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1. INTRODUCTION

X based space, we can attach homotopy groups 7,(X), and it is a group when n > 1 and is further
abelian when n > 2. The group structure comes from a structure Q"X = Map, (5", X). This space is called
an E, -algebra.

There is a category Disk,, of n-dimensional disks and framed embeddings, with disjoint unions.

DerintTION 1.1. An E, -algebra is:
AlgE”(C) = Fun®(Disk,,, C)
where C is a symmetric monoidal ®-category. <
The recognition principle says that the E, -algebra structure retains the deloopings.
We can ask whether all E,;-algebras in spaces are n-th loop spaces. Not all are - in fact, the only obstruction
is that we need 7y to be a group, instead of just a monoid.
DeriniTION 1.2. An E, -algebra in spaces A is called group-like if 11y(A) is a group. <
TuaeoreM 1.3 (Recognition Principle, May-Segal). There is an equivalence of categories:
(Spaces,)s,, SN Alg%ﬁ(Spaces)

of n-th connected based spaces and group-like E,,-algebras in spaces.

2. EQUIVARIANT SETTING

Let G be a finite group.

In equivariant homotopy theory, we have loop spaces indexed not by integers but by representations. Thus,
we also fix a finite-dimensional real G-representation.

We have the V-fold loop space of a G-space X € Spaces®:

QVX =Map,(s",X)

where SV is the representation sphere of V - its one-point compactification. 7 of this is the V-th homotopy

group.
To make an analogous theory, we will need G-symmetric monoidal G-categories.

We want to construct G-spaces.
Idea: we want to model topological spaces with an action of G.
Here is an attempt: Spaces®®. This is called Borel-equivariant, but is not good enough — we cannot take
arbitrary fixed points.
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DerINiTION 2.1. Let the orbit category O be the category of finite transitive G-sets. In other words, these
are G/H for some subgroups H C G. G-spaces are given by:

SpacesG = Fun((’)gp, S)

where we send G/H to X', <
DeriNiTION 2.2. A G-Category is OOGP — Cat. <
ExampLE 2.3. G/H > Spaces!! <

ExampLE 2.4. For V a G-representation, we can take Diskg to be the category of H-disks framed in Resg Vv
and embeddings.

For example, you can take the free embedding of two disjoint disks (with the C, action) into the disk
with a C, action via the sign representation. <

For a symmetric monoidal structures, we need norms

DerINITION 2.5. For a commutative monoid X € CMon(Top) with a G-action, we get a map:

M°® —MC

m— Z g-m
¢€G
This should be part of the definition. <
RecaLL 2.6. The category of symmetric monoidal categories:
Cat® = CMon(Cat) = Funn(Span(FinSet), Cat)

Span(FinSet) has objects finite sets and morphisms S < T — S’. Because this is product preserving:

1)y C

(n) —C"
We have a special morphism (2) = (2) — (1). The map C? — C is multiplication. <
DEerINITION 2.7. A G-symmetric monoidal G-category is this but with G-sets:

Funn(Span(FinSetG), Cat)

G/H goes to some category C, and these can be chosen freely. The rest are built from products (disjoint
unions). <

There is the span G/e = G/e — G/G that gives you:

G
CEN&>CG

This is called a norm map and is just part of the data.
We can also compose spans like this:

G/exG/e
G/e
Gle - > G/G > G/e
Nme Resg’
We get that:
ResS Nm& (x) ~ ®gx
geG

(in C°)
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ExampiE 2.8 (Spaces). The G-category with Spaces!? = Spaces has a G-symmetric monoidal structure
for KCHCG:

K H

ng : Spaces
X - MapX(H, X)

— Spaces

ExampLe 2.9. We take Disky with norms.
Disk§ — Diskg
D HxD
K

This is a topological induction, not a representation-theoretic one. Note that D is a manifold <

DerINITION 2.10. An Ey-algebra in C (a G-symmetric monoidal G-co-category) is a G-symmetric monoidal
G-functor (preserves all this data) from Disky:

DiSkV e C

Exampre 2.11. QVX € AlgEV(Spaces)
For example, take G = C, and V = sgn. For X € Spaces®?, Q%8"X is an Esgn-algebra.
e On underlying:
(O X) = O(X°)
is an [ -algebra.
e On C,-fixed points:
(QBX) = Map (5", X)
This is not an E;-algebra, as sgn has no valid pinch map. However, in Diskscgn, we have an object
D(sgn) with the C, swap action which gets sent to (2°8"X. We also have C, X D(R), which has two
disks with the swap action between them. D(RR) gets sent to non-equivariant loops: (JX°xQX?® with

the C,-swap. There is also the disjoint union D(sgn)]_[(Cz X D(R)) which gets sent to the product
e

QXexQ0QX*xQ%8"X. There is an embedding of this into D(sgn). You sent the fixed point to the fixed
point, and free orbits to free orbits. We thus get a map QX¢x QX x Q"X — Q8" X.
If we take C,-fixed points, we get
QX x (Q%"X)7 — (Q8"X)“ = Map <2 (S°8", X)
This is the structure the sign loop spaces have - it is a module over ()X°*.
<
DeriniTION 2.12. An Ey-algebra in G-spaces is called grouplike if nO(AH) is a group for all H C G such
that dim VH > 1 (whenever it makes sense). <
THEOREM 2.13.
AlgIngv (Spaces) ~ (Spaces*G )zv
IfR c V, this is proven by Guillou-May, Hausach, Rouke-Sanderson.
Why Ey -algebras?
V-fold loop spaces
G-manifolds

Equivariant factorization homology
“real” homotopy theory cares about G = C, and sgn, such as KUk, MUy, and friends.

Proor. Reduce to, for X € SpacesC:
Freeﬁi’/X ~QVrVx
The hard part is the group-like part - without it, it is much easier.
Non-equivariantly, we have group-completion (—)8P ~ Q) B(-) of a monoid. O
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