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These are notes for one of my presentations from Prof. Haynes Miller’s 18.906 (Algebraic Topology II)
reading group at MIT in Fall 2024, and follows chapters 71-73 from his book [Mil22]. As they are presenta-
tion notes, they are not meant to be complete, as some material is cut for time. 18.906 was not taught this
academic year, and the reading group sought out to address this gap.

Note: a lot of the proofs here are cut for time. I offer my condolences.

1 Chern Classes, Stiefel-Whitney Classes, and the Leray-Hirsch
Theorem

Remember: BunG(X) is the set(!) of isomorphism classes of principal G-bundles over X. BunG(−) is a ho-
motopy invariant and contravariant functor Topop → Set. However, it can be extremely horrible to compute.

Goal: define some easier invariant. Here’s another nice homotopy invariant and contravariant functor
Topop → Set: cohomology. We will focus on n-plane bundles (GLn(F)-bundles, for example). All our bundles
will be numerable.

Definition 1.0.1. A characteristic class is a natural transformation of morphisms Topop → Set:

c : BunG(−) → Hn(−, A)

i.e. an assignment, to each G-bundle ξ : E → X, of some cohomology class that satisfies naturality with
respect to pullbacks:

c(f∗ξ) = f∗c(ξ)

Definition 1.0.2 (Reminder). Euler class e(ξ) for a R-oriented n-plane bundle (for some R ∈ CRing). For
Z, this is an oriented bundle, and for Z /2, this is just any bundle. For a bundle ξ : E → X, the cohomological
Serre spectral sequence gives:

Es,t
2 = Hs(X;Ht(p−1(−))) =⇒

s
Hs+t(E)

The orientation gives us a class σ ∈ H0(B;Hn−1(F )) and we define:

e(ξ) = dn(σ) ∈ Hn(B;R)

Remark 1.0.3. BunG(−) is representable through classifying spaces BG: BunG(X) ≃ [X,BG]. Therefore,
we may pull a characteristic class to a universal class in Hn(BG). For example, all characteristic classes
of integral complex line bundles are inside of H•(BU(1)) ≃ H•(CP∞) ≃ Z[e] where e is the Euler class of
EU(1) → BU(1).
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A (numerable) complex vector bundle has a Hermitian metric, which gives a retraction, as U(n) retracts
to GLn(C), so we get BU(n) ≃ BGLn(C). Therefore,

Remark 1.0.4. Complex vector bundles have a preferred real orientation. We pick an orientation based on
an ordering (e1, ie1, . . . , en, ien) in R2n. Therefore, complex line bundles have Euler clases.

1.1 Chern Classes

Theorem 1.1.1. For n-plane complex vector bundles and k ∈ N, we have a characteristic class c
(n)
k (ξ) ∈

H2k(X;Z) called the Chern classes of ξ. They are uniquely characterized by:

c
(n)
0 (ξ) = 1

c
(1)
0 (ξ) = −e(ξ)

and the Whitney sum formula:

c
(p+q)
k (ξ ⊕ η) =

∑
i+j=k

c
(p)
i (ξ) ⌣ c

(q)
k (η)

For the universal n-plane bundle ξn, we have:

H•(BU(n)) ≃ Z[c(n)1 (ξn), . . . , c
(n)
n (ξn)]

As in, there are no relations between the Chern classes, and all characteristic classes are polynomials in
these.

Chern classes are stable. For a trivial bundle ϵ : X × Cq → X, we have a pullback:

X × Cq Cq

X ∗

⌜

Naturality then tells us that c
(n)
j (qϵ) = 0, for j ≥ 1. The Whitney sum tells us that:

c
(n+q)
j (ξ ⊕ qϵ) = c

(n)
j (ξ)

We also have maps going down in the superscript, as the maps BU(n) → BU(n+ 1) classify ξ ⊕ ϵ and send
the Chern classes down in degree. Therefore, the Chern classes depend only on the stable equivalence class
of ξ, and we will drop the superscripts.

1.2 Grothendieck’s Construction

Here’s another way to think of Chern classes

For an n-plane bundle ξ (as in, an element of Vectn(B)), we may principalize it as:

P (ξ)b = {ordered bases for E(ξ)b}

We may then form the projectivization:

Definition 1.2.1. For an n-plane bundle ξ, we form its projectivization P(ξ) using the balanced pruduct:

P(ξ) = P (ξ)×GLn(C) CPn−1

We may then ask for the cohomology of projectivizations:
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Theorem 1.2.2 (Leray-Hirsch). Let R ∈ CRing, π : E → B be a fibration, with path connected B, so that
we have a fiber F defined up to homotopy. Assume:

• Ht(F ) is a free R-module

• The restriction H•(E) → H•(F ) is surjective

We get a splitting, using the free structure,

s : H•(F ) → H•(E)

H•(E) is a H•(B)-module by the projection. We extend it H•(B)-linearly:

s̄ : H•(B)⊗R H•(F ) → H•(E)

This map is a H•(B)-module isomorphism.

Proof sketch. Remember: in the cohomological Serre spectral sequence, we had:

Es,t
2 = Hs(B;Ht(F )) =⇒

s
Hs+t(E)

if π1(B) acts trivially on F = π−1(∗). That is, the local coefficient system was constant. But, the restriction
H•(E) → H•(F ) has image in the π1(B)-invariant subgroup. But the map is surjective by assumption, so
that we get to use the Serre spectral sequence. One can show (I won’t) that:

E2
s,t = Hs(B)⊗R Ht(F )

The base generators survive since differentials hit 0. The fiber generators survive by assumption (for exam-
ple, because of the surjection). Therefore, the spectral sequence collapses at the E2 page.

We give a new filtration:
FtH

n(E) = Fn−tHn(E)

We have:
grt H

n(E) = Fn−tHn(E)/Fn−t+1Hn(E) = En−t,t
∞

For the sake of time, I won’t compute the proof, but just wanted to show you the grading you use.

Upshot: when the projectivizations are nice (we are just missing surjection of the restriction map), we
get:

H•(P(ξ)) = H•(X)
〈
1, e, . . . , en−1

〉
is freely generated as a H•(X)-module, indexed by the Euler classes e(λ) ∈ H2(P(ξ)). What is en? In fact,
Euler classes satisfy the Chern polynomial:

cξ(t) =

n∑
k=0

tn−kck(ξ)

and cξ(e) = 0

Remark 1.2.3. We can do this mod 2 and not require orientability. These are called Stiefel-Whitney classes.
That’s all I want to say here.

Upshot 1.2.4. We may define Chern classes this way, as the coefficients of the polynomial en satisfy.
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2 H•(BU(n)) and the Splitting Principle

Theorem 2.0.1 (Alternative characterization of Chern classes). For complex line bundles ξ, ζ, if ξ ≃
ζ ⊕ (n− i)ε, then:

ci(ξ) = (−1)ie(ζ)

These generate all characteristic classes and have no algebraic relations between them.

Proof. We calculate H•(BU(n)), inductively. We embed U(n−1) ↪→ U(n) into the top-left. Then, the orbit
of en under U(n) ↷ Cn

S2n−1 ≃ U(n)/U(n− 1)

Clearly:
BU(n− 1) = EU(n)/U(n− 1) = EU(n)×U(n) S

2n−1

Then, p : BU(n− 1) → BU(n) is the unit sphere bundle.

BU(n− 1) → BU(n)

classifies ξn−1 ⊕ ϵ.

Fact 2.0.2. I won’t prove this for the sake of time.

H•(BU(n)) ≃ Z[c1, . . . , cn]

We let Fln be orthogonal flags: decompositions of Cn into n 1D subspaces. Alternatively,

Fln = U(n)/Tn

Theorem 2.0.3 (Splitting Principle). Let ξ : E ↓ X be a complex n-plane bundle. There is a map f :
Fl(ξ) → X s.t.

1. f•(ξ) ≃ λ1 ⊕ . . .⊕ λn

2. f• : H•(X) → H•(Fl(ξ)) is monic.

Proof. We already saw the spectral sequence collapses at E2, so that the projection map induces a monomor-
phism on cohomology. For the tautological bundle λ on P(ξ), we can canonically embed λ ↪→ π∗ξ, [won’t
give details but this gives (1)]

So that
Fl(ξn) = EU(n)×U(n) (U(n)/Tn) = EU(n)/Tn = BTn = (CP∞)n

We have Σn actions from the symmetric group which lives inside of U(n), via conjugation. Therefore, we
get:

H•(BU(n)) ↪→ H•(BTn)Σn

By an algebraic argument, also cut for time, we have that this is in fact an isomorphism!

Definition 2.0.4. We define the elementary symmetric polynomials σi as the coefficients:

n∏
i=1

(t− ti) =

n∑
j=0

σjt
n−j

This means that Chern classes get identified with elementary symmetric polynomials!
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3 Thom Class and Whitney Sum Formula

3.1 Thom Space and Thom Class

Definition 3.1.1. For a real n-bundle ξ : E
p→ B, we may form the Thom space Th(E) by taking the

one-point compactification at each fiber, E(Th(ξ)) = Ex ⊔∞, and identifying the points at ∞ together. We
take ∞ to be the basepoint of Th(ξ). For a compact Hausdorff space, this is the same as E ⊔∞.

If we pick a metric, we get:

Definition 3.1.2 (Alternative definition of Thom construction).

Th(ξ) = D(ξ)/S(ξ)

Remark 3.1.3. We can think of (D(ξ),S(ξ)) ≃ (E(ξ), E(ξ)− Z) for the image of the zero section, Z.

Fun things:
Th(ξ × η) = Th(ξ) ∧ Th(η)

Th(ξ ⊕ nϵ) = Σn Th(ξ)

We can think of Thom spaces as twisted suspensions.

We get maps between Thom spaces using pullbacks:

f̄ : Th(f∗ξ) → Th(ξ)

The bundle 0× ξ over B ×B is pulled back from pr2 : B ×B → B. The diagonal map ∆ : B → B ×B then
gives us

Th(ξ) → Th(0) ∧ Th(ξ) = B+ ∧ Th(ξ)

We get a relative cup product:

⌣: H•(B)⊗ H̄•(Th(ξ)) → H̄•(Th(0) ∧ Th(ξ)) → H̄∗(Th(ξ))

The first map comes from the fact that H̄• Th(ξ) is a H̄•(B+) = H•(B)-module and a H•(Th(ξ))-module.

Proposition 3.1.4 (Thom Isomorphism Theorem). Let R ∈ CRing, ξ is a R-oriented n-plane bundle over
B. We have a unique class, the Thom class, U ∈ H̄n(Th(ξ);R) that restricts, on each fiber, to the dual of
the orientation class. Also,

− ⌣ U : H•(B) → H̄•(Th(ξ))

is an isomorphism

Proof. Cut for time, uses a relative spectral sequence

3.2 Thom and Euler

We have a map π : B → D(ξ) → Th(ξ). The first map is the zero section, and the second is the quotient.

Lemma 3.2.1. It coincides with the Euler class, up to sign.

π∗U = ±e

Proof. Cut for time, also much of it is in the exercises or the next chapter.

We may benefit from calling this the Euler class. We get a Gysin sequence, a long exact sequence with
the Thom isomorphism:

· · · Hs−1(B) Hs−1(E) H̄s(Th(ξ)) Hs(B) Hs(E) · · ·

Hs−n(B)

p∗
δ

p∗
π∗

⌣U ⌣e
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3.3 Cut for time

e(ξ ⊕ η) = e(ξ) ⌣ e(η)

also, proof of Whitney sum. The interpretation as elementary symmetric polynomials reduces it to a question
of algebra/comparing coefficients.

Notation 3.3.1. Sometimes we will denote Th(ξn) as MSO(n)
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