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ABSTRACT
This paper studies the problem of allocating tasks from di�erent
customers to vehicles in mobility platforms, which are used for ap-
plications like food and package delivery, ridesharing, and mobile
sensing. A mobility platform should allocate tasks to vehicles and
schedule them in order to optimize both throughput and fairness
across customers. However, existing approaches to scheduling tasks
in mobility platforms ignore fairness.

We introduce Mobius, a system that uses guided optimization to
achieve both high throughput and fairness across customers.Mobius
supports spatiotemporally diverse and dynamic customer demands.
It provides a principled method to navigate inherent tradeo�s be-
tween fairness and throughput caused by shared mobility. Our eval-
uation demonstrates these properties, along with the versatility and
scalability of Mobius, using traces gathered from ridesharing and
aerial sensing applications. Our ridesharing case study shows that
Mobius can schedule more than 16,000 tasks across 40 customers
and 200 vehicles in an online manner.
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1 INTRODUCTION
The past decade has seen the rapid proliferation of mobility plat-
forms that use a �eet of mobile vehicles to provide di�erent services.
Popular examples include package delivery (UPS, DHL, FedEx, Ama-
zon), food delivery (DoorDash, Grubhub, Uber Eats), and rideshare
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services (Uber, Lyft). In addition, new types of mobility platforms
are emerging, such as drones-as-a-service platforms [21, 27, 32, 48]
for deploying di�erent sensing applications on a �eet of drones.

In these mobility platforms, the vehicle �eet of cars, vans,
bikes, or drones is a shared infrastructure. The platform serves
multiple customers, with each customer requiring a set of tasks to be
completed. For instance, each restaurant subscribing to DoorDash
is a customer, with several food delivery orders (or tasks) in a
city. Similarly, an atmospheric chemist and a tra�c analyst might
subscribe to a drones-as-a-service platform, each with their own
sensing applications to collect air quality measurements and tra�c
videos, respectively, at several locations in the same urban area.
Multiplexing tasks from di�erent customers on the same vehicles
can increase the e�ciency of mobility platforms because vehicles
can amortize their travel time by completing co-located tasks
(belonging to either the same or di�erent customers) in the same trip.

We study the problem of scheduling spatially distributed tasks
frommultiple customers on a shared �eet of vehicles. This problem
involves (i) assigning tasks to vehicles and (ii) determining the
order in which each vehicle must complete its assigned tasks.
The constraints are that each vehicle has bounded resources (fuel
or battery). While several variants of this scheduling problem
have been studied, the objective has typically been to complete as
many tasks as possible in bounded time, or to maximize aggregate
throughput (task completion rate) [23, 44].

We identify a second—equally important—scheduling require-
ment, which has emerged in today’s customer-centric mobility
platforms: fairness of customer throughput to ensure that tasks from
di�erent customers are ful�lled at similar rates.1 For example, in
food delivery, the platform should serve restaurants equitably, even
if it means spending time or resources on restaurants with patrons
far from the current location of the vehicles. A ridesharing platform
should ensure that riders from di�erent neighborhoods are served
equitably, which ridesharing platforms today do not handle well,
a phenomenon known as “destination discrimination” [35, 45, 49].

We seek an online scheduler for mobility platforms that achieves
both high throughput and fairness. A standard approach to
achieving these goals is to track the resource usage and work done
on behalf of di�erent users in a �ne-grained way and equalize
resource consumption across users. Such �ne-grained accounting
and attribution is di�cult with shared mobility: the resource used
is a moving vehicle traveling toward its next task, but making that
trip has a knock-on bene�t, not only for the next task served, but
for subsequent ones as well. However, the bene�t of a speci�c trip is
not equal across the subsequent tasks. Although it may be possible
to develop a fair scheduler that achieves high throughput using
�ne-grained accounting and attribution, it is likely to be complex.

1The method we develop also applies to weighted fairness.
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We turn, instead, to an approach that has been used in both
societal and computing systems: optimization, whichmay be viewed
as a search through a set of feasible schedules to maximize a utility
function. In our case, we can establish such a function, optimize it
using both the task assignment and path selection, and then route
vehicles accordingly.

In a typical mobility problem, the planning time frame for opti-
mization could be between 30 minutes and several hours, involving
hundreds of vehicles, dozens of customers, and tens of thousands of
tasks. The scale of this problem pushes the limits of state-of-the-art
vehicle routing solvers [7]. Moreover, fairness objectives lead to
nonlinear utility functions, which make the optimization much
more challenging. As a benchmark, optimizing the routes for 3
vehicles and 17 tasks over 1 hour, using the CPLEX solver [28] with
a nonlinear objective function, takes over 10 hours [36].

To address these problems, a natural approach is to divide the
desired time duration into shorter rounds, and then run the utility
optimization. When we do this, something interesting emerges
in mobility settings: the space of feasible solutions—each solution
being an achievable set of rates for the customers—often collapses
into a rather small and disturbingly suboptimal set! These feasible
solutions are either fair but with dismal throughput, or with
excellent throughput but starving several customers.

A simple example helps see why this happens. Consider a map
with three areas, �1, �2, �3, each distant from the others. There
are several tasks in each area: in�1, all the tasks are for customer
⇠1; in�2, all the tasks are for customer⇠2, and in�3, all the tasks
are for two other customers, ⇠3 and ⇠4. Suppose that there are
two vehicles. Over a duration of a few minutes, we could either
have the two vehicles focus on only two areas, achieving high
throughput but ignoring the third area and reducing fairness, or,
we could have themmove between areas after each task to ensure
fairness, but waste a lot of time traveling, degrading throughput.
It is not possible here to achieve both throughput and fairness over a
short timescale. Yet, over a long time duration, we can swap vehicles
between regions to amortize the movement costs. This shows that
planning over a longer timescale permits feasible schedules that
are better than what a shorter timescale would permit.

Our contribution,Mobius, divides the desired time duration into
rounds, and produces the feasible set of allocations for that round
using a standard optimizer. Mobius guides the optimizer toward
a solution that is not in the feasible set for one round but can be
achieved over multiple rounds. This guiding is done by aiming for
an objective that maximizes a weighted linear sum of customer
rates in each round. The weights are adjusted dynamically based
on the long-term rates achieved for each customer thus far. The
result is a practical system that achieves high throughput and
fairness over multiple rounds. This approach of achieving long-term
fairness by setting appropriate weights across rounds allows us to
use o�-the-shelf solvers for the weighted Vehicle Routing Problem
(VRP) for path planning in each round. Importantly, this design
allows Mobius to optimize for fairness in the context of any VRP
formulation, making this work complementary to the vast body of
prior work on vehicle routing algorithms [3, 5, 8, 23].

Scheduling over multiple rounds also allows Mobius to handle
tasks that arrive dynamically or expire before being done. Moreover,
Mobius supports a tunable level of fairness modeled by U-fair utility

functions [31], which generalize the familiar notions of max-min
and proportional fairness.

We have implemented Mobius and evaluated it via extensive
trace-driven emulation experiments in two real-world settings:
(i) a ridesharing service, based on real Lyft ride request data
gathered over a day, ensuring fair quality-of-service to di�erent
neighborhoods in Manhattan; and (ii) urban sensing using drones
for measuring tra�c congestion, parking lot occupancy, cellular
throughput, and air quality. We �nd that:

1. Relative to a scheduler that maximizes only throughput,
Mobius compromises only 10% of platform throughput in
order to enforce max-min fairness.

2. Compared to dedicating vehicles to customers, Mobius
improves vehicle utilization by 30-50% by intelligently
sharing vehicles amongst customers.

3. Mobius can compute fair online schedules at a city scale,
involving 40 customers, 200 vehicles, and over 16,000 tasks.

2 PROBLEM SETUP
Every customer subscribing to a mobility platform submits several
requests over time. Each request speci�es a task (e.g., gather sensor
data or deliver package) and a corresponding location. The platform
schedules trips for each vehicle overmultiple rounds. It takes into ac-
count any changes in a customer’s requirements (in the form of new
task requests or expiration of older unful�lled tasks) at the beginning
of each round.We say that a customerhas a backlog if theyhavemore
tasks than can be completed by all available resources within the al-
located time. For simplicity of exposition, we assume each customer
is backlogged (our evaluation in §7 relaxes this assumption).

Let  be the set of customers, and ): (g) be the set of tasks
requested by customer : during a scheduling round g . We denote
G: (g) as the throughput achieved for customer : in scheduling
round g , i.e., the total number of tasks in ): (g) that are ful�lled
divided by the round duration.

We denote G: (C) as the long-term throughput for each customer
: , after C scheduling rounds, i.e., G: (C)= 1

C
ÕC
g=1G: (g) if rounds are

of equal duration. A good scheduling algorithm should achieve the
following objectives:

• Platform Throughput. Maximize the total long-term
throughput after round C , i.e.,

Õ
:2 G: (C).

• Customer Fairness. For any two customers :1,:2 2 with
backlogged tasks, ensure G:1 (C)=G:2 (C).

Equalizing long-term per-customer throughputs G: (C) provides a
desirable measure of fairness for manymobility platforms: higher
per-customer throughputs correlatewith other performancemetrics,
such as lower task latency and higher revenue. Our evaluation
(§7) quanti�es the impact of optimizing for a fair allocation of
throughputs on other platform-speci�c quality-of-service metrics.

Prior algorithms for scheduling tasks on a shared �eet of vehicles
have focused on the VRP, i.e., only considered maximizing platform
throughput [23, 44]. Achieving per-customer fairness introduces
three new challenges:
Challenge #1: Attributing vehicle time to customers. Vehicle
time and capacity are scarce. Consider the example in Fig. 1, with
two customers and two vehicles; customer 1 has two densely-packed
clusters of tasks, while customer 2 has two dispersed clusters of
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Cust. 1 28 tasks 4 tasks 15 tasks 21 tasks
Cust. 2 13 tasks 4 tasks 13 tasks 19 tasks
Total 41 tasks 8 tasks 28 tasks 40 tasks

MobiusMax Throughput

Cust. 1 28 tasks 4 tasks 15 tasks 21 tasks

Cust. 2 13 tasks 4 tasks 13 tasks 19 tasks

Total 41 tasks 8 tasks 28 tasks 40 tasks

MobiusMax Throughput

Figure 1: An example with two customers, two vehicles, and a 6-minute planning horizon. Mobius computes a schedule that (i) achieves a similar total throughput
to that of the max throughput schedule, and (ii) preserves the customer-level fairness achieved by the round-robin and dedicated schedules.

⨁ ⨁ ⨁

Max Tput [Option 1] Max Tput [Option 2] Fair Tput

Customer 1 Customer 2 ⨁ Depot

Figure 2: Imposing fairness at short timescales (e.g., one round trip) degrades
throughput. Executing Options 1 and 2 provides fairness at longer timescales
and leads to greater total throughput.

tasks. We show schedules and tasks ful�lled by Mobius and three
other policies: (i) maximizing throughput, (ii) dedicating a vehicle
per customer, and (iii) alternating round-robin between customer
tasks. Notice that, to the left of the depot (center of the map),
customer 2’s tasks can be picked up on the way to customer 1’s
tasks. Thus, multiplexing both customers’ tasks on the same vehicle
is more desirable than dedicating a vehicle per customer, because
it amortizes resources to serve both customers. However, sharing
vehicles amongst customers complicates our ability to reason about
fairness, because the travel time between the tasks of di�erent
customers cannot be attributed easily to each one.
Challenge #2: Timescale of fairness. Fig. 2 shows two customers
and one vehicle that must return home to refuel. A high-throughput
schedule would dedicate the vehicle to one of the customers. By
contrast, a fair schedulewould require thevehicle to round-robin cus-
tomer tasks, achieving low throughput due to travel. Over a longer
time duration, however, we can execute two max-throughput sched-
ules (Options 1 and 2) to achieve both fairness and high throughput.
Challenge #3: Spatiotemporal diversity of tasks. In Fig. 1,
the two customers’ tasks have di�erent spatial densities. The
high-throughput schedule favors customer 1. A max-min fair
schedule should, by contrast, ensure that customer 2 gets its fair
share of the throughput, even if it comes at the cost of higher travel
time and lower platform throughput. Striking the right balance
between fairly serving a customer with more dispersed tasks and
reducing extra travel time is a non-trivial problem.

Customer tasks may also vary with time. For example, a food
delivery service might receive new requests from restaurants, or
an atmospheric scientist may want to update sensing locations
that they submitted to a drone service provider based on prior
observations. The mobility platform must handle the dynamic
arrival and expiration of tasks.

Customers VehiclesMobius
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Figure 3: In each round, Mobius uses a VRP solver to compute a schedule that
maximizes a weighted sum of throughputs, and automatically adjusts the
weights across rounds to improve fairness.

3 OVERVIEW
Any resource-constrained system exhibits an inherent tradeo�
between throughput and fairness. In the best case, the most fair
schedule would also have the highest throughput; however, due to
the challenges described in §2, it is impossible to realize this goal
in many mobility settings. Mobius instead strives for customer
fairness with the best possible platform throughput; its approach
is to trade some short-term fairness for a boost in throughput, while
improving fairness over a longer timescale.

In each roundg ,Mobius uses aVRP solver tomaximize aweighted
sum of customer throughputs G: (g).2 Mobius sets the weights in
each round to �nd a high throughput schedule that is approximately
fair in that round. By accounting for the long-term throughputs
G: (C) delivered to each customer : in prior rounds, it is able to
equalize G: (C) over multiple rounds. We formalize this notion of
balancing high throughput with fairness in §4. Mobius uses an
iterative search algorithm requiring multiple invocations of a VRP
solver to �nd a schedule that strikes the appropriate balance.

Our approach of trading o� short-term fairness for throughput
and longer-term fairness raises a natural question: why not directly
schedule over a longer time horizon, rather than dividing the
scheduling problem into rounds? Scheduling in rounds is desirable
for several reasons: (i) their duration can correlate with the fuel or
battery constraints of the vehicles, (ii) it provides a target timescale
at which Mobius strives to provide fairness, (iii) shorter timescales
make the NP-hard VRP problemmore tractable to solve, and (iv) it

2We formally de�ne the VRP in §5.
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(d) Convex boundary dynamics.
Figure 4: Visualizing feasible allocations of throughput for a small problemwith two customers and two vehicles. Allocations on the convex boundary trade
short-term fairness for throughput. The convex boundary becomes denser over time, making the target allocation achievable.

enables Mobius to adapt to temporal variations in customer demand
that are captured at the beginning of each round.

Fig. 3 shows the architecture of Mobius. In each round, customers
update their task requests. Mobius then computes the best weights,
generates a schedule, and dispatches the vehicles. At the end of the
round, Mobius updates each customer’s throughput, G: (C), and uses
this information to select weights in the next round.

4 BALANCINGTHROUGHPUT& FAIRNESS
We now provide the intuition behind our approach for balancing
throughput and fairness using the example shown in Fig. 4. There
are two customers, each requesting tasks from distributions shown
on the map in Fig. 4a. We have two vehicles, each starting at �. For
simplicity, in §4.1, we consider planning schedules in 10-minute
rounds, where the vehicles return to their start locations after 10
minutes. We renew all tasks at the beginning of each round trip.
Then, in §4.2, we explain how Mobius generalizes to dynamic
settings where customer tasks change with time, and vehicles do
not need to return to their starting locations.

4.1 Scheduling on the Convex Boundary
Feasible allocations. We �rst consider the set of schedules that
are feasible within the time constraint. Fig. 4b shows the tradeo�
between throughput and fairness amongst these feasible schedules.
Each dot represents an allocation produced by a feasible schedule;
the coordinates of the dot indicate the throughputs of the respective
customers. We generate the schedules by solving the VRP for
each possible subset of customer tasks.3 We also indicate the~=G
line (dotted gray), which corresponds to fair allocations that give
equal throughput to each customer. Note that in this example both
vehicles can more easily service Customer 1. Hence, an allocation
that maximizes total throughput without regard to fairness (labeled
⇠) favors Customer 1.
Pareto frontier of feasible allocations. The Pareto frontier
over all feasible allocations is denoted by the dashed orange
line, containing �, ⌫, ⇠ , ⇡ , and ⇢. If an allocation on the Pareto
Frontier achieves throughputs of G1 and G2 for Customers 1 and
2 respectively, there exists no feasible allocation (Ĝ1,Ĝ2) such that
Ĝ1>G1 and Ĝ2>G2. The allocation that maximizes total throughput
will always lie on the Pareto frontier. An allocation on the Pareto
frontier is strictly superior, and therefore more desirable than other
feasible allocations. So which allocation on the Pareto frontier do
we pick? A strictly fair allocation lies at the point where the Pareto

3The VRP is NP-hard (§5), but because the input size is small for this example, we use
Gurobi [25] to compute optimal schedules.

frontier intersects the ~ = G line (labeled ⌫ in Fig. 4b). However,
allocation ⌫ has low total throughput, because the vehicles spend
a signi�cant part of the 10 minutes traveling between task clusters.
Convex boundary of the Pareto frontier. To capture the subset
of allocations that do not signi�cantly compromise throughput,
we use the convex boundary of all feasible allocations, denoted by
the turquoise line in Fig. 4b. The convex boundary is the smallest
polygon around the feasible set such that no vertex bends inward [9],
and the corner points are the vertices determining this polygon. The
target allocation is the point where the ~ = G lines intersects the
boundary (shown in red). It has high throughput and is fair, but it
may not be feasible (as in this example). Is it still possible to achieve
the target throughput in such cases?
Scheduling over multiple rounds. Our key insight is that it is
possible to achieve the target allocation over multiple rounds of
scheduling by selecting di�erent feasible allocations on the con-
vex boundary in each round. In a given round, Mobius chooses the
feasible allocationon the convexboundary that best achievesour fair-
ness criteria. In our example, it chooses allocation� in its �rst round.
By choosing allocation� over allocation ⌫ (which achieves equal
throughput),Mobius compromises on short-term fairness for a boost
in throughput. However, as we discuss next, it compensates for this
choice in subsequent rounds.Notice that ifMobius instead chooses⌫,
it would not be able to recover from the resulting loss in throughput.

As we compute a 10-minute schedule for each round, the set of
feasible allocations expands; this allows Mobius to compensate for
any prior deviation in fairness. Fig. 4c illustrates how the feasible
set evolves over several 10-minute rounds of planning. The feasible
allocations (denoted by gray dots) possible after round) are derived
from the cumulative set of tasks completed in) rounds. Notice that
over the four rounds, the set of feasible allocations becomes denser,
and the Pareto frontier approaches the convex boundary. Thus, the
target allocation (i.e., the allocation on the convex boundary that
coincides with the~=G line) becomes feasible.

In summary, the key insights driving the design of Mobius are:
(i) the convex boundary describes a set of allocations that trade o�
short-term fairness for a boost in throughput, and (ii) the Pareto
frontier approaches the convex boundary over multiple rounds of
planning, making it possible to correct for unfairness over a slightly
longer timescale.

4.2 Scheduling in Dynamic Environments
In practice, environments aremore dynamic: customer tasksmaynot
recur at the same locations, and vehicles need not return to their start
locations regularly. Thus, the convex boundary may not be identical
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Mobius, Snapshot 1 Mobius, Snapshot 2 Mobius, Snapshot 3

Max Throughput Round Robin Dedicated Vehicles

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2

Mobius, Round 1 Mobius, Round 2 Mobius, Round 3

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2

Mobius, Snapshot 1 Mobius, Snapshot 2 Mobius, Snapshot 3

Max Throughput Round Robin Dedicated Vehicles

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2
Figure 5: The di�erence in spatial density of tasks leads to short-term un-
fairness (Rounds 1 and 3). Mobius compensates for this by directing more
resources to the underserved customer (Round 2).

in each round. However, in practice, because (i) vehicles move con-
tinuously over space and (ii) customer tasks tend to observe spatial
locality, the convex boundary does not change drastically over time.

To illustrate this, we extend the example in Fig. 4, by creating
a map with the same densities as in Fig. 4a, but with 50 tasks per
customer. To simulate dynamics, we create a new task for each
customer every 3 minutes at a location chosen uniformly at random
within a bounding box. We still consider two vehicles starting at the
same location (i.e., in the middle of customer 1’s cluster) and plan
in 10-minute rounds. We eliminate the return-to-home constraint.
In order to adapt to the customers’ changing tasks, we compute new
10-minute schedules every 1 minute (i.e., 10-minute rounds slide
in time by 1 minute). We run this simulation for 60 minutes.

In order to understand how these dynamics impact the convex
boundary as we plan iteratively, we show in Fig. 4d the convex
boundary of 10-minute schedules at each 1-minute replanning
interval. Notice that the convex boundaries hover around a narrow
band, indicating that we can still track the target throughput reliably.
The red square marks the value of the average target throughput
across all 50 convex boundaries; we also mark the throughput
achieved byMobius’s scheduling algorithm (§5).

In addition to the convex boundary remaining relatively stable
from one timestep to the next, this method of replanning at much
quicker intervals (e.g., 1 minute) than the round duration (e.g., 10
minutes)makesMobius resilient to uncertainty in the environment.4
For instance, Mobius can react to streaming requests in a punctual
manner, and can also incorporate requests that are unful�lled due
to unexpected delays (e.g., road tra�c or wind). Moreover, since
Mobius uses a VRP solver as a building block to compute its schedule
(§3), it can also leverage algorithms that solve the stochastic VRP [8],
where requests arrive and disappear probabilistically.

4.3 Visualizing Routes Scheduled byMobius
To illustrate howMobius converges to fair per-customer allocations
without signi�cantly degrading platform throughput, in Fig. 5 we
show3consecutive 10-minute round schedules computedbyMobius,
for the dynamic example in Fig. 4d. In Rounds 1 and 3, we observe
that Mobius decides to dedicate one vehicle to each customer in
order to give them both su�ciently high throughput; here, customer
2 receives lower throughput because its tasks are more dispersed.
However, in Round 2, Mobius compensates for this short-term
unfairness by scheduling an additional vehicle to customer 2, while
also collecting a few tasks for customer 1 in the outbound trip.

4§7 further evaluates the e�ectiveness of Mobius’s algorithm for dynamic, real-world
customer demand.

5 MOBIUS SCHEDULINGALGORITHM
Based on the insights in §4, we designMobius to compute a schedule
on the convex boundary in each round, such that the long-term
throughputs G: (C) approach the target allocation. Mobius works
in two steps:

(1) In each round, Mobius �nds the support allocations, which
we de�ne as the corner points on the convex boundary of the
current round, near the target allocation (§5.1). For example,
in Fig. 4b, Mobius would �nd support allocations� and⇠ .

(2) Amongst the support allocations found in step (1), Mobius
selects the one that steers the long-term throughputs G: (C)
toward the target allocation (§5.2).

In this section, we present Mobius in the context of strict fairness
(i.e., G: (C) must lie along the~=G line). §5.3 provides a theoretical
analysis of Mobius’s optimality under simplifying assumptions,
and §5.4 describes our implementation. In §6, we extendMobius’s
formulation to work with a class of fairness objectives.

5.1 Finding Support Allocations
Since the convex boundary of the Pareto frontier is equivalent to
the convex boundary of the feasible set of schedules, a naive way
to �nd the support allocations is to compute the Pareto frontier, take
its convex boundary, and then identify the support allocations near
the target allocation. However, computing the Pareto frontier is
computationally expensive because it requires invoking an NP-hard
solver an exponential number of times in the number of tasks.
Mobius uses a VRP solver as a building block to �nd a subset of the
corner points of the convex boundary around the target allocation.

The VRP involves computing a pathPE for each vehicle E , de�ned
as an ordered list of tasks from the set of all tasks {): (g) | : 2 },
such that the time to complete PE does not exceed the total time
budget⌫ for a round. VRP solversmaximize the platform throughput
without regard to fairness.

We capture di�erent priorities amongst customer tasks by
assigning a weight F: to each customer :’s tasks. Let x 2 R | |

represent a throughput vector, where G: is the throughput for
customer : , and let w 2 R | | represent a weight vector, with a
weightF: for each customer : .5

The weighted VRP seeks to maximize the total weighted
throughput of the system, where each task is allowed a weight. We
can describe this as a mixed-integer linear program:

argmax
PE ,8E2+

’
:2 

F:G: = argmax
PE ,8E2+

w|x (1)

s.t. 2 (PE) ⌫ 8E 2+ (2)
PE is a valid path 8E 2+ , (3)

where 2 (·) speci�es the time to complete a path. Equation (2)
enforces that, for each vehicle, the time to execute the selected path
does not exceed the budget. Equation (3) captures constraints that
are speci�c to the vehicles (e.g., if vehicles must return to home
at the end of each round) and customers (e.g., if tasks are only
valid during speci�c windows during the scheduling horizon). The
weighted VRP (also called the prize-collecting VRP) is NP-hard, but
there are several known algorithms with optimality bounds [5, 44].
5x and w vary with each round g . We drop the round index g whenever there is no
ambiguity about the current round.
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Figure 6: Using a blackbox VRP solver as a building block, Mobius runs an
iterative search algorithm to �nd the support allocations.

Using weights to �nd the corner points. We can adjust the
weight vector w in order to capture a bias toward a particular
customer; w describes a direction in the customer throughput
space, re�ecting that bias. Fig. 6a visualizes w in a 2-D customer
throughput space. A solver optimizing for Equation (1) searches
for the schedule with the highest throughput in the direction of
w [10], thus requiring the schedule to lie on the convex boundary.
For example,w1= (1,0) �nds the schedule on the convex boundary
that prioritizes customer 1 (i.e., along the G-axis), and w2 = (0,1)
�nds a schedule that prioritizes customer 2 (i.e., along the~-axis).
Searchingon theconvexboundary.Recall that, for strict fairness,
the target allocation is the point where the ~ = G line intersects
the convex boundary for the current round (§4). At the start of
the search, Mobius does not yet know the convex boundary, so it
cannot know the target allocation. To �nd allocations on the convex
boundary, Mobius employs an iterative search algorithm, analogous
to binary search; in each stage, it tries to �nd a new allocation
on the convex boundary in the direction of the ~ = G line. Mobius
begins the search with allocations along the customer axes. For two
customers, it begins with weights w1 and w2 above, which gives
two allocations on the convex boundary. In each stage of the search,
Mobius computes a newweight vector, using allocations found on
the convex boundary in the previous stage, in order to �nd a new
allocation on the convex boundary. It terminates when no new allo-
cation can be found. By searching in the right direction, Mobius only
needs to compute a subset of corner points on the convex boundary.

To better illustrate the algorithm, consider the example in Fig. 6b,
with 2 customers. Mobius starts the search by looking at the two
extreme points on the customer 1 (G1) and customer 2 (G2) axes,
which correspond to prioritizing all vehicles for either customer.
So in stage 1, Mobius computes these schedules, using the weight
vectorsw1= (1,0) andw2= (0,1), which give the allocations� and
⌫, respectively, in Fig. 6b. After stage 1, {�,⌫} is the current set of
corner points determining the convex boundary.

In the next stage, Mobius computes a newweightw to continue
the search in the direction normal to�⌫ (Fig. 6a). Let the equation for
the face�⌫ beF1G1+F2G2 =2 , whereF1,F2, and 2 can be derived
using the known solutions on the line, � and ⌫. So, by invoking
the VRP solver (Equation (1)) with w = (F1,F2), we try to �nd a
schedule on the convex boundary, with the highest throughput in
the direction normal to �⌫. Let Ĝ1 and Ĝ2 be the throughputs for
the schedule computed with weightw. If (Ĝ1,Ĝ2) lies above this line,
i.e.,F1Ĝ1+F2Ĝ2>2 , then the point (Ĝ1,Ĝ2) is a valid extension to the
convex boundary. In this example, Mobius �nds a new allocation
⇠; so, the new set of corner points is {�,⇠,⌫}.
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Notice that this extension in stage 2 creates two new faces on the
convex boundary,�⇠ and⇠⌫. But, the~=G line only passes through
�⇠ . So, in stage 3, Mobius continues the search, extending �⇠ by
the computing the weights as described above (normal to�⇠), and
discovers a new allocation⇡ . Finally, Mobius tries to extend the face
⇡⇠ because it intersects the ~ = G line. It �nds no valid extension,
and so, it terminates its search on the face ⇡⇠ , and returns the
support allocations⇡ and⇠ .
Generalizing tomore customers.Mobius computes a weight for
each customer : 2 , i.e.,w 2R | | . Faces on the convex boundary
become | |-dimensional hyperplanes, described by the equationÕ
:2 F:G: =2 . Mobius solves forw using the | | allocations that

de�ne each face, and �nds | | support allocations at the end of the
search. Recall from the example in §5.1 that each stage produced 2
new faces and that Mobius only continued the search by extending
1 face. With | | customers, even with | | new faces after each stage,
Mobius only invokes the VRP solver once to continue the search.
A naive algorithm, by contrast, would require | | calls to the VRP
solver in each stage. ThusMobius scales easily with more customers
by pruning the search space e�ciently.

5.2 Scheduling Over Rounds
In each round, Mobius �nds | | support allocations, which
determine the face of the convex boundary that contains the target
allocation. It then selects a support allocation among these | | such
that the per-customer long-term throughputs G: (C) approach the
target throughput. By tracking G: (C) over many rounds, Mobius
can select allocations that compensate for any unwanted bias
introduced to some customer in a prior round.

Mathematically, to choose a schedule in round C , Mobius
considers the e�ect of each support allocation x(C) on the average
throughput x(C + 1). The average throughput is de�ned for each
customer : as G: (C+1)=WCG: (C)+(1�WC )G: (C),whereWC =1/(C+1).
Mobius chooses x(C) such that x(C+1) is closest to the~=G line (in
Euclidean distance).

5.3 Optimality ofMobius
Mobius is optimal in a round.We can prove that Mobius �nds
the support allocations nearest the target throughput (in Euclidean
distance).We illustrate this through the example in Fig. 7a,where the
corner points of the convex boundary are {�,⇡,⌫,⇢,⇠}, and ⌫ is clos-
est to the target allocation. In the previous stage, Mobius discovered
⌫, and it needs to pick one face to continue the search. The shadedyel-
low regions indicate the extensible regions of the two candidate faces
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�⌫ and⌫⇠ . The extensible region of a face describes the space of allo-
cations that can be obtained by searchingwith theweight vector that
de�nes that face, while maintaining a convex boundary (§5.1). Since
Mobius�nds a newallocation on the convex boundary in every stage
of the search, no allocation can exist outside these regions; otherwise,
the resulting set of discovered allocationswould no longer be convex.
Thus, the best face for Mobius to continue the search is indeed ⌫⇠ ,
because its extensible region is the only one thatmay contain a better
allocation closer to the~=G line. Our technical report [6] contains a
formal proof that the optimal support allocation (i.e., the allocation
closest to the line~=G ) is unique and that Mobius �nds it.
Optimality over multiple rounds. Under a static task arrival
model, we can show that the schedules computed byMobius achieve
throughputs that are optimal at the end of every round, i.e., the
achieved throughput has the minimum distance possible to the
target allocation after each round. This model assumes the convex
boundary remains the same across rounds. One way to realize this
is to require (i) the vehicles return to their starting locations at the
end of each round, and (ii) all tasks are renewed at the beginning of
each round. Wemake these simplifying assumptions only for ease
of analysis; our evaluation in §7 does not use them.

We describe an intuition for this result below. 6 Per the static task
arrival model, the convex boundary is the same in each subsequent
round; therefore, Mobius �nds the same support allocations in every
round. By taking into account the long-term per-customer rates,
G: (C), Mobius oscillates between these support allocations in each
round at the right frequency, such that G: (C) 8: 2  converges
to the target allocation over multiple rounds. We illustrate this
in Fig. 7b, which shows the support allocations ⌫ and ⇢. The face
⌫⇢ contains the target allocation, denoted by the star. Because
Mobius oscillates between ⌫ and ⇢, the allocation (G1 (C),G2 (C))
must lie along ⌫⇢. Mobius chooses ⌫ in the �rst round because its
throughput is closer than ⇢ to the target allocation. In the second
round, it chooses ⇢, moving the average throughput to ⌫1⇢1. In the
third round, Mobius chooses ⌫, moving the average throughput to
⌫2⇢1. Notice that if it had instead chosen ⇢ in the third round, the
average throughput would be ⌫1⇢2, which is further away from the
target throughput. Thus, this myopic choice between⌫ and ⇢ results
in the closest solution to the target allocation after any number of
rounds. Additionally, notice that the length of the jump (e.g., from ⌫
to ⌫1⇢1 and from ⌫1⇢1 to ⌫2⇢1) decreases in each round; therefore,
Mobius converges to the target throughput.

5.4 Implementation
We implement the core Mobius scheduling system in 2,300 lines
of Go.7 It plugs directly with external VRP solvers implemented
in Python or C++ [25, 39]. Mobius exposes a simple, versatile
interface to customers, which we call an interest map. An interest
map consists of a list of desired tasks, where each task includes a
geographical location, the time to complete the task once the vehicle
has reached the location, and a task deadline (if applicable). In each
round, Mobius gathers andmerges interest maps from all customers,
before computing a schedule. At the end of each round, it informs the
customers of the tasks that have been completed, and customers can

6See our technical report [6] for a formal proof.
7github.com/mobius-scheduler/mobius

submit updated interest maps. Interest maps serve as an abstraction
for Mobius to ingest and aggregate customer requests; however, the
merged interest map is directly compatible with standard weighted
VRP formulations [5, 19] without modi�cation. Thus, Mobius acts
as an interface between customers and vehicles, using a VRP solver
as a primitive in its scheduling framework (Fig. 3).
Bootstrapping VRP solvers. Since the VRP is NP-hard [44],
solvers resort to heuristics to optimize Equation (1). In practice, we
�nd that state-of-the-art solvers do not compute optimal solutions;
however, we can aid these solvers with initial schedules that the
heuristics can improve upon. We warm-start the VRP solvers with
initial schedules generated by the following policies: (i) maximizing
throughput, (ii) dedicating vehicles (assuming a su�cient number
of vehicles), and (iii) a greedy heuristic that maximizes our utility
function (§6). 8 At the beginning of each round,Mobius builds a suite
of warm start solutions. Then, prior to invoking the VRP solver with
some weight vectorw, Mobius chooses the initial schedule from its
warmstart suitewith thehighestweighted throughput (i.e., objective
of Equation (1)). Mobius also caches the schedules found from all
invocations to theVRP solver (§5.1), to use forwarmstart throughout
the round.Mobius parallelizes all independent calls to theVRP solver
(e.g., when computing warm start schedules and when generating
| | schedules to initialize the search along the convex boundary).

6 GENERALIZING TO U-FAIRNESS
The fairness objective we have considered so far aims to provide
all customers with the same long-term throughput (maximizing the
minimum throughput). However, an operator of a mobility platform
may be willing to slightly relax their preference for fairness for a
boost in throughput. To navigate throughput-fairness tradeo�s, we
can generalize Mobius’s algorithm (§5) to optimize for a general
class of fairness objectives. We use the U-parametrized family of
utility functions*U , developed originally to characterize fairness
in computer networks [31]:

*U (y)=
’
:2 

~:
1�U

1�U , (4)

where y2R | | and~: is the throughput of customer : (either short-
term G: or long-term G: ). *U captures a general class of concave
utility functions, where U 2 R�0 controls the degree of fairness.
For instance, when U = 0, the utility simpli�es to the throughput-
maximizing objective de�ned in Equation 1 (assuming all customers
have the same weight). By contrast, when U ! 1, the objective
becomesmaximizing theminimumcustomer’s throughput (i.e.,max-
min fairness). U =19 corresponds to proportional fairness, where the
sum of log-throughputs of all customers is maximized; this ensures
that no individual customer’s throughput is completely starved.
Generalizing Mobius’s search algorithm. When Mobius
generalizes to U-fairness, the target allocation is no longer simply
the point on the convex boundary that intersects the ~ = G line.
The target allocation is instead the allocation on the convex
boundary with the greatest utility*U . When searching the convex
boundary in each round, Mobius determines which candidate face

8Our technical report [6] includes a detailed description of this heuristic.
9*U is not de�ned atU =1, so we take the limit asU!1.
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Figure 8:Mobius can tune its allocation to deliver proportional fairness (U =1)
and max-min fairness (approximated with U =100).

contains the target throughput by using Lagrange Multipliers to
�nd the point along the face 10 with the greatest utility. Once it
�nds each support allocation x, Mobius incorporates the historical
throughput x to select the schedule with greatest cumulative utility
*U (WCx(C+1)+(1�WC )x(C)), whereWC is as de�ned in §5.2.
Anexample. Fig. 8 shows a time-series chart of long-term customer
and platform throughputs for the example described in §4.2. By
adapting to di�erent schedules on the convex boundary, Mobius
converges to a fair allocation of rates without degrading total
throughput. U allows Mobius to compute expressive schedules; for
instance,U =1 strives tomaximize total throughputwithout starving
either customer. Additionally, Mobius (max-min)11 converges to
a fair allocation of long-term throughputs within 20 minutes.

7 REAL-WORLD EVALUATION
We evaluate Mobius using trace-driven emulation (§7.1) in two
real-world mobility platforms. In §7.2, we apply Mobius to Lyft
ridesharing in Manhattan and demonstrate that it scales to large
onlineproblems. In §7.3,wedeployMobius ona shared aerial sensing
system, involving multiple apps with diverse spatiotemporal prefer-
ences. Our evaluation focuses on answering the following questions:

• How does Mobius compare to traditional approaches in
online scheduling for large-scale mobility problems?

• How robust is Mobius in the presence of dynamic spatiotem-
poral demand from customers?

• How can we tune Mobius’s timescale of fairness?
• What other bene�ts does Mobius provide to customers,
beyond optimizing per-customer throughputs?

7.1 Online Trace-Driven Emulation
We implement a trace-driven emulation framework to compare
Mobius against other scheduling schemes, under the same real-
world environment. This framework replays timestamped traces of
requests submittedbyeachcustomer, by streaming tasks to the sched-
uler as they arrive, and sending task results back to the customer.
Capturing environment dynamics and uncertainty. To emu-
late dynamic customer demand, our emulation framework streams
tasks according to the timestamps in the trace—soMobius has no vis-
ibility into future tasks. To emulate uncertainty in customer demand,
wecancel tasks that arenot scheduled in10minutes.Additionally, the

10Our technical report [6] shows how to �nd the face containing the target throughput.
11Mobius approximates max-min fairness (U!1) withU =100.

case studies in §7.2 and§7.3 consider scenarioswhereat least one cus-
tomer is backlogged (de�ned in §2). If no customers are backlogged,
then theplatformcan ful�ll all taskswithin theplanninghorizon, and
the resulting schedule would havemaximal throughput and fairness.
Thus, the problems are only interestingwhen at least one customer is
backlogged; Mobius is e�ective and required only in such situations.
Backend VRP solver.We use the Google OR-Tools package [39]
as our backend weighted VRP solver (Equation (1)). OR-Tools is a
popular package for solving combinatorial optimization problems,
and supports a variety ofVRPconstraints, includingbudget, capacity,
pickup/dropo�, and time windows. Our case studies involve VRPs
with di�erent sets of constraints. We run our experiments on an
Amazon EC2 c5.9xlarge instance with 36 CPUs.
Baselines. In our experiments, we evaluate Mobius’s throughput
and fairness against two baseline routing algorithms: (i) a max
throughput scheduler, and (ii) dedicated vehicles. The max through-
put scheduler simply runs the backend VRP solver on the same
input of customer tasks fed into Mobius for a round. This solution
provides a benchmark on the platform capacity, and quanti�es the
maximum achievable total throughput. We compute the “dedicated
vehicles” schedule by �rst distributing the vehicles evenly among all
customers,12 and then invoking the max throughput scheduler once
for each customer. This solution provides a benchmark schedule
that divides vehicle time equally among all customers. As shown
in §2, round-robin scheduling achieves very low throughput; hence
we omit it from the results in this section.

To the best of our knowledge, Mobius is the �rst algorithm
that explicitly optimizes for customer fairness in mobility plat-
forms. We considered evaluating Mobius by running a scheduler
that optimizes throughput and fairness over a longer timescale
using a mixed-integer linear program solver (e.g., Gurobi [25] or
CPLEX [28]); however, this is not feasible in practice, because (i)
customer demands arrive in a streaming fashion, and (ii) these
solvers do not scale beyond tens of tasks [36]. Thus, we believe the
baselines described above o�er reasonable comparisons for Mobius.
Microbenchmarks. In addition to the real-world case studies
(§7.2-§7.3), we also evaluate Mobius on microbenchmarks created
from synthetic customer demand, including scenarioswhereMobius
is optimal (under the static task arrival model, §5.3). We compare
Mobius against max throughput, dedicating vehicles, and round
robin, and show, through controlled experiments, that (i) it provides
provably good throughput and fairness for a variety of spatial
demand patterns, (ii) it scales for di�erent numbers of vehicles, (iii)
it controls its timescale of fairness, and (iv) it can tune its fairness
parameter U . We also report the runtime of Mobius in various
environments. We include these results in our technical report [6].

7.2 Case Study: Lyft Ridesharing inManhattan
Setting. Motivated by the issue of “destination discrimina-
tion” [35, 45, 49] discussed in §1, we consider a ridesharing service
that receives requests from di�erent neighborhoods (customers)
in a large metro area. Some neighborhoods are easier to travel to
than others, and rider demand out of a neighborhood can vary

12Dedicating vehicles is most suitable when the number of vehicles is a multiple of the
number of customers.
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Figure 9: Maps of zones (customers) and demand in Manhattan, indicating
skews in both spatial coverage and volume of ride requests.

with the time of day. We show that Mobius can guarantee a fair
quality-of-service (in terms of max-min fair task ful�llment) to all
neighborhoods throughout the course of a day, without signi�cantly
compromising throughput.We also show that, although it optimizes
for an equal allocation of throughputs, Mobius does not degrade
other quality-of-experience metrics, such as rider wait times. We
further demonstrate that Mobius is a scalable online platform that
generates schedules for a large city-scale problem.
Ridesharing demand. We use a 13-hour trace of 16,817 times-
tamped Lyft ride requests, published by the New York City Taxi and
LimousineCommission, involving 40 neighborhoods (zones) inMan-
hattan over the course of a day [14]. Each request consists of a pickup
and a dropo� zone, and we seek to provide pickups from all zones
equitably. The map in Fig. 9 (left) demarcates the customer zones.

Fig. 9 (right) illustrates the scale of this scheduling problem. It
visualizes tra�c on the top 1,000 (out of 3,300) pickup-dropo� pairs;
the color of each arrow indicates the volume of ride requests for that
pickup-dropo� location.Notice thatboth thedistanceof ridesand the
volume of requests originating from zones vary vastly throughout
the island. A signi�cant fraction of requests arrive into and depart
fromLowerManhattan. Some zones inUpperManhattan have as few
as 15 unique outbound trajectories,while other zones have hundreds.

Moreover, ridesharing demand varies signi�cantly with the time
of day. For instance, a busy zone near MidtownManhattan sees the
load vary from around 200 to 600 requests/hour, and a quiet zone
near Central Park experiences a minimum load of 3 requests/hour
and peak load of 24 requests/hour. Notice that the dynamic range
of demand throughout the 13 hours also varies across zones.
Experiment setup. This ridesharing problem maps to the capac-
itated pickup/delivery VRP formulation [19]. It computes schedules
that maximize the total number of completed rides, such that (i) a
ride’s pickup and dropo� are completed on the same vehicle, and
(ii) each vehicle is completing at most one ride request at any point
in time.We con�gure the solver to retrieve real-time tra�c-aware
travel time estimates from the Google Maps API [24], and we
constrain OR-Tools to report a solution within 3 minutes.

We use the trace described above in our emulation framework
(§7.1). We compute schedules for a �eet of 200 vehicles.13 In order
to ensure that the schedules are not myopic, we plan our routes
with 45-minute horizons; however, to reduce rider wait times, we
recompute the schedule every 10 minutes, while ensuring that
we honor any requests that we have already committed to in

13The number of vehicles does not matter, since we compare Mobius to the platform
capacity (from the max throughput scheduler).
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Figure 10: Long-term throughputs for zones in Manhattan after 13 hours. A
good scheduler should have a stacked plotwith large evenly-sized blocks, and
a map with bright (high throughput) and homogeneous (fair) colors across
zones.

the schedule. We assume that riders cancel requests that are not
incorporated into a schedule within 10 minutes of the request time.
Fairness with high vehicle utilization. Since Mobius plans con-
tinuously, having several allocations on the convex boundary at its
disposal, we expect it to converge to a fair allocation of rates, despite
the skew in demand. Fig. 10 shows the long-term throughputs
achieved for each zone by di�erent scheduling algorithms, after
13 hours. The color of each zone in the map indicates that zone’s
throughput. Bright colors correspond to high throughput, and a
homogeneous mix of colors indicates a fair allocation. Beneath
the maps, we also stack the zone throughputs to indicate how each
scheduler divides up the total platform throughput across the zones;
ideally we would like large, evenly-sized blocks.

The max throughput scheduler divides the platform throughput
most unevenly across zones. In particular, we see that while it
serves nearly 200 rides/hour out of the Financial District (Lower
Manhattan), it virtually starves zones near Central Park. From the
demand map (Fig. 9), notice that (i) a majority of rides originate
from Lower Manhattan, and (ii) most of these trips are destined
for neighboring zones. Thus, the best policy to maximize the total
number of trips completed is to stay in Lower Manhattan, which
is what the max throughput scheduler does.

The bar chart indicates that dedicating 5 vehicles to each zone
results in 40% lower platform throughput than the max throughput
scheduler. This is because a heterogeneous demand across zones
cannot be e�ectively satis�ed by an equal division of resources
(vehicles). Nevertheless, Fig. 10 shows that this scheduler shares the
platform throughput most evenly across zones. The division of per-
zone throughputs is not perfectly even, in spite of dedicating anequal
number of vehicles, because (i) ride requests fromdi�erent zones can
have di�erent trip lengths, and (ii) some zones have inherently low
demand and do not backlog the system, leaving some vehicles idle.

By contrast, Mobius strikes the best balance between throughput
and fairness. It achieves roughly equal zone throughputs, while
compromising only 10% of the maximum platform throughput.
Compared to dedicating vehicles, we see, from the map, that
Mobius achieves higher throughput for most zones by identifying
an incentive to chain requests from di�erent zones. For example,
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Mobius combines two requests from di�erent zones into the same
trip, when the dropo� of the �rst request is close to the pickup of
the second request. While this helps improve e�ciency, Mobius also
prioritizes pickups from zones with a historically low throughput
to ensure fairness across zones. This ridesharing simulation reveals
that it is possible to achieve a fair allocation of rates in a practical
settingwithout signi�cantly degrading platform throughput.
Controlling the timescale of fairness. Mobius’s replanning
interval controls the timescale over which it is fair. The more often
thatMobius replans, themore up-to-date its record of long-term cus-
tomer throughputs; Mobius can then adapt to short-term unfairness
quickly by �nding a more suitable schedule on the convex boundary.
Recall that when replanning frequently, the convex boundary does
not change drastically between scheduling intervals (§4.2), if the
spatial distribution of tasks do not change rapidly with time. So, in
practice,wedonot expect to deviate far from the ideal target through-
put. Fig. 11 shows the long-term throughputs achieved for two zones,
for replanning timescales of 10 minutes and 15 minutes. Mobius
equalizes throughputs better when it replans more frequently.
Rider wait times. Platform operators prefer high throughput
schedules because they translate directly to high revenue; low
throughput would lead to more cancelled rides. While Fig. 10
demonstrates that Mobius is fair without degrading throughput,
we would like to know if optimizing for fairness impacts rider wait
time (i.e., the time between requesting a ride and being picked up).

Fig. 12 compares the distributions of rider wait times for rides
originating from Bloomingdale District (a quiet neighborhood west
ofCentral Park) and fromMidtownCenter (a busydistrict nearTimes
Square). We compute wait times are only for ful�lled tasks. Notice
that in both zones—with two very di�erent demand patterns—the
distribution of wait times for Mobius is comparable to that of the
max throughput scheduler.

Weobserve that thewait times in the quiet zone are slightly higher
forMobius (averageof17minutes, comparedwith15minutes formax
throughput). This is because thewait times forMobius are computed

for signi�cantly more tasks (Mobius ful�lls 66.7%more ride requests
than does max throughput). The schedule that dedicates vehicles
sees higher wait times than Mobius, especially when rides originate
from a busy zone (e.g., Midtown Center), since vehicles would be
idle until they return to their assigned zone to pick up a new rider.
Scalability. This case study demonstrates that Mobius is practical
at an urban scale. In fact, when scheduling its �eet of taxis, New
York City’s Yellow Cab restricts its scheduling region to Manhattan
and organizes its requests according to approximately 40 taxi
zones [7, 13]. In our experiments, the backend VRP solver (i.e., max
throughput scheduler) computes each 45-minute schedule in 3
minutes (capped by the timeout). We observe that Mobius takes
5-6 minutes; Mobius sees a speedup by (i) parallelizing calls to
the VRP solver and (ii) warm-starting the VRP solver with initial
schedules (§5.4). These optimizations help Mobius easily scale to
tens of thousands of tasks. We believe we can further improve the
speed by leveraging parallelism in the backend VRP solver [43]
(OR-Tools does not expose a multi-threaded solver).

7.3 Case Study: Shared Aerial Sensing Platform
Setting. The recent proliferation of commodity drones has gener-
ated an increased interest in the development of aerial sensing and
data collection applications [2, 4, 16, 20, 33, 34], as well as general-
purpose drone orchestration platforms [26, 37, 40]. An emerging
mobility platform is a drones-as-a-service system [21, 27, 32, 46, 48],
where developers submit apps to a platform that deploys these app
tasks on a shared �eet of drones. App (customer) semantics in a
drone sensing platform can show signi�cant heterogeneity in both
space and time. To ensure a satisfactory quality-of-service for all
applications, a scheduler must not only e�ciently multiplex tasks
from di�erent applications in each �ight (typically constrained to 20
minutes due to the battery life [17]), but also share task completion
throughput equitably across apps. Since apps can be reactive (i.e.,
sensing preferences change as apps receive measured data), Mobius
must additionally provide a sustained rate-of-progress to each app,
as opposed to “bursty” throughput.
Sensing apps. We implement 5 popular urban sensing apps to
evaluate Mobius in this drones-as-a-service context, summarized in
Fig. 13. Fig. 14 depicts the locations for the sensing tasks submitted
by each app. We describe each app below:

• The Tra�c app continuouslymonitors road tra�c congestion
over 11 contiguous segments of road in an urban area. Tomea-
sure average vehicle speed, it collects 10-second video clips
at each road segment, detects all cars using YOLOv3 [42], and
tracks the trajectory [11] of each vehicle. After gatheringmul-
tiple initial samples at all 11 locations, the app prioritizes the
locations with the highest variance in speed, in order to col-
lapse uncertainty in its overall estimates of road congestion.

• The Parking app counts parked cars at 3 sites, by monitoring
each lot for 1 minute; to maintain fresh estimates of counts,
this app renews these 3 tasks after 10 minutes.

• TheAir Quality appmeasures PM2.5 concentration around
a plume [1], submitting a candidate list of 100 one-time
sampling locations. This app is also reactive; on receiving a
measurement, it updates a Gaussian Process model [41] and
cancels any unful�lled tasks with high predicted accuracy.
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Traffic Parking Air Quality iPerf Roof

Measure average vehicle speed. Count occupied spots in parking lot. Map air quality of plume (AQI). Profile cellular connectivity. Image residential roofs.

• 11 continuous monitoring tasks (10 sec/task)
• Prioritizes tasks with high variance in speed

• 3 recurring tasks (60 sec/task)
• Tasks renew after 10 mins

• 50 one-time tasks (20 sec/task)
• Prioritizes using Gaussian Process model

• 100 cyclic monitoring tasks (10 sec/task)
• Renews all tasks after each cycle

• 60 one-time tasks (20 sec/task)
• No prioritization among tasks
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Figure 13: Summary of aerial sensing applications, which span a variety of spatial demand and reactive/continuous sensing preferences. We collected ground
truth data for each of these applications using real drones, and created traces to evaluate Mobius.
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Traffic
Parking
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Figure 14:Map of tasks for 5 aerial sensing apps, spanning a 1 squaremile area
in Cambridge, MA. Mobius replans every 5 minutes, in order to incorporate
new requests. Each drone returns to recharge every 15 minutes.

• The iPerf app builds a map of cellular coverage in the air, by
pro�ling throughput at 100 spatially-dispersed locations.
It renews all tasks after each cycle of 100 measurements is
complete.

• The Roof app submits 60 one-time tasks to image roofs over
a residential area.

Notice that these apps collectively have a variety of spatiotemporal
characteristics. For instance, the Tra�c app changes its requests
with time, based on the uncertainty in speed estimates and the
freshness in measurements. By contrast, the Air Quality app
changes its requests with space, using a statistical model to collapse
uncertainty in a task based on nearby measurements. The iPerf app
has no temporal preferences, and instead functions as a “free-riding”
app that gathers quick measurements over a large area.
Ground-truth data collection. To run our drones-as-a-service
platform on real-world sensor data, which is critical to the
performance of the reactive and continuous monitoring apps, we
separately gather 90 minutes of ground-truth data for each app,
using real drones. This gives us a trace of timestampedmeasurement
values of each app. We then use our trace-driven emulation
framework (§7.1) to evaluate di�erent scheduling algorithms.
Fig. 13 shows highlights from our data collection. For example,
to collect ground-truth for the Tra�c app, we instrument 6 DJI
Mavic Pros [17] to continuously gather video and track cars over
the 11 measurement locations (Fig. 14) for 90 minutes. Similarly, for
the iPerf and Air Quality apps, we program a DJI F450 drone [18]
equipped with an LTE dongle and a PM2.5 sensor [1] to gather
measurements at their respective measurement locations. We
instrument our drone to communicate its location, battery status,
and measurement data to a dashboard hosted on an EC2 instance,
fromwhich we observe the drone’s progress on our laptop.
Experiment setup.We con�gure our backend solver to estimate
travel time as the Euclidean distance between the sensing tasks plus
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Figure 15: Long-term throughputs achievedover 90minutes.Mobius achieves
high throughput and best shares it amongst the apps.

the sensing time for the destination task. In order to be su�ciently
reactive to the Tra�c and Air Quality apps, we schedule in 5-minute
rounds, and require that the drones return to recharge their batteries
every 15 minutes. We run our trace-driven emulation framework
with 5 drones. Additionally, we con�gure the Roof app to join the
system after 30 minutes.
High throughput, high fairness. To understand how Mobius
divides the platform throughput, we show the long-term throughput
for each app over 90 minutes in Fig. 15. Mobius (max-min) achieves
55% more throughput than dedicating drones and only 15% less
throughput than maximizing throughput. Mobius with a propor-
tional fairness objective similarly outperforms max throughput and
dedicated vehicles in navigating the throughput-fairness tradeo�.
Note that the throughputs of the Air Quality and Roof apps decay
with time, after their one-time tasks are ful�lled.

Because these apps have variable demand (e.g., 100 tasks for iPerf
and 3 tasks for Parking), studying throughput is not su�cient.Hence,
we plot the tasks completed as a fraction of demand for each app in
Fig. 16. Notice that, under Mobius, even the most starved app (iPerf)
completes nearly 34% of its tasks; by contrast, max throughput and
dedicated drones deliver worst-case task completions of 30% and
13%, respectively. Even though dedicating drones guarantees equal
drone time for each app, it is extremely unfair toward apps with
higher demand or more spatially-distributed tasks.
Impacts of sensing and travel times. Fig. 14 would suggest that
the Air Quality and Roof tasks are easier to service, since their
tasks are more spatially concentrated; however, their tasks take 20
seconds each (Fig. 13). The max throughput scheduler understands
this tradeo� in terms ofmaximizing throughput, and thus prioritizes
the iPerf app, since its 10-second tasks (Fig. 13) are cheap to complete.
By contrast, Mobius additionally understands how to navigate this
tradeo� in terms of fairness; for instance, it forgoes some iPerf tasks
to complete more 20-second AQI measurements.
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Figure 16: Percentage of tasks completed per app. Mobius ful�lls nearly all
requests for the Tra�c and Parking apps, before allocating “excess” vehicle
time to the more backlogged apps.
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Figure 17: Discounting long-term throughput allows Mobius to gradually
respondto thesuddenpresenceof the transientRoofapp, insteadofdedicating
all drones to it.

Reliable rate-of-progress. In enforcing either proportional
or max-min fairness, Mobius does not starve any app, at any
instant of time. Indeed, Fig. 15 indicates that Mobius delivers a
reliable rate-of-progress to the Air Quality app, gradually giving
it roughly 3 tasks/min over the �rst 20 minutes. By contrast, the
max throughput scheduler is more “bursty”, and only services this
app after 20 minutes. As a result, we �nd that, with Mobius, the
root-mean-square error (RMSE) of the Gaussian Process model for
the air quality drops more rapidly.
Catering to transient apps. Recall that the Roof app joins the plat-
form after 30minutes. Fig. 15 indicates thatMobius rapidly adapts to
this change in demand with a spike in throughput for the Roof app
at the cost of lower throughput for the iPerf and Air Quality apps.
Notice that this spike in Mobius’s schedule is larger in magnitude
than the one in the max throughput schedule. This is because
Mobius realizes that, when the Roof app joins, it has no accumulated
throughput, while other apps have amassed higher throughput from
living in the system for longer. Fig. 17 (right) plots the routes for
all 5 drones during minutes 30-35; all drones immediately �ock to
the Roof app. With Mobius, an operator can choose to respond to
the arrival of new apps by discounting throughput accumulated in
prior rounds. Fig. 17 (left) shows howMobius can control the Roof
app’s rate of task ful�llment, with a discount factor of 0.1.

8 RELATEDWORK
Sharedmobility and sensing platforms. Ridesharing platforms
rely on di�erent �avors of the VRP; these systems have typically
been interested in maximizing pro�t (i.e., throughput) [3, 12],
minimizing the size of the �eet [47], and planning in an online
fashion [7]. Similarly, there has been a large amount of recent work
on drones-as-a-service platforms, which have primarily addressed
challenges surrounding data acquisition [46], multi-tenancy and se-
curity [27], andprogramming interfaces [26, 37].All of these systems
use a throughput-maximizing algorithm under the hood. Mobius
is motivated by the advent of customer-centric mobility platforms
in a variety of domains, where guarantees on quality-of-service to
customers are paramount to the viability [45] of these services [35].

Vehicle routing problem. The VRP has been extensively studied
by the Operations Research community [44]. Many variants of the
problemhave been considered, ranging from the budget-constrained
VRP [5], capacitated VRP [23], VRP with time windows [19], pre-
dictive routing under stochastic demands [8, 26], etc. Prior work
has extended the VRP to consider multiple objectives, such as
minimizing the variance in vehicle travel time or tasks completed
by each vehicle [29]. These load balancing objectives, however, do
not consider customer-level fairness, which is the focus of Mobius.
Moreover, Mobius abstracts out fairness from the underlying vehicle
scheduling problem, making its techniques complementary to the
large body of work on the VRP and its variants.
Fair resource allocation in computer systems.Our approach to
formalizing throughput and fairness in mobile task ful�llment is in-
spired byU-fair bandwidth allocation in computer networks [31, 38].
However, as noted in §1, mobility platforms introduce new chal-
lenges around attributing cost to serve customers, that do not arise
when addressing fairness in switch scheduling [15], congestion con-
trol [30], and multi-resource compute environments [22]. Mobius
develops a novel set of techniques to address these challenges.

9 CONCLUSION
We developed Mobius, a scheduling system that can deliver both
high throughput and fairness in shared mobility platforms. Mobius
uses the insight that, when operating over rounds, scheduling on the
convex boundary of feasible allocations, as opposed to the Pareto
frontier, provably improves on fairness with time. We showed
that Mobius can handle a variety of spatial and temporal demand
distributions, and that it consistently outperforms baselines that aim
to maximize throughput or achieve fairness at smaller timescales.
Additionally, through real-world ridesharing and aerial sensing case
studies, we demonstrated that Mobius is versatile and scalable.

There are several opportunities for extending the capabilities of
Mobius. First, Mobius assumes that customers are not adversarial.
Developing strategyproof mechanisms that incentivize truthful
reporting of tasks by customers is an open problem. Second, we
design Mobius to only balance customer throughputs. We believe
the optimization techniques we developed (§5) can be extended
to support other platform objectives, such as task latency, vehicle
revenue, and driver fairness. Finally, incorporating predictive
scheduling, where the platform can strategically position vehicles
in anticipation of future tasks, is an interesting direction for future
work, as it can further increase platform throughput.
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