Toward a Marketplace for Aerial Computing

Arjun Balasingam*
Mohammad Alizadeh*
*Massachusetts Institute of Technology

ABSTRACT

The rapid proliferation of commodity drones has expanded
interest in building applications that acquire imagery, video,
and sensor data at scale. In addition, recent work on drone
programming frameworks have simplified the development
of aerial computing apps that gather this data. These ad-
vancements have popularized the drones-as-a-service model,
where large drone fleets serve multiple apps simultaneously.

This paper proposes a marketplace for aerial computing,
where apps can gather aerial data on demand and providers
can offer up their drones for aerial computing. We introduce
Aerialis, a drones-as-a-service platform that schedules tasks
to drones by arbitrating bids submitted by apps. Aerialis al-
lows apps with different semantics and spatiotemporal pref-
erences to express how much they would like to pay for each
aerial computing task. It then aggregates requests across
apps, and schedules tasks on drones according to a mar-
ketplace policy (e.g., maximizing revenue or guaranteeing
quality-of-service to apps). We build a prototype of Aerialis,
and implement urban sensing apps to monitor air pollution,
measure road traffic, and profile cellular throughput. We dis-
cuss operational challenges in deploying Aerialis, and show
how the measurements collected from our real-world experi-
ments offer valuable insights for engineers and city planners.

1 Introduction

Consumer drones today come equipped with a variety
of commodity sensors and standard communication
capabilities [1,2]. The versatility of these drones has
generated an increased interest in the development of
aerial computing applications [6,8, 12, 15], which gather
and analyze large amounts of data, such as imagery, video,
air quality, etc. Additionally, recent work has introduced
general-purpose programming languages [7, 9], which
are aimed at supporting the variety of complexities and
constraints required by these sensing apps.

Emerging from this excitement around aerial computing
is the drones-as-a-service model, where apps are decoupled
from drone infrastructure. In these platforms, developers
submit apps (which specify tasks, e.g., measure air quality,
deliver a package, record video, etc.) to a platform that
then schedules these tasks on a fleet of drones.

Karthik Gopalakrishnan*
Hamsa Balakrishnan*

Radhika Mittalt
Hari Balakrishnan*

tUniversity of lllinois at Urbana-Champaign

Apps Aerialis Runtime Drones
r‘ merged IM Ir!,
= m._ + + + + P
5 Fit Gaussian| xxx + +! ~Ji‘

process execute

schedule

+
)
%ﬂ ” v L ey
Estimate
uncertainty Drone > N 'P**"

gl Scheduler T
P e

X + + +F T
V) %@ + 4+ 4+ A
— AR 1 drone heath
monitoring | + + + + + | RVEILCIIEIE]

Objective completed tasks

receive feedback & update

Figure 1: Aerialis is an aerial computing marketplace that allows apps
to complete sensing and data acquisition tasks on demand.

A key benefit of a shared drone platform is the ability to
multiplex apps with co-located tasks on the same fleet of
drones, allowing operators to amortize flight (energy) and
hardware costs. For example, a fleet of city-owned drones
can simultaneously deliver packages, gather data about
air pollution [3], monitor parking spots [4], measure road
traffic, and identify dangerous incidents. Such multiplexing
is more efficient than each app using its own drones,
because an individual drone can reduce wasteful long flights
and focus on sensing data for multiple apps in nearby areas.

We envision a future where a shared economy of drones
can facilitate a marketplace for aerial computing. Much
like cloud computing (e.g., Amazon EC2, Google Cloud,
Microsoft Azure), app developers can acquire aerial data
on demand, while drone operators can profit by offering
any idle time on their drones to support these computing
apps. However, to realize this vision, we need a marketplace
arbiter that can (i) ingest and synthesize requests from a va-
riety of apps and (ii) seamlessly coordinate a drone fleet with
heterogeneous sensing and computing capabilities. This is
challenging because apps could have a variety of spatiotem-
poral requirements, and drone time is a scarce resource.

In this paper, we introduce Aerialis, a drones-as-a-service
platform that facilitates a marketplace for aerial comput-
ing. Aerialis’s design is centered on the interest map, a
narrow-waist abstraction that interfaces apps with a drone
scheduler. Through this interface, an app expresses how
much it would like to pay for each aerial computing task.
Interest maps allow apps to (i) specify atomic tasks, and
(i) encode relative preferences amongst tasks, so the sched-

uler knows what to prioritize when there is not a sufficient
number of drones to fulfill all tasks. After receiving interest
maps from all subscribing apps, Aerialis aggregates requests
and preferences across apps and computes a schedule for
each drone according to a marketplace objective (e.g., max-
imize total revenue, balance drone workload, or guarantee a
quality-of-service to apps). Aerialis replans drone routes in
response to updates in interest maps, drone availability, and
travel time uncertainty. Fig. 1 shows an overview of Aerialis.
In §2, we use an example to further illustrate the
scheduling challenges that motivate the need for a modular
and expressive platform like Aerialis. §3 presents our
design and implementation of Aerialis, and highlights
operational challenges in building a robust system. Then,
in §4, we describe our experience implementing three
real-world urban sensing apps atop Aerialis. Finally, in
85, we discuss how the framework Aerialis proposes can
be extended to support more marketplace objectives and
incentive-compatible pricing schemes.

2 Challenges and Requirements

As a marketplace arbiter, Aerialis must match drone
resources to app requests, while maximizing drone
utilization and exposing a flexible interface to apps. This
introduces several new challenges.

| App | Requirements |
deliver e streaming requests
packages e some packages are prioritized
patrol e patrolling requires continuous tracking
traffic e tracking logic should be private
map e detect/sample high-traffic areas more
street parking | e maintain fresh measurements

Table 1: Aerial computing apps have diverse requirements.
Challenge #1: App semantics and objectives. Table 1 lists
some requirements of three different aerial computing apps
that may run atop a shared drone computing platform.
Notice that each app has unique semantics: while the
package delivery app may request tasks from several
discrete locations, the traffic patrol app would want a
drone to track a vehicle along a waypath for a period of
time. At the same time, the traffic patrol app may not want
to expose its tracking code (e.g., model-based prediction)
to the platform. Additionally, since the platform may not
be able to immediately service all tasks due to resource
constraints, the package delivery app may want to express
a relative ordering amongst tasks.

Challenge #2: Resource constraints. Commodity drones
typically have 30-minute flight times (on a single charge),
and require an expensive flight back home to recharge.
Further, there are often far more tasks than can be com-
pleted in this duration. A shared platform should seek to
minimize wasted flight time, in addition to optimizing the
marketplace objective (e.g., revenue or quality-of-service).
Challenge #3: Environment uncertainty. Drones could fail
mid-flight, and the platform should adapt and continue
to service subscribed apps. Additionally, apps could be

volatile and change their sensing preferences dynamically.
A shared aerial computing platform must be robust to
dynamic environments.

Aerialis addresses these challenges by exposing a narrow-

waist, expressive interface for apps. Each app can prioritize
its tasks, and add, cancel, and update tasks as needed.
Aerialis’s abstraction allows apps to participate in an aerial
computing marketplace by placing bids to acquire sensor
data or complete a mission at specific locations. Aerialis
then optimizes all incoming bids, applying a marketplace
objective, to allocate tasks to drones.
Related work. Aerialis is motivated by the popularity of
acquiring aerial data on demand. Prior works propose
programming primitives to write aerial sensing apps
and study onboard security for shared drone computing;
however, they do not address the scheduling challenges
that arise when multiple apps coexist in a marketplace.
For instance, AnDrone [14], a drones-as-a-service platform,
provides a framework to share onboard drone computing
resources (i.e., CPU, camera, sensors, etc.) in a manner
that preserves privacy amongst apps that the same drone
simultaneously services. Voltron [9] is a general-purpose
programming interface for reactive sensing apps; however
it assumes that apps have exclusive access to a drone fleet,
and thus does not allow apps the flexibility of expressing
relative preferences amongst tasks, which is valuable
when apps contend for resources in a shared platform.
BeeCluster [7] predicts app demand in order to boost
the efficiency of a drone fleet. We believe this work on
security and programming interfaces is complementary to
the marketplace architecture proposed by Aerialis.

3 Design of Aerialis

Aerialis exposes an abstraction, called an interest map,
through which apps can express and update their desired
tasks in the form of bids (e.g., a dollar value per task). As
depicted in Fig. 1, at runtime, Aerialis queries apps for
interest maps, computes a schedule for each drone, and
charges apps according to a pricing policy. Aerialis computes
schedules for a fixed horizon (e.g., every 15-minute round-
trip flight). However, it replans more frequently (e.g., every
5 minutes) in order to (i) allow apps to update their interest
maps based on changes in preferences and (ii) respond to
changes in drone availability and travel time uncertainty.

3.1 Interest Maps

Aerialis interfaces apps with its scheduler via an abstraction
called an interest map. An interest map is a set of tasks that
an app would like the drone fleet to complete. At runtime,
apps submit their respective interest maps to Aerialis, which
merges them prior to allocating tasks to drones.

Attributes. An interest map is a set of tasks that an app
would like to complete. Table 2 lists the attributes of each
task. A location could be the GPS coordinate for an
air quality or traffic measurement, or the start location
for a video along a waypath. The task attribute specifies

Attribute Definition
location GPS coordinate (i.e., lat, lon, altitude)
task executable (e.g., Python code) to run on drone

duration estimated duration for task
interest bid (e.g., in dollars) for task

Table 2: Attributes of an interest map entry.

any code to execute on the drone (e.g., collect PM2.5
measurement, record/analyze video, or take control of
the drone) once the drone reaches the desired location.
duration states the estimated time to execute a task.
Finally, each task also has an associated interest, which
corresponds to the app’s dollar-value for that particular
task.! This attribute allows an app to encode a relative
preference between tasks, which Aerialis uses to prioritize
tasks when the platform is resource-constrained.
Expressiveness. Interest maps are suitable abstractions for
the apps described in Table 1. For instance, each request in
the package delivery app corresponds to an interest map en-
try. Each interest map entry in the traffic patrol app would
specify a waypath (i.e., a sequence of locations to visit in or-
der to complete the tracking task); Aerialis’s scheduler only
requires the start/end location and the (estimated) duration
of the task. Package delivery apps could specify additional
attributes like delivery time windows. The street parking
app may use complex models to estimate traffic uncertainty;
however, since Aerialis supports frequent replanning, this
app could simply recompute new interest maps as needed.
84.2 describes our implementation of three urban sensing
apps, and further highlights the versatility of interest maps.
Merging interest maps. An interest map is a powerful
abstraction for multiplexing apps because it is lightweight
and composable. In order to multiplex apps, Aerialis merges
interest maps, by simply combining the sets of interest
map entries submitted by all apps (see Fig. 1). It combines
coincident task entries (i.e., identical locations) into a super
task interest map entry, where the interest attribute
is the sum of the bids specified by the individual tasks;
drones execute tasks at such locations in parallel (unless
multiple tasks require the same sensor). In composing
the merged interest map, Aerialis also applies heuristics,
such as clustering nearby tasks and collapsing them into
a single location (e.g., centroid of the cluster), where the
radius of the cluster is within the error tolerance of the
subscribing apps. This pre-processing step helps boost the
efficiency of the platform: we observed over many flights
and weather conditions that decelerating to, hovering at,
and accelerating from each distinct location drains the
battery more rapidly than cruising at a constant speed.

3.2 TImplementation

Fig. 1 provides an overview on an Aerialis deployment.
Aerialis’s runtime gathers interest maps from its apps, com-
putes a schedule, and dispatches the drones. We implement

! Computing monetary value for a task is non-trivial; we explore
some options in §4.2 and §5.

Track drone health and
populate dashboard.

Drone Hardware

N3 Flight
Controller

Emergency

manual control.

View dashboard on laptop.

Figure 2: Aerialis runs on a cloud server, which (i) communicates
with DJI F450 drones via a cellular link and (ii) updates drone health
and app progress to a web dashboard.

Aerialis in Go; our software consists of three components,
shown in Fig. 2: (i) Aerialis runtime, which is deployed on
a cloud server, aggregates app requests, and computes a
schedule; (ii) a dashboard exposing flight statistics, drone
health, and app progress for the platform operator; and (iii)
an onboard software stack that interfaces with the drone’s
flight controller and sensors.

Drone hardware. Our drones use the DJI F450 frame [2];
we customize the onboard electronics to support more sen-
sors and programming flexibility. We mount a Raspberry
Pi as our onboard computer, a PM2.5 sensor to gather
air quality measurements, a GoPro to collect aerial videos,
and an LTE dongle to communicate with the Aerialis
runtime process. We use the DJI N3 flight controller, which
comes with a C library for low-level flight control. Aerialis
automates drone orchestration by issuing commands to
the flight controller. However, we implement two failsafes
to intervene in emergency situations:

e The drone regularly pings an iPerf server to probe
the available cellular bandwidth. When the measured
throughput is below 1 Mbps, the flight controller
disengages from Aerialis and allows the operator to
regain manual control.

e When the drone battery is low (i.e., <10% remaining),
the flight controller disengages from Aerialis, and auto-
matically navigates the drone back to its takeoff site.

Whenever a drone “leaves”, Aerialis simply adapts its
schedule to use the remaining drones. Aerialis’s dashboard
describes the real-time status of each drone (Fig. 2), so
an operator can take over when a drone’s flight controller
triggers manual control.

Aerialis runtime. Aerialis relies on a centralized scheduling
framework that orchestrates the drone fleet in unison. It
aggregates the interest maps submitted by each app and
computes a schedule according to its marketplace policy (ex-
amples described in §4.2). Aerialis computes schedules for a
fixed time horizon based on resource constraints (e.g., one
15-minute round-trip flight) and specifies an ordered list of
waypoints (and tasks) for each drone to complete. To com-
pute these schedules, Aerialis uses standard vehicle routing
solvers that maximize a weighted sum of fulfilled tasks.

We deploy the Aerialis runtime module (Fig. 1) on an

Ground Truth Initial Interest Map Interest Map

PM2.5 Measurements (exploration) (after GP fit)

. © © © o ©

c @6 © © o © :

e ¥z g

i © © o o £ o

B0 @ o o :f o5t

3 23 oe 5

i @ O 9 o o E% 03 E

c e © © © ©|° o
o 9 o 9 o

Figure 3: Snapshots from our implementation of an air quality map-
ping applications in Aerialis. This app uses a Gaussian Process to
navigate the tradeoff between exploring the region of interest and
collecting more useful measurements in the vicinity of the plume.

Amazon EC2 t2.micro instance. At boot time, each drone
automatically establishes an HTTP connection with this
server (via LTE), which allows (i) the server to notify the
drone of its next assigned task and (ii) the drone to update
the server of its health (i.e., battery status, location, current
task) every second. Additionally, the server hosts a web
dashboard to allow an operator to monitor drone health and
app progress; Fig. 2 shows a snapshot from this dashboard.
Aerial computing apps. As described in §3.1, sensing apps
interface with Aerialis via interest maps. App developers
can customize their implementations to leverage complex
modeling techniques (examples in §4.1) that interpret any
gathered and decide on the next set of tasks to request
of Aerialis. Apps run as standalone processes and simply
post interest map updates to the Aerialis runtime process.

4 Urban Sensing Marketplace with Aerialis

We evaluate Aerialis on three urban sensing apps deployed
in Cambridge, MA. Fig. 1 overlays the approximate
sensing locations for each app on a map, and Table 3
summarizes their characteristics. In §4.1, we describe how
we implemented each app atop Aerialis, and share some
insights from data we gathered on the field. §4.2 quantifies
the performance of Aerialis under different marketplace
objectives. We tested our implementation of Aerialis using
a fleet of 2 drones. However, to systematically compare app
performance under different marketplace policies (§4.2), we
also collect ground-truth traces for each app and evaluate
with trace-driven emulation.

| App | # of Tasks | Task time | Update Logic |

AQI 40 20 sec with time
Traffic 11 30 sec with time and meas.
iPerf 100 10 sec every meas. cycle

Table 3: Characteristics of our three urban sensing apps.

4.1 Sensing Apps

Monitoring air quality. The AQI App seeks to estimate the
geographical dispersion of a smoke plume quickly. However,
since resource constraints are stringent and the app pays
for each measurement, a simple grid search over the entire
domain of interest would be expensive and inefficient. At-
mospheric chemists approximate the dispersion of a plume
using a Gaussian Plume Model [13]. Our app applies this
model by using a Gaussian Process (GP) [10] with a Radial-

Location A, green traffic light Location A, red traffic light

time=t¢;

ty L

speed (m/s)
[=]

0 200 400 600 800 1000

time (sec)
Figure 4: We collected traffic videos using drones at 11 locations
labelled A-K (left). Our car detection and tracking algorithm com-
putes average speeds, which show cyclic patterns near intersections
depending on the state of the traffic light.

100 meter

Basis Function kernel; the GP estimates the plume PM2.5
concentration at each query location as a Gaussian distri-
bution G~ (u,0), with mean p and standard deviation o.
Fig. 3 shows the PM2.5 concentration of a real plume that
we measured near a freeway ramp during rush hour.

We derive relative preferences amongst sensing locations
from the output of a GP model, and encode them via
interest maps. Upon initialization, the app submits an
interest map with sensing locations spaced out evenly over
a grid (see “Initial Interest Map” in Fig. 3). To navigate
the exploration-exploitation tradeoff, we model this search
as a multi-armed bandit problem. For each potential
measurement location, we set the interest proportional
to p+ 20; this allows the app to express that it would
like to favor exploration (i.e., greater preference on more
uncertain locations), but still be guided in the direction
of high expected PM2.5 concentration (i.e., preference
toward high 1)2. Initially, o is high everywhere, and the
app prefers to explore. Fig. 3 shows the GP fit after several
initial samples are gathered; notice that the interest starts
to drift toward the fringes of the plume. Aerialis thus
provides a simple interface for sensing apps to leverage
a complex model (privately), while still allowing apps to
express fine-grained preferences amongst tasks.

Sensing road traffic. The Traffic App measures traffic
congestion using aerial videos from 11 sites in a neigh-
borhood, as shown in the map in Fig. 4. It estimates the
average vehicular speeds through a simple video analytics
pipeline, where it (i) identifies cars using a YOLO object
detector [11], (ii) tracks each car using a Kernel Correlation
Filter, and (iii) correlates identities of cars across frames
based on a nearest-neighbor heuristic. Fig. 4 shows exam-
ples of the trajectories computed by the app. Aerial traffic
monitoring offers the potential to obtain accurate, real-time
data at a finer granularity (e.g., lane-level speed, blocked
bike path, etc.) than possible with conventional GPS-trace
based approaches. For example, in our experiments, we
observed that when the traffic light at the edge of location
A is red, cars tend to build up over the entire bridge

2This is known as the Upper Confidence Bound in the multi-
armed bandit problem.

100 meters [
TCP throughgut (Mops)

‘o

Evening o 3 3
e \ \ \ i

-4
Mornlng

[L LR

Figure 5: We implemented an app to proﬁle cellular throughput
in an urban area, in order to determine the viability of cellular
communications to coordinate a shared fleet of drones.

(as confirmed by our measurements at location B), and
spill over to the next traffic light. Such observations offer
valuable insights to city planners and traffic engineers.

If sufficient drones are available (and the app developer
was willing to pay for continuous drone time), Aerialis
can schedule a drone over each of the desired locations.
However, in practice, the app may want to prioritize
certain measurement locations. Two competing factors
govern this choice: (i) drones should prioritize and visit
locations where the measurements are stale (i.e., last
measured 10 minutes ago), and (ii) drones should visit
locations which have shown high uncertainty ¢ in speeds
(e.g., near intersections). Thus, the app uses the following
rule to compute the interest I; at location I:

7 102, if <3 meas. at [in last 10 min
: o[Meas. at { in last 10 min], otherwise

The app then recomputes an interest map whenever there
is a new measurement, or when old measurements time out.
Profiling cellular throughput. The iPerf App aims to
profile cellular throughput over an urban area; this data
is valuable for autonomous drone operations that require
robust aerial 5G communications. Fig. 5 shows some
highlights from our measurements on the field, gathered
near the Charles River at different times of day and at
different altitudes. Interestingly, we found that average
bandwidth was low (< 5 Mbps) during the 5 P.M. rush

hour, likely because more cars are present on the roads.

We also observed that, at altitudes of 60-75 meters, cellular
throughput was sufficient for practical use cases; however,
availability became more spotty at 100 meters.

While the iPerf app is not time-sensitive, it would like
measurements from significantly more locations than the
Traffic or AQI apps. Since the iPerf app is indifferent
to location, it submits an interest map with identical
interest values at all locations. In order to build a profile
of bandwidth over time, this app resubmits the interest
map after completing each cycle of 100 iPerf tasks.

4.2 Marketplace Policies

As described in §3, the interest map allows Aerialis to
enforce different marketplace policies. In this section, we
show how Aerialis schedules the three urban sensing apps
described in §4.1 under two policies. We configure Aerialis
to re-compute schedules every 5 minutes (so that it is

Max Revenue Tokens ($30 / app / 5-min round)

= =

= 20 % 20 unfair = % 20 fair
£ % 13 % AQl
3 3 2 3
;’ E’ ;’ f? ll Traffic
=] =] 3 >
g 10 g10 & S0 B ert
3 Ed 3 Ed
o <] o o

I £l £ .l

0 0 o o{®

SWwoo owowo owowo
—OL22RA® OW2ERB —oL22K8NS

of drones # of drones # of drones
Figure 6: Aerialis can enforce different marketplace policies to control
an app’s contribution to the marketplace revenue.

owowg
TOLCCANG

of drones

sufficiently reactive to the apps), while returning to its
takeoff location every 15 minutes to recharge. We also
simulate drone fleets of different sizes. We consider two
evaluation metrics: (i) revenue generated by Aerialis (in
dollars earned per min) and (i) throughput (in tasks
completed per min). Fig. 6 summarizes our results.
Maximizing revenue. First, we consider a marketplace that
maximizes total revenue. We assume for simplicity that
each app places a baseline bid of $1 for each sensing task,
with slight variations—proportional to their interest up-
date rules—to capture sensing preferences. Fig. 6 shows
Aerialis consistently favors the iPerf app, since each iPerf
measurement is easy to gather (i.e., 10 seconds/task). By
contrast, the Traffic app only has 11 tasks, and each task is
more expensive to complete, so Aerialis does not prioritize it
and instead fulfills its tasks when it completes nearby iPerf
tasks. In this example, we assume that all apps value each
task at roughly $1; however, if one app places a significantly
higher bid, Aerialis would prioritize it to maximize revenue.
Issuing tokens. To provide apps a more equitable share of
drone resources, we can allocate tokens (artificial currency)
to apps, in order to constrain each app’s bidding budget.
This helps mitigate the effects of a “richer” app having a
monopoly on drone resources. Fig. 6 shows the marketplace
throughput and revenue when each app is allotted a pool
of tokens worth $30 in every 5-minute round. We find that
when Aerialis enforces this policy, the Traffic and AQI
apps begin to occupy larger shares of both marketplace
throughput and revenue. Since the Traffic app only has at
most 11 sensing tasks at any given time, each of its tasks
has a higher value than a single iPerf task.

Note that this token scheme does not necessarily

prioritize apps with fewer tasks; instead, it gives the same
“purchasing power” to all apps. So, an app with more
tasks (e.g., iPerf) can choose to put its tokens on a smaller
subset of high-priority tasks in order to be competitive in
obtaining drone time. Additionally, unused tokens can roll
over to future scheduling intervals.
Expanding drone fleet. The benefits provided by interest
maps and Aerialis’s support for different marketplace
policies are most evident when the shared drone platform is
resource-constrained (i.e., more tasks than drones can fulfill).
Fig. 6 indicates that both revenue and throughput saturate
as the drone fleet gets larger (starting around 20 drones),
because the platform is no longer resource-constrained.

Gan.2.

Drone Providers
(sellers)

fodd

Apps Interest maps Drones
(buyers)

Aerialis Marketplace
(arbiter)

Charge for Com,

pensate
comglzﬁg ’ftasﬁg for infrastructure
whil izil Optimize for i.e., drone
when possible for ?airness, Marketplace bgttéry time)

nearby tasks revenue, eotc. RSSO

Ensure incentive
compatibility
($)) Pricing Mechanism

Figure 7: Aerialis can be extended to build out an aerial computing
marketplace, with new platform objectives and pricing mechanisms.

5 Discussion

Fig. 7 lays out how Aerialis could be extended to build
out a marketplace for aerial computing. In this section, we
elaborate on some of our limiting assumptions and outline
some ongoing and future work.

Marketplace objectives. Our evaluation (§4.2) covers
scenarios where the overall objective was to maximize
the revenue collected. However, as a marketplace arbiter,
Aerialis may also want to satisfy other objectives. For
instance, Mobius [5] proposes a scheduling algorithm for
mobility platforms with the objective of providing provably
good fairness over time. We are interested in supporting
Mobius and other marketplace objectives, such as load
balancing across vehicles and app service-level agreements.
Value estimation. This paper shows how apps can express
relative preferences amongst their tasks, but assumes that
apps know how to place an absolute monetary value on each
task. However, just like the value of popular services such as
cloud computing and ad auctions were only discovered with
time, we believe that, as an aerial data marketplace matures,
apps will be able to better estimate the value of a task.
Truthful bidding. While we assume for this paper that
apps using Aerialis bid truthfully, in practice, they may
be strategic in reporting their preferences. For example,
after discovering that most drones are far away from
a desired location, an app could first place a very high
bid (e.g., $1000) near the region of interest, forcing at
least one drone to move toward that location (assuming a
revenue-maximizing scheduler). Then, just before that task
is serviced, it could lower its bid on that task (e.g., 1¢), and
the scheduler will still likely fulfill the task for a much lower
price. A simple fix to this problem is to charge an app for a
task once it is added to a schedule, instead of when the task
gets fulfilled. However, this may hurt truthful apps that
are wvolatile and cancel /change requests after gaining initial
knowledge about the environment (e.g., traffic sensing or air
pollution apps in §4.1). Thus, Aerialis would benefit from
a pricing mechanism that incentivizes truthful bidding.
Pricing schemes. Currently, Aerialis simply charges each
app the exact amount it bids. As a marketplace arbiter,
Aerialis should also be able discount its price to account
for the benefit from spatial multiplexing of nearby tasks
from different apps (i.e., only charge for the amortized

flight time). Future work includes developing heuristics to
compute amortized cost. This is nontrivial because traveling
6 minutes to app A and then 3 minutes to app B does not
mean that app A should be charged 2x more than app B,
since app A is responsible for the short travel to app B.
Security. Data privacy is a concern in any drones-as-a-
service deployment. AnDrone [14] provides a method to
containerize onboard sensor logic, but does not conceal the
location of the drone. However, in this marketplace setting,
malicious apps could flood the system with thousands of
cheap (e.g., 1¢) tasks spread everywhere in order to draw
inferences about the spatiotemporal demand patterns and
bidding strategies of other apps using the platform. We
would like to extend Aerialis to be robust to these settings.
Scope of interest maps. Interest maps cannot encode
continuous monitoring tasks or support combinatorial
constraints (e.g., complete any 2 tasks from a set of 4
tasks). We would like to leverage complementary work
from general-purpose drone programming frameworks [7,9]
to expose a broader set of primitives to apps.

6 Conclusion

This paper proposed Aerialis, an aerial computing market-
place, where apps can complete aerial tasks on demand and
providers offer up their drone computing services. We char-
acterized the diverse spatiotemporal requirements of aerial
computing apps, and identified the resulting scheduling
challenges when a marketplace multiplexes several apps on
the same fleet of drones. We implemented three real urban
sensing apps atop Aerialis, demonstrated that it can sup-
port different marketplace policies, and proposed methods
improve the flexibility and robustness of Aerialis. We hope
to generalize the ideas that underpin Aerialis to build out
a marketplace for acquiring data using mobility platforms.

7 References

] https://www.parrot.com/us/drones.

] https://www.dji.com/.

] https://waw.ee.ucla.edu/mapping-air-pollution-from-a-drone/.

] http://datafromsky.com/news/smart-parking-using-drones/.

] A. Balasingam, K. Gopalakrishnan, R. Mittal, V. Arun, A. Saeed, M. Alizadeh,
H. Balakrishnan, and H. Balakrishnan. Throughput-fairness tradeoffs
in mobility platforms. https://www.dropbox.com/s/w3uzfzbiwkmilku/mobius-tr.pdf, 2021.

[6] A. Dhekne, A. Chakraborty, K. Sundaresan, and S. Rangarajan. Trackio:
Tracking first responders inside-out. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’19. USENIX Association, 2019.

[7] S. He, F. Bastani, A. Balasingam, K. Gopalakrishnan, Z. Jiang, M. Alizadeh,
H. Balakrishnan, M. J. Cafarella, T. Kraska, and S. Madden. Beecluster: drone
orchestration via predictive optimization. In MobiSys, pages 299-311, 2020.

[8] W. Mao, Z. Zhang, L. Qiu, J. He, Y. Cui,
and S. Yun. Indoor follow me drone. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys '17. ACM, 2017.

[9] L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi.

Team-level programming of drone sensor networks. In Proceedings of the

12th ACM Conference on Embedded Network Sensor Systems, SenSys ’14. ACM, 2014.
[10] C. E. Rasmussen. Gaussian processes

in machine learning. In Summer School on Machine Learning. Springer, 2003.
[11] J. Redmon. Darknet:

Open source neural networks in c. http://pjreddie.com/darknet/, 2013—-2016.
[12] C. Suduwella, A. Amarasinghe,

L. Niroshan, C. Elvitigala, K. De Zoysa, and C. Keppetiyagama. Identifying

mosquito breeding sites via drone images. In Proceedings of the Srd Workshop

on Micro Aerial Vehicle Networks, Systems, and Applications, DroNet '17. ACM, 2017.
[13] O. G. Sutton.

A theory of eddy diffusion in the atmosphere. Proceedings of the royal society

of London. Series A, Containing papers of a mathematical and physical character, 1932.
[14] A. Van’t Hof and J. Nieh. Androne: Virtual drone computing in the cloud.

In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19. ACM, 2019.
[15] D. Vasisht, Z. Kapetanovic, J.-h. Won,
X. Jin, R. Chandra, A. Kapoor, S. N. Sinha, M. Sudarshan, and S. Stratman.
Farmbeats: An iot platform for data-driven agriculture. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementation, 2017.

https://www.parrot.com/us/drones
https://www.dji.com/
https://www.ee.ucla.edu/mapping-air-pollution-from-a-drone/
http://datafromsky.com/news/smart-parking-using-drones/
https://www.dropbox.com/s/w3uzfzbiwkmilku/mobius-tr.pdf
http://pjreddie.com/darknet/

	Introduction
	Challenges and Requirements
	Design of Aerialis
	Interest Maps
	Implementation

	Urban Sensing Marketplace with Aerialis
	Sensing Apps
	Marketplace Policies

	Discussion
	Conclusion
	References

