EQUIVARIANT RECOGNITION PRINCIPLE

MIT/Harvard Babytop Seminar, Spring 2025 Tuesday, April 29th, 2025 LiveT_FX by Howard Beck

Abstract. Speaker: Branko Juran (Copenhagen)

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better exposition, and there may be errors in my liveT_EXing

1. INTRODUCTION

X based space, we can attach homotopy groups $\pi_n(X)$, and it is a group when $n \ge 1$ and is further abelian when $n \ge 2$. The group structure comes from a structure $\Omega^n X = \text{Map}_*(S^n, X)$. This space is called an \mathbb{E}_n -algebra.

There is a category $Disk_n$ of *n*-dimensional disks and framed embeddings, with disjoint unions.

DEFINITION 1.1. An \mathbb{E}_n -algebra is:

$$\operatorname{Alg}_{\mathbb{E}_n}(\mathcal{C}) = \operatorname{Fun}^{\otimes}(\operatorname{Disk}_n, \mathcal{C})$$

⊲

⊲

where C is a symmetric monoidal \otimes -category.

The recognition principle says that the E_n -algebra structure retains the deloopings.

We can ask whether all E_n -algebras in spaces are *n*-th loop spaces. Not all are - in fact, the only obstruction is that we need π_0 to be a group, instead of just a monoid.

DEFINITION 1.2. An E_n-algebra in spaces A is called group-like if $\pi_0(A)$ is a group.

THEOREM 1.3 (Recognition Principle, May-Segal). There is an equivalence of categories:

 $(\text{Spaces}_*)_{>n} \xrightarrow{\sim} \text{Alg}_{\text{E}_n}^{\text{gp}}(\text{Spaces})$

of *n*-th connected based spaces and group-like E_n -algebras in spaces.

2. Equivariant Setting

Let *G* be a finite group.

In equivariant homotopy theory, we have loop spaces indexed not by integers but by representations. Thus, we also fix a finite-dimensional real *G*-representation.

We have the *V*-fold loop space of a *G*-space $X \in \text{Spaces}^G$:

$$\Omega^V X = \operatorname{Map}_*(S^V, X)$$

where S^V is the representation sphere of V - its one-point compactification. π_0 of this is the V-th homotopy group.

To make an analogous theory, we will need G-symmetric monoidal G-categories.

We want to construct *G*-spaces.

Idea: we want to model topological spaces with an action of *G*.

Here is an attempt: Spaces^{BG}. This is called Borel-equivariant, but is not good enough – we cannot take arbitrary fixed points.

DEFINITION 2.1. Let the **orbit category** \mathcal{O}_G be the category of finite transitive *G*-sets. In other words, these are *G*/*H* for some subgroups $H \subset G$. *G*-spaces are given by:

Spaces^G = Fun
$$(\mathcal{O}_{G}^{op}, S)$$

where we send G/H to X^H .

DEFINITION 2.2. A *G*-category is $\mathcal{O}_G^{\text{op}} \to \text{Cat.}$

Example 2.3. $G/H \mapsto \text{Spaces}^H$

EXAMPLE 2.4. For V a G-representation, we can take Disk_V^H to be the category of H-disks framed in $\text{Res}_H^G V$ and embeddings.

For example, you can take the free embedding of two disjoint disks (with the C_2 action) into the disk with a C_2 action via the sign representation.

For a symmetric monoidal structures, we need norms

DEFINITION 2.5. For a commutative monoid $X \in \mathsf{CMon}(\mathsf{Top})$ with a *G*-action, we get a map:

$$M^e \to M^G$$
$$m \mapsto \sum_{g \in G} g \cdot m$$

This should be part of the definition.

RECALL 2.6. The category of symmetric monoidal categories:

$$Cat^{\otimes} = CMon(Cat) = Fun^{II}(Span(FinSet), Cat)$$

Span(FinSet) has objects finite sets and morphisms $S \leftarrow T \rightarrow S'$. Because this is product preserving:

$$\langle 1 \rangle \mapsto \mathcal{C} \\ \langle n \rangle \mapsto \mathcal{C}^n$$

We have a special morphism $\langle 2 \rangle = \langle 2 \rangle \rightarrow \langle 1 \rangle$. The map $C^2 \rightarrow C$ is multiplication.

DEFINITION 2.7. A *G*-symmetric monoidal *G*-category is this but with *G*-sets:

 $\operatorname{Fun}^{\prod}(\operatorname{Span}(\operatorname{Fin}\operatorname{Set}_G),\operatorname{Cat})$

G/H goes to some category C^H , and these can be chosen freely. The rest are built from products (disjoint unions).

There is the span $G/e = G/e \rightarrow G/G$ that gives you:

$$\mathcal{C}^e \xrightarrow{\mathsf{Nm}^G_e} \mathcal{C}^G$$

This is called a **norm map** and is just part of the data.

We can also compose spans like this:

We get that:

$$\operatorname{Res}_{e}^{G}\operatorname{Nm}_{e}^{G}(x) \simeq \bigotimes_{g \in G} gx$$

 $(in C^e)$

∇

⊲

⊲

⊲

EXAMPLE 2.8 (Spaces). The *G*-category with $\underline{Spaces}^H = Spaces^H$ has a *G*-symmetric monoidal structure for $K \subset H \subset G$:

$$Nm_K^H$$
: Spaces^K \rightarrow Spaces^H
 $X \mapsto Map^K(H, X)$

EXAMPLE 2.9. We take $Disk_V$ with norms.

$$\mathsf{Disk}_V^K \to \mathsf{Disk}_V^H$$
$$D \mapsto H \underset{V}{\times} D$$

This is a topological induction, not a representation-theoretic one. Note that *D* is a manifold \triangleleft **DEFINITION 2.10.** An \mathbb{E}_V -algebra in *C* (a *G*-symmetric monoidal *G*- ∞ -category) is a *G*-symmetric monoidal *G*-functor (preserves all this data) from Disk_V:

 $\mathsf{Disk}_V \to \mathcal{C}$

EXAMPLE 2.11. $\Omega^V X \in \operatorname{Alg}_{\mathbb{E}_V}(\operatorname{Spaces})$

For example, take $G = C_2$ and $V = \text{sgn. For } X \in \text{Spaces}^{C_2}$, $\Omega^{\text{sgn}} X$ is an \mathbb{E}_{sgn} -algebra.

• On underlying:

$$(\Omega^{\text{sgn}}X)^e = \Omega(X^e)$$

is an \mathbb{E}_1 -algebra.

• On *C*₂-fixed points:

$$(\Omega^{\operatorname{sgn}}X)^{C_2} = \operatorname{Map}_*^{C_2}(S^{\operatorname{sgn}}, X)$$

This is not an \mathbb{E}_1 -algebra, as sgn has no valid pinch map. However, in $\text{Disk}_{\text{sgn}}^{C_2}$, we have an object D(sgn) with the C_2 swap action which gets sent to $\Omega^{\text{sgn}}X$. We also have $C_2 \times D(\mathbb{R})$, which has two disks with the swap action between them. $D(\mathbb{R})$ gets sent to non-equivariant loops: $\Omega X^e \times \Omega X^e$ with the C_2 -swap. There is also the disjoint union $D(\text{sgn}) \coprod \left(C_2 \times D(\mathbb{R})\right)$ which gets sent to the product $\Omega X^e \times \Omega X^e \times \Omega^{\text{sgn}}X$. There is an embedding of this into D(sgn). You sent the fixed point to the fixed point, and free orbits to free orbits. We thus get a map $\Omega X^e \times \Omega X^e \times \Omega^{\text{sgn}}X \to \Omega^{\text{sgn}}X$. If we take C_2 -fixed points, we get

 $\Omega X^e \times (\Omega^{\operatorname{sgn}} X)^{C_2} \to (\Omega^{\operatorname{sgn}} X)^{C_2} = \operatorname{Map}_{*}^{C_2}(S^{\operatorname{sgn}}, X)$

This is the structure the sign loop spaces have - it is a module over ΩX^e .

DEFINITION 2.12. An \mathbb{E}_V -algebra in *G*-spaces is called **grouplike** if $\pi_0(A^H)$ is a group for all $H \subset G$ such that dim $V^H \ge 1$ (whenever it makes sense).

Тнеогем 2.13.

$$\operatorname{Alg}_{\mathbb{E}_{V}}^{\operatorname{gp}}(\operatorname{Spaces}) \simeq (\operatorname{Spaces}_{*}^{G})_{>V}$$

If $\mathbb{R} \subset V$ *, this is proven by Guillou-May, Hausach, Rouke-Sanderson.*

Why \mathbb{E}_V -algebras?

- V-fold loop spaces
- G-manifolds
- Equivariant factorization homology
- "real" homotopy theory cares about $G = C_2$ and sgn, such as $KU_{\mathbb{R}}$, $MU_{\mathbb{R}}$, and friends.

PROOF. Reduce to, for $X \in \text{Spaces}^G_*$:

$$\operatorname{Free}_{\mathbb{R}_V}^{\operatorname{gp}} X \simeq \Omega^V \Sigma^V X$$

The hard part is the group-like part - without it, it is much easier.

Non-equivariantly, we have group-completion $(-)^{gp} \simeq \Omega B(-)$ of a monoid.

⊲

⊲

⊲