal G-∞-category) is a G-symmetric monoidal
G-functor (preserves all this data) from DiskV :

DiskV →C
◁

Example 2.11. ΩVX ∈ AlgEV

(
Spaces

)
For example, take G = C2 and V = sgn. For X ∈ SpacesC2 , ΩsgnX is an Esgn-algebra.

• On underlying:
(ΩsgnX)e = Ω(Xe)

is an E1-algebra.
• On C2-fixed points:

(ΩsgnX)C2 = MapC2
∗ (Ssgn,X)

This is not an E1-algebra, as sgn has no valid pinch map. However, in DiskC2
sgn, we have an object

D(sgn) with the C2 swap action which gets sent to ΩsgnX. We also have C2 ×e D(R), which has two

disks with the swap action between them. D(R) gets sent to non-equivariant loops: ΩXe×ΩXe with

the C2-swap. There is also the disjoint union D(sgn)
∐(

C2 ×e D(R)
)

which gets sent to the product

ΩXe×ΩXe×ΩsgnX. There is an embedding of this into D(sgn). You sent the fixed point to the fixed
point, and free orbits to free orbits. We thus get a map ΩXe ×ΩXe ×ΩsgnX→ΩsgnX.

If we take C2-fixed points, we get

ΩXe × (ΩsgnX)C2 → (ΩsgnX)C2 = MapC2
∗ (Ssgn,X)

This is the structure the sign loop spaces have - it is a module over ΩXe.
◁

Definition 2.12. An EV -algebra in G-spaces is called grouplike if π0

(
AH

)
is a group for all H ⊂ G such

that dimV H ≥ 1 (whenever it makes sense). ◁

Theorem 2.13.
Alggp

EV

(
Spaces

)
≃
(
SpacesG∗

)
≥V

If R ⊂ V , this is proven by Guillou-May, Hausach, Rouke-Sanderson.

Why EV -algebras?
• V -fold loop spaces
• G-manifolds
• Equivariant factorization homology
• “real” homotopy theory cares about G = C2 and sgn, such as KUR, MUR, and friends.

Proof. Reduce to, for X ∈ SpacesG∗ :
Freegp

EV
X ≃ΩVΣVX

The hard part is the group-like part - without it, it is much easier.
Non-equivariantly, we have group-completion (−)gp ≃ΩB(−) of a monoid. □
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