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We will compute the homotopy groups of the Bousfield localisation of the sphere at K(1) and (time permitting)
E(1). On the way, we will encounter Adams operations on complex K-theory. If time permits, we will also discuss
how the J-homomorphism appears in this picture.

Disclaimer: Do not take these notes too seriously, sometimes half-truths are told in exchange for better
exposition, and there may be errors in my liveTEXing

0. Motivation

Let:
LnX B LE(n)X = LK(1)⊕...⊕K(n)X

Theorem 0.1 (Chromatic Convergence Theorem, Hopkins-Ravenal). If X is a finite spectrum, then:

X(p) = lim(· · · → LnX→ ·· · → L1X→ L0X)

That is, to understand the homotopy groups of the p-localized X, we should understand its homotopy
groups at each chromatic layer. n = 0 is easy, as E(0) = K(0) = HQ. Today we will try to understand the
n = 1 layer. Specifically, we will want to understand LK(1)S and L1S.

1. Bousfield Localization

Let E be a spectrum.

Definition 1.1. For X a spectrum, X is E-acyclic if X ⊗E ≃ 0. We define the Bousfield class of E:

⟨E⟩ = {E-acyclic spectra} ⊂ Sp

which is a full subcategory of spectra. ◁

There is a dual notion:

Definition 1.2. We say X is E-local if ∀Y → X with Y ∈ ⟨E⟩, then Y → X is nulhomotopic. ◁

Example 1.3. E = HQ.

→ X is HQ-acyclic if and only if πn(X)⊗Q = 0 which is true iff πn(X) is torsion, for all n.
→ X is HQ-local iff πn(X) are all rational vector spaces.

◁

Example 1.4. For E = HFp and X = HC• for some bounded chain complex C•,

→ X is HFp-acyclic iff Hn(C•) are Z[1/p]-modules.
→ X is HFp-local iff Hn(C•) are all p-complete.

The p-completion of another spectrum X is LHFpX. ◁

We see that ⟨E⟩ ⊂ Sp is closed under all colimits. By the adjoint functor theorem, there is a right adjoint
GE : Sp→ ⟨E⟩. This takes a spectrum and returns the closest E-acyclic.

There is a counit map GEX→ X. We take the cofiber:
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Definition 1.5. We define the Bousfield localization of X with respect to E as:

LEX B cofib(GEX→ X)

◁

For example, Bousfield localization with respect to HFp is p-completion.

Lemma 1.6. LEX is E-local for all spectra.

Example 1.7.
LHQS = HQ

Recall that π0(S) = Z and πn(S) is finite for n > 0. ◁

Definition 1.8.
Ln B LE(n)

◁

Recall 1.9. E(n) is the Landweber exact spectrum associated to ZpJv1, . . . , vn−1K[β±1]. As usual, |vi | =

2
(
pi − 1

)
and |β| = 2. We use the formal group law of height n over Fp. ◁

If X is E(n)-acyclic, then vis are going to be non-zero on the homotopy groups. In other words, FX and
FΣX onMfg are supposed onM≥n+1

fg . So really LE(n) behaves like restriction to the open substack of height

at most n,M≤nfg . The suspension ΣX has to do with even homotopy groups, so that you look at the even and
odd ones.

Proposition 1.10. We have the following Cartesian square:

LnX Ln−1X

LK(n)X Ln−1LK(n)X

⌟

Therefore, to understand the Ln-localizations, we should understand K(n)-localizations.

Goal 1.11. Compute L1S(p) by computing LK(1)S(p). ◁

2. What are E(1) and K(1) explicitly?

Recall 2.1. π∗K(n) = Fp[v±1
n ] ◁

Heuristic 2.2. LK(n) behaves like completion along the locally closed substackMn
fg. ◁

The height 1 formal group over Fp is Ĝm(x,y) = x + y + xy. Recall from Daishi’s talk that KU is attached
(as a Landweber exact spectrum) to x + y + βxy. Therefore, we may expect them to be very closely related,
and this is true.

Proposition 2.3. E(1) = K̂U, the p-adic completion of complex K-theory. By this we mean a Bousfield localiza-
tion.

Recall the n-th Morava stabilizer group Γn sits in the exact sequence:

1→ Aut
(
height n formal group laws over Fp

)
→ Γn→Gal

(
F̄p/Fp

)
→ 1

At n = 1, we have:
1→ Aut

(
Ĝm

)
→ Γ1→ GFp → 1

The automorphism group is:

Aut
(
Ĝm

)
= {f (t) ∈ ZpJtK | f (x+ y + xy) = f (x) + f (y) + f (xy)} =

(
{[n]Ĝm

: n ∈ Z}∧p
)×
Z×p

Question 2.4. What is the Z×p ⊂ Γ1 action on E(1) = K̂U? ◁
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Construction 2.5 (Adams Operations on KU). For k ∈ Z, we have operations:

Ψ k : KU
[1
k

]
→ KU

[1
k

]
which are unique ring maps. We can define them on line bundles, as Ψ k([L]) = [L⊗k]. ◁

When we p-adically complete, we get an action Z×p ↷ K̂U.

Fact 2.6. Z×p ↷ E(1) is precisely the Adams operations.

Note 2.7.

Ψ k : π∗K̂U = Zp[β±1]→ Zp[β±1] = π∗K̂U

β 7→ kβ

◁

Construction 2.8. We have the p − 1-th roots of units inside: µp−1 ⊂ Z×p ↷ K̂U. We can then define:

K̂U
Ad
B K̂U

hµp−1

◁

For α ∈ µp−1, beta gets sent to αβ. Then, βp−1 gets sent to αp−1βp−1 = βp−1. This is everything that is
fixed, so we get, remembering that v1 = βp−1.

π∗K̂U
Ad

= Zp[v±1
1 ]

If we take the cofiber of the multiplication by p, we get:

π∗

(
K̂U

Ad
/p
)

= Fp[v±1
1 ] = π∗K(1)

Remark 2.9. It is a summand because:

K̂U =
p−2⊕
i=0

Σ2iK̂U
Ad

Proof.

π∗

(
Σ2iK̂U

Ad
)

= βiZp[β±(p−1)]

◁

◁

Fact 2.10.
K(1) ≃ K̂U

Ad
/p

Proof idea. Use the fact that K(1) is a field. □

3. LK(1)S

Theorem 3.1 (Devinatz-Hopkins, 2004).
LK(n)S ≃ E(n)hΓn

This now becomes a question about group (co)homology.

For p > 2 and n = 1, we can give a low-brow proof using K(1) = K̂U
Ad
p .

Proof. Remember that Z×p = µp−1 ×
(
1 + pZp

)×
. The first term is cyclic of order p − 1, generated by ζ. The

second term is pro-p-cyclic, in that it is abstractly isomorphic to Zp, with topological generator 1+p. By the
Chinese Remainder Theorem, we have that Z×p is pro-cyclic, and is topologically generated by g B ζ(1 + p) ∈
Z×p . Then,

E(1)hΓ1 = fib
(
E(1)

1−Ψ g

−−−−−→ E(1)
)

= fib
(
K̂U

1−Ψ g

−−−−−→ K̂U
)
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We want to show that LK(1)S is this fiber F. That is equivalent to asking that the natural map S→ F induces
an isomorphism on K(1)-homology. But K(1) is a retract of K̂U/p, so we we need S → F to induce an
isomorphism on K̂U/p-homology. By retract, we mean we have maps:

K(1) K̂U/p K(1)

id

Therefore, equivalently we want:

π∗
(
K̂U/p

)
≃
(
K̂U/p

)
∗
F

We have implicitly used:

Fact 3.2. E(n) is K(n)-local

Claim 3.3. K̂U∗
(
K̂U/p

)
= Cont

(
Z×p ,Fp

)
[β±1], continuous maps between the two. Further, under this identifica-

tion, Φg acts on these continous maps by the translation action of g on Z×p .

We continue the earlier proof assuming the claim, which we will return to later. We have a long exact
sequence

· · · →
(
K̂U/p

)
∗
F→

(
K̂U/p

)
∗
K̂U

1−Ψ g

−−−−−→
(
K̂U/p

)
∗
K̂U→ ·· ·

Therefore,

ker
(
1−Ψ g | Cont

(
Z×p ,Fp

))
= constant functions = Fp

coker
(
1−Ψ g | Cont

(
Z×p ,Fp

))
= 0

Therefore, we are done once we identify:

π∗
(
K̂U/p

)
≃ Fp[β±1]

□

Proof of (Claim 3.3). Remember that:

Mfg B [(SpecL/ Spec(MU∗MU))/Gm]

K̂U is the Landweber exact spectrum attached to Ĝm. The map that classifies Ĝm is:[(
SpecK̂U/ Spec K̂U ∗K̂U

)
/Gm

] Ĝm−−−→Mfg

So AutZp

(
Ĝm

)
, the automorphism scheme of the formal group law, is given by:

AutZp

(
Ĝm

)
= SpecK̂U∗K̂U

This is what it means to be a Hopf algebroid. On the other hand,

Aut
(
Ĝm

)
≃ Z×p = Spec

(
Cont

(
Z×p ,Zp

))
If we base change to mod p, we get:(

K̂U0

(
K̂U/p

))
[β±1]/Ĝm ≃

(
K̂U∗K̂U/p

)
/Ĝm ≃ Cont

(
Z×p ,Fp

)
□

Corollary 3.4 (p odd).

πnLK(1)S =


Zp n = 0, -1
Z/pk+1Z n+ 1 = 2(p − 1)pkm′ , p ∤m′

0 otherwise
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Proof. Using Ψ gβ = gβ,

· · · → πnK̂U
1−Ψ g

−−−−−→ πnK̂U→ πn−1LK(1)S→ πn−1K̂U
1−Ψ g

−−−−−→ πn−1K̂U→ ·· ·
We also need that π2m−1LK(1)S = Zp/(1− gm), with m ≥ 1. Remembering that g = ζ(1 + p). Thus,

π2m−1LK(1)S =

0 p − 1 ∤m

Z/
(

m
p−1

)
p − 1 | m

□

We can do similar things for p = 2 with real K-theory. However, we won’t.

4. LE(1)S

Recall the fracture square from earlier:

L1S LHQS HQ

LK(1)S LHQLK(1)X

⌟

∼

The bottom right has homotopy:

π∗
(
LHQLK(1)S

)
=

Qp ∗ = 0,−1
0 otherwise

· · · → πn+1

(
LK(1)⊕LHQS

)
→ πn+1LHQLK(1)S→ πnL1S→ πn

(
LK(1)S⊕LHQS

)
→ πnLHQLK(1)S→ ·· ·

For n , −2,−1,0, we then have πnL1S = πnLK(1)S. Otherwise, we have an exact sequence:

0→ π0L1(S)→ Zp ⊕Q→Qp→ π−1L1S→ Zp→Qp→ π−2L1S→ 0

Proposition 4.1 (p prime).

πnL1S =


Z(p) n = 0
Qp/Zp n = −2
Z/pk+1Z n+ 1 = 2(p − 1)pkm′ , p ∤m′

0 otherwise
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