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These are notes for one of my presentations from Prof. Haynes Miller’s 18.906 (Algebraic Topology II)
reading group at MIT in Fall 2024, and follows chapters 57-59 from his book [Mil22]. As they are presentation
notes, they are not meant to be complete, as some material is cut for time. However, they are also not a
subset of the book, as there are additional remarks and details here. 18.906 was not taught this academic
year, and the reading group sought out to address this gap. These notes were updated afterwards to address
confusions during the talk, and also to include insightful remarks and correct errors pointed out by Miller.

1 Universal bundles and compact Lie groups

1.1 Representability of BunG

Remember: BunG is a functor:

BunG : Top → Set

X 7→ {isomorphism classes of principal G-bundles}

Further, we have I-invariance, which implies homotopy invariance, so it descends onto the homotopy category:

BunG : Ho(Top) → Set

Theorem 1.1.1. BunG is representable on Ho(CW): that is, we have a universal bundle ξ : EG ↓ BG that
every G-bundle is pulled back from via a unique homotopy class of maps.

[X,BG]
∼−→ BunG(X)

[f ] 7→ f∗ξ

for x ∈ CW

Proof idea:

0. Check it is well-defined: we did this last lecture - homotopic maps induce isomorphic pullbacks.

1. Find a (not G−) weakly contractible G-space EG, BG is the quotient by the group action. This will
be our universal bundle. We defer the construction to later.

2. With it, prove that homotopic maps induce isomorphic pullbacks (well-defined)

3. Prove injectivity and surjectivity
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Remark 1.1.2. EG is only contractible as a standard space, not a G-space. For example, we will soon see,
B Z = S1 = K(Z, 1), and then EG is the universal cover EG = R. R is clearly contractible and has the
standard Z-action. This comes from the homotopy:

f : R → ∗
x 7→ ∗

g : ∗ → R
∗ 7→ 0

g ◦ f = {x 7→ 0} ≃ idR via h(t, x) = tx

But h is certainly not a G-homotopy. Therefore, EG is (weakly) contractible in Top, but certainly not in
Z-Top, even though I treat it as a Z-space so that is the category we’re working with, and its notion of
contractability is more complicated and considers the G-action (I haven’t told you what it is, but it’s beyond
the scope of these notes anyways). However, I will still say EG is a weakly contractible G-space. To make this
more explicit: EG is a G-space, and for the forgetful functor F : G-Top → Top that discards the G-action,
F (EG) is weakly contractible.

The difficult is that G may have a topology we want to respect. When G has a discrete topology, this
is easy: we take BG = K(G, 1) and EG to be its universal cover, which has a π1(BG) = π1(K(G, 1)) = G-
action by construction. However, for example, we will want the action G ↷ EG to be continuous.

We will give a very “geometric” construction of EG and BG for compact Lie groups, and then later on
we talk about how to construct these objects for any group. However, we won’t always get that EG ↓ BG
is a bundle, but it will be for a very broad class of topological groups.

Useful proposition:

Proposition 1.1.3. Let:

• E is a weakly contractible G-space

• (P, A) is a relative G-CW complex pair and P has a free G-action (all the cells are free, that is,
constructed from Dn ×G, as H\G has fixed points)

Then an equivariant map f : A → E extends to an equivariant map f̃ : P → E, that is unique up to
equivariant homotopy relative to A

P

A E

f̃

f

Proof. Same idea as proof of I-invariance of BunG.

Now, back to the proof of Theorem 1.1.1:

Surjectivity
We use Proposition 1.1.3 to a bundle ξ : P → X, using the pair (∅, P ) and E = EG:

P P EG

∅ EG X BG

⌟

So for a principal G-bundle P , we get a (unique up to equivariant homotopy) map P → EG, which descends
onto a map X → BG via quotient by the G-action on both sides. By construction, this is a pullback diagram,
determining P via the map X → BG, that is now unique up to normal homotopy.
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The upshot is that P determines a unique (up to homotopy) map X → BG, from which ξ is pulled back.

Injectivity
Suppose there are two maps f1, f2 : X → BG that induce the same pullback, along with functions upstairs
f̃1, f̃2 : P → EG:

P EG

X BG

f̃1,f̃2

⌟

f1,f2

We can think of the top as a function P×∂I → EG, and we apply Proposition 1.1.3 to the pair (P×∂I, P×I)

P × I

P × ∂I EG

h̃

f̃

We now get that f1, f2 are equivariantly homotopic. After quotienting out by the G-action, we get a standard
homotopy h : X × I → BG between f1, f2, which completes this part of the proof.

We’ve proved injectivity and surjectivity, so the game is now to actually construct EG and BG.

Also, as a note for terminology:

Definition 1.1.4. We call BG the classifying space of G, and EG ↓ BG is the universal bundle.

1.2 Universal bundles of compact Lie groups

So how do we construct BG? When G is a compact Lie group, we have:

Theorem 1.2.1 (Peter-Weyl). Any compact Lie group admits a faithful unitary representation.

That is, there is continuous and injective homomorphism:

ρ : G → U(Cn)

Of course then, G ≃ im(ρ) which is a subgroup of U(Cn). If E is a weakly contractible, free U(Cn)-space,
then it is also a principal G-space. By quotienting out the G-action, we would get BG.

Lemma 1.2.2. Any (n-dimensional) vector bundle over a compact Hausdorff space embeds into a trivial
bundle.

Proof. Look at the book, it’s not too interesting. Uses a finite cover with k open sets and a partition of
unity subordinate to this cover (guaranteed as compact Hausdorff spaces are also paracompact). The upshot
is you have the following embedding:

E B × Rnk

B B

In particular, we have complements:

Corollary 1.2.3. A vector bundle ξ over a paracompact space has a complement ξ⊥ where ξ ⊕ ξ⊥ = (nk)ϵ
(trivial bundle).
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Proof. Use inner product on Rnk.

The fibers have dimension n in Rnk, which gives a map, so that B embeds as n-planes in Rnk. This let’s
us express ξ as a pullback of the tautological bundle:

E E(ξnk,n)

B Grn(Rnk)

⌟

We will try to find a principal U(n)-bundle over Grn(Rnk). Warmup:

Definition 1.2.4. A Stiefel variety/manifold is

Vn(Cn+k) = {linear isometric embeddings Cn ↪→ Cn+k}

We can imagine a transitive right-action by U(Cn+k) via post-composition. Note however that everything
is in the same U(Ck)-orbit, where U(Ck) ⊂ U(Cn+k). In fact, for two elements to be in different orbits, they
must differ by some g ∈ U(Ck). This means we can identify:

Vn(Cn+k) = U(Cn+k)/U(Ck)

We also get a fiber bundle

p : Vn(Cn+k) → Grn(Cn+k)

{f : Cn → Cn+k} 7→ im(f)

that gives us a principal U(Cn)-bundle.

U(Cq) acts transitively on the unit sphere in Cq, which is S2q+1. The isotropy group of the basis vector eq
is Uq − 1

S2k+1 U(Cn+k)/U(Ck) Vn(Cn+k)

S2k+3 U(Cn+k)/U(Ck+1) Vn−1(Cn+k)

...

S2(n+k)−1 U(Cn+k)/U(Cn−1+k) V1(Cn+k)

Long exact homotopy sequence: Vn(Cn+k) is (2k) -connected:

Vn(C∞) = lim
−→

Vn(Cn+k)

is a contractible CW complex with a principal U(Cn)-action, with a quotient map Grn(C∞). This gives us:

EU(Cn) = Vn(C∞), BU(Cn) = Grn(C∞)

and we can construct EG,BG for any compact Lie group via quotients.
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2 Simplicial sets

2.1 Simplicial objects

Definition 2.1.1. Simplex category ∆:
Objects are the n-simplices: [n] = {0, 1, . . . , n}, morphisms are order-preserving maps

Morphisms generated by the (injective) coface maps:

di : [n] → [n+ 1], forgets i

and (surjective) codegeneracy maps:

si : [n+ 1] → [n],doubles up on i

Definition 2.1.2. Simplicial objects in a category C, is:

s C = Fun( ∆op, C)

i.e. functors between the simplex category and your category.
The objects in s C are called simplicial objects - these are specific functors X : ∆op → C. Namely, for a
simplicial object, we can define the n-simplices, which are the images Xn = X([n]). Of course, I just need
to tell you where the simplices go, as those are all the objects of ∆.

Example 2.1.3 (Important). Simplicial sets:

s Set = Fun( ∆op,Set)

The objects in s Set are called simplicial sets.

Example 2.1.4. Each simplex gives you a simplicial set:

Hom ∆(−, [n]) : ∆op → Set

Example 2.1.5 (Important). Any space X gives us a simplicial object of Top, or equivalently, an object of
sTop via:

Singn(X) = HomTop(∆
n, X)

These form the basis for singular homology.

Note that Top is locally small, so that in fact, Sing(X) is a simplicial set. We can also think of it as a
covariant functor:

Sing : Top → s Set

If you’ve heard of words such as ∞-category or Kan complex, we use simplicial objects to encode such
higher information. For example, in Ho(Top), we would like to encode information about objects and ho-
motopies, but also homotopies of homotopies, etc.

2.2 Geometric realization

We want a way to go the other way from Sing - to get a topological space out of a simplicial set. This is
geometric realization.

Let K be a simplicial set (an object of s Set).
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Definition 2.2.1. The geometric realization functor is given by:

| − | : s Set → Top

K 7→

∐
n≥0

∆n ×Kn

 / ∼ (1)

with equivalence relation
∆m ×Km ∋ (v, ϕ∗x) ∼ (ϕ∗v, x) ∈ ∆n ×Kn

here ϕ : [m] → [n] induces maps ϕ∗ : ∆m → ∆n and ϕ∗ : Kn → Km. You’ve probably seen it before
when calculating homology of (geometrically realized) simplicial sets.

We have a full subcategory of Top given by the simplices: ∆Top. This lets us think of geometric realization
as a balanced product:

|K| = ∆Top × ∆K

from the functors ∆ : ∆→ Top (covariant) and K : ∆op → Set (contravariant). This should remind you of
the Borel construction, taking a fiber product of a principal bundle with a right G-action with a set with a
left G-action.

Exercise: think about why |K| is a CW complex. Hint: Kn just has the discrete topology, it’s just a
set... for now...

Remark 2.2.2. Recall the simplicial set from Example 2.1.4. The geometric realization of Hom ∆(, [n]) is
homeomorphic to the n-simplices ∆n.

Upshot:

Theorem 2.2.3. | − | : s Set ⇌ Top : Sing is an adjoint pair.

Proof. Left out for the sake of time - look at details in book.

Remark 2.2.4. We have an incredibly inefficient CW approximation,

|Sing(X)| → X

The map comes from the counit of the adjunction.

2.3 Nerves and classifying spaces

We’ve seen how to embed ∆into Top via the functor ∆ : ∆→ Top, mapping [n] to the topological n-simplex
∆n. We can ask about how to do this in general, which is what we do now:

We can think of any simplex as a poset, with order-preserving maps. A poset, as a category, has mor-
phisms x → y when x ≤ y. This gives a functor i : ∆→ Cat, the category of small categories. Simplices get
sent to posets. Morphisms (order-preserving maps) get sent to functors between the posets.

Definition 2.3.1 (Nerves). For a small category C, the nerve is a simplicial set:

Nn C = (N C)n = Fun(i([n]), C)

This is a simplicial set: it is a functor from ∆to Set. It sends [n] to the set of functors from i([n]) to C.
We can also think of it as a covariant functor:

N : Cat → s Set
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It feels like categorical nonsense, but it’s pretty neat. N0 C are the objects, N1 C are morphisms. Nn C are
n-chains of morphisms. d0 sends a morphism to its target, d1 to its source.

Reminder: a group can be thought of as precisely being a monoidal groupoidal category. 18.701 has a
different definition. However, you get to look smart now and throw around fancy words that sound like an
alien language. Unfortunately, this new definition is actively unhelpful for learning what a group is for the
first time.

•

id
g

g−1

h
gh

···

Then,
NnG = G×n

as you can compose all morphisms, so that n-chains are just n ordered choices of morphisms in G (that is,
elements of the underlying set of G). This comes with the face maps:

di(g1, . . . , g
n) = (g1, . . . , gi−1,

︷ ︸︸ ︷
gigi+1, gi+2, . . .)

Definition 2.3.2. We can now form the classifying space of a small category, which is a functor:

B : Cat → Top (2)

C 7→ |N C |

from small categories to topological spaces.

Normal examples:

Example 2.3.3.
BC2

∼= RP∞

B Z ∼= S1

Messed up example:

Example 2.3.4.
B N ∼= S1

Therefore, we certainly cannot get injectivity.

Theorem 2.3.5. B(C ×D) ∼= B C ×BD, and naturally so.

Note: this is not just “categorical nonsense.” You need certain limits to commute with colimits. It’s
moreso a fact of topology than of category theory, based on decomposition of the simplices ∆n.

An important corollary:

Corollary 2.3.6. B sends natural transformations to homotopies. That is, for functors: F,G : C → D and
a natural transformation η : F ⇒ G, we get maps BF,BG : B C → BD. However, this is not just a map,
but a homotopy. That is, Bη is a homotopy between

BF : B C → BD

BG : B C → BD
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Proof. A natural transformation between F,G : C → D determines a functor

C ×[1] → D

with F at 0 and G at 1. Applying B to both sides gives a map:

B(C ×[1]) ∼= B C ×B[1] = B C ×I → BD

This is a homotopy between BF and BG.

Remark 2.3.7. This is something quite remarkable. Natural transformations do not go in both directions,
but homotopies are, by definition, symmetric. We can then think of homotopy theory as a symmetric analog
of category theory.

In particular,

Corollary 2.3.8. If C contains an initial object, then B C is contractible.

Proof. If o ∈ C is initial, then F : [0] → C sending 0 7→ o is a left-adjoint to G : C → [0]. The unit of the
adjunction is a natural transformation:

ϵ : FG ⇒ idC

Of course, BG is forced to be a map B C → ∗, so that B(FG) factors as B C → ∗ → B C. B idC is of course
the trivial isomorphism B C ∼= B C. Corollary 2.3.6 tells us then that

{B C → ∗ → B C} ≃ {B C idTop→ B C}

In other words, B C is contractible.

Note: this also works if C has a final object, you just use the counit instead.

2.4 Translation groupoid

Definition 2.4.1. Let G ↷ X be a G-set. We have the translation groupoid GX:

ob(GX) = X

HomGX(x, y) = {g ∈ G : gx = y}

Then, we can form GG based on the left-action G ↷ G by multiplication. Here, there is only one mor-
phism between two objects. In other words, all objects in GG are both initial and final. Therefore, B(GG)
is contractible, by Corollary 2.3.8. Also, it still has a G-action from the right, via the right action on GG.
And, B(GG)/G = BG.

This gives up the upstairs part, so that EG = B(GG) and BG is... well... BG. What remains is to
know that this respects topology when G is a topological group, and that the projection map is in fact a
fiber bundle map.

3 Enriched and internal categories, Čech categories

3.1 Topologically enriched and internal categories

Definition 3.1.1. A (small) category enriched in Top has topologies on the hom-sets, and composition is
continuous.

For example, we require that the following be a continuous map between topological spaces, for any
morphism f : y → z:

HomC(x, y)
f :y→z→ HomC(x, z)

There is a construction parallel to that of the category of small categories:
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Definition 3.1.2. The category of small categories enriched in Top is called Top -Cat.

Example 3.1.3. When G is a topological group, the category G is enriched in Top. ob(G) = {•}, and
mor(G) = G which has a topology, and composition is continuous.

A slight generalization:

Definition 3.1.4. A category internal to Top has spaces C0 and C1 (objects and morphisms) with continuous
maps:

s, t : C1 → C0

id : C0 → C1

composition : C1 ×C0 C1 → C1

with the category axioms

Definition 3.1.5. The category of small categories internal to Top is called Cat(Top).

Note: you can make similar constructions with other categories. You can think of a Top-enriched cate-
gory as a category internal to Top where the object space has the discrete topology.

For a topological group, NG is now a simplicial space:

NG ∈ sTop

We can still apply geometric realization without modification from Equation (1). It won’t have a (canonical)
CW structure, as the simplices will be topological spaces, not sets - we used the discrete topology on NnG
to make it a CW complex. However, it’s still a perfectly good classifying space functor. We can do this in
general:

Definition 3.1.6 (Classifying space functor for categories internal to Top).

B : Cat(Top) → Top (3)

C 7→ |NG|

Again, we take NG ∈ sTop, and its n-simplices are not sets, but rather spaces.

Example 3.1.7. A topological group G is a category internal to Top, with the single point as an object, and
the space of morphisms given by the group elements of G with their prescribed topology. We can also think
of it as a Top-enriched category with the discrete topology (not that we have a choice - there is one object).

Example 3.1.8. For a group action of a topological group G on a topological space X ∈ Top, we get GX as
a category internal to Top. The object space is X, and the morphisms are group elements G. The hom-sets
carry the subspace topology from G.

Example 3.1.9 (silly, but useful). For a space X, cX is the category internal to Top with C0 = C1 = X.
That is, there are only identity morphisms x → x. Also, B(cX) = X, where use B from Equation (3).

Remark 3.1.10. This example seems to tell us that every space is realized as a classifying space. But we
have to be careful about which classifying space functor we’re talking about. As a standard category, cX has
a classifying space from Equation (2) that is the set X with the discrete topology. We work here with a
topologically-compactible generalization of the classifying space functor, from Equation (3).

Note that if G is a topological group and X ∈ Top is a space, then also GX is a category internal to Top.

Putting everything together:

Proposition 3.1.11. B(GG) → BG is a principal G-bundle when G is a Lie group (and more generally
too)
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This also lets us construct Eilenberg-MacLane spaces in another way. If π is an abelian group (not a
topological one - or alternatively, a topological group with the discrete topology), then this means precisely
that multiplication is a homomorphism π × π → π. Applying B, since it’s a functor:

B(π × π) = Bπ ×Bπ → Bπ

This gives Bπ the structure of a topological abelian group. We can then repeat this process:

B(Bπ) = K(π, 2), . . . , Bnπ = K(π, n), . . .

3.2 Čech categories

What we would like to do now is explicitly construct a map X → BG classifying some principal G-bundle
P ↓ X. This will require considering a numerable trivializing cover U and using it to construct such a map.
We can construct a map on each open set U ∈ U , but we need to glue them together in a consistent way.
Therefore, we need to encode the information from all the intersections inside of U to do this properly.

We start with a more general case. Let π : Y → X.

Definition 3.2.1. We define the descent/Čech category Č(π) as a Top-category with objects and morphisms:

ob(Č(π)) = Y

mor(Č(π)) = Y ×X Y

To be more explicit, the morphism set is a fiber product - it’s the subspace of the product Y 2 that agrees
over preimages of X. More explicitly:

Y ×X Y = {(y1, y2) ∈ Y 2 | π(y1) = π(y2)}

The structure maps look like:
id = ∆ : Y → Y ×X Y

s, t = pr1,pr2 : Y ×X Y → Y

Composition is a bit more complicated:

(Y ×X Y )×X (Y ×X Y ) → Y ×X Y

which sends ((y1, y2), (y2, y3)) 7→ (y1, y3).

Note 3.2.2. Because we’re working over categories internal to Top, we can require our functors be contin-
uous. An important case is that we get a continuous functor between categories internal to Top:

π̌ : Č(π) → cX

This ties back into the discussion of open covers. Consider U an open cover for X. This determines a
map:

Y =
∐
U∈U

U → X

sending {x ∈ U} 7→ {x ∈ X}
Y ×X Y =

∐
U ∩ V

We form the Čech category and denote it by Č(U).

By applying B to 3.2.2, we get a map:
Bπ̌ : BČ(U) → X

This map has a homotopy inverse in good cases:
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Proposition 3.2.3. When the cover U has a subordinate partition of unity, we recover a map going in the
opposite direction, and these form a homotopy equivalence.

Remark 3.2.4. In constructing BČ(U), we first need to take the nerve of the Čech category. This nerve
NČ(U) is sometimes called the Čech nerve, and its geometric realization is BČ(U).

3.3 Classifying maps

How do we form X → BG classifying ξ : P → X? Pick a cover U of B with trivializations ϕU : p−1U
∼−→

GU ×G. This gives us a functor:
Č(U) → G

where G is again a moinoidal category. Objects get sent to •. Morphisms use the transition functions: U ∩V
is a subspace of the morphisms in Č(U). Functors correspond to points in U ∩ V for any U, V ∈ U : We map
these to mor(G) = G (as a set of group elements) by sending:

{x ∈ U ∩ V } 7→ φV (x)φ
−1
U (x) ∈ G

You’ve probably seen the Čech cocycle condition: it precisely says that this assignment constitutes a functor.

Applying B gives us:

BČ(U) BG

X

≃

and this gives the classifying map X → BG.

3.4 Mayer-Vietoris sequences

This is not spelled out explicitly in the book, but I want to make some comments about the connection
between this construction and one we’ve seen before, for the Mayer-Vietoris sequence. In this section, we
will assume X = A∪B, where the interiors of A,B also cover X. Further, we will assume there’s a partition
of unity subordinate to the cover {A,B}.

We’ve run into the problem of properly gluing maps out of subsets U together before. For some coefficient
ring R, we can regard R Sing(X) as the standard singular chain complex for R-valued singular homology,
with differentials defined using the face maps of ∆. We would like to make a short exact sequence of chain
complexes:

0 → R Sing(A ∩B) → R Sing(A)⊕R Sing(B) → R Sing(X) → 0 This is FALSE

But this fails, as:
Sing(X) ̸= Sing(A)×Sing(A∩B) Sing(B)

In other words, not all maps ∆n → X come from gluing together maps ∆n → A,B that agree on the
intersection. However, the following is a short exact sequence, for U = {A,B}, which you should check for
yourself:

0 → R Sing(A ∩B) → R Sing(A)⊕R Sing(B) → R Sing
(
BČ(U)

)
→ 0

The snake or zig-zag give us a a long exact sequence in homology:

· · · → H∗(A ∩B;R) → H∗(A;R)⊕H∗(B;R) → H∗
(
BČ(U);R

)
→ H∗−1(A ∩B;R) → · · ·

Bπ̌ is a homotopy equivalence, which gives an isomorphism Bπ̌∗ : H∗
(
BČ(U);R

) ∼−→ H∗(X;R) as desired.
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