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There are many organizations that use satellites and drones to collect information, such as ground photographs or

atmospheric pressure measurements. Often, these separate organizations have overlapping collection interests, yet

they are controlled by separate planning systemswith asynchronous scheduling cycles. This paper develops amethod

for coordinating various collection tasks between the planning systems to increase the overall utility of the collected

data. The method focuses on allocation of collection requests to scheduling systems rather than complete centralized

planning over the entire system so that the current planning infrastructure can be maintained. Previous work in this

area is expanded upon by inclusion of an online learning method to capture information about the uncertainty

pertaining to the scheduling and completion of collection tasks, which is subsequently used in a mathematical

programming method for resource allocation. An analysis of results and improvements as compared to current

operations is presentedat the end througha fewdifferent theoretical scenarios. These results provide evidence that the

newly developedmethods can increase the total value of serviced requests compared to current operations, with some

theoretical scenarios producingmore thandouble the value using the newmethods over the current styles of planning.

Nomenclature

l = arbitrary planner
r = arbitrary request
vrl = value obtained if request r is completed by planner l
x = arbitrary vector of real-valued statistical attributes (used in Sec. IV)
xi = specific instance of the attribute vector x (used in Sec. IV)
xrl = decision variable associated with sending request r to planner l during a certain execution period
xk = user-defined instance of the attribute vector x for creating Bayesian prior beliefs (used in Sec. IV)
y = arbitrary binary statistical observation (used in Sec. IV)
yi = specific instance of the binary observation y (used in Sec. IV)
yrG = composite decision variables for sending r to each planner l ∈ G
λ = vector of Bayesian parameters (used in Sec. IV)

I. Introduction

C URRENTLY, there are many organizations in the United States that use unmanned assets, such as satellites or drones, to obtain information.
This may include taking photographs of the ground, gathering infrared photographs, taking atmospheric pressure measurements, or any

conceivable form of data collection. Often, these separate organizations have overlapping collection interests or flight plans that are sending
sensors into similar regions. Exploiting such common interests between the organizations could potentially allow asset sensing time to be used
elsewhere. Unfortunately, different organizations often have command and control stations for their assets that are spread across the nation. Even
within an organization, separate missions might control their assets from different locations. This separation can make exploitation of common
collection interests a nontrivial task because it might be difficult to gather all of the representatives for a meeting or even a telephone conference.
Each of these organizations also has different objectives: a problem that further isolates and complicates mutual correspondence. An automated,
coordinated approach to assigning collection tasks among these segregated missions/organizations, or “stovepipes,” has the potential to
significantly reduce the problem of isolation in order to increase the realized utility of the collections made by the assets.

Organizations collect data for various purposes. The National Aeronautics and Space Administration (NASA) collects data for scientific
research; the U.S. Department of Defense (DOD) collects data for intelligence, surveillance, and reconnaissance. Often, these organizations use
their own air and/or space assets in order to bestmanage the collection parameters: time, location, desired level of resolution, and type of data being
obtained (infrared, visible light, atmospheric pressure, etc.) for their targets of interest. Even within organizations (e.g., branches of the DOD or
NASA), there may be separate, generally unshared, collection assets. The stovepiped nature of these planners prevents cross communication
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among separate sensing assets, creating inefficiencies that could be avoided through coordinated planning. Such isolation between operations of
separate planners means that requests may not be allocated to the most appropriate sensors based on their specific requirements.

Studies requiring sensing assets have become increasinglymore prevalent in the past fewyears, suggesting amore urgent need for a coordinated
planning framework. One of the major recent uses of sensor systems involves employing satellites or unmanned aerial vehicles (UAVs) to study
Earth’s climate. The Earth Observing System, designed by NASA, is one such example of a set of sensors being used for climatology.Within this
system, NASA launched many satellites. The Suomi National Polar-Orbiting Partnership (NPP) satellite is one of these, launched in October
2011. This satellite orbits Earth about 14 times per day, observing nearly the entire surface in this time period. The sensors onboard NPP perform
many different climate-related operations, such as creating global models of temperature and moisture profiles for use by meteorologists,
monitoring the ozone levels near the poles, measuring atmospheric and oceanic properties, and examining both emitted and reflected radiation
from Earth’s surface [1]. The Aqua satellite, also in the NASA Earth Observing System, collects information about the following:

Earth’s water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice,
land ice, and snow cover on the land and ice. Additional variables also beingmeasured byAqua include radiative energy fluxes, aerosols,
vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures [2].

These are just two examples of the many satellites currently in orbit collecting climate-related information, all of which have some sort of
overlapping interests and may even contain some of the same sensor models. As such, implementing a coordinated planning scheme within
satellite planners of the Earth Observing System, or any climate-related satellites, could prevent redundant gathering of the same data while
spreading collection demands more evenly across the satellites for more effective sensor utilization.

Recent interest in examining natural disasters has also increased, furthering the need to efficiently coordinate between sensor planners. The
Hurricane and Severe StormSentinel, which is aNASA investigation designed to enhance understanding of the “processes that underlie hurricane
formation and intensity change in the Atlantic Ocean basin,” is one such example of amission trying to learnmore about natural disasters [3]. The
U.S. Forest Service has also recently been employing UAVs and satellites to help image active wildfires, reducing the risks of “smoke, excessive
thermal wind drafts, and unfamiliar terrain” on the pilots that usually do the imaging in airplanes or helicopters [4].

Science and forestry are not the only areas that could benefit from coordinated planning. The intelligence and reconnaissance communities use
a tremendous amount of autonomous vehicles and sensing assets to complete missions. Indeed, the concept of coordination is already recognized
as being important; according to the Joint Doctrine for Targeting, which defines how targets for remote sensing should be created and collected, a
“primary consideration” for developing targeting plans “is the joint force’s ability to coordinate, deconflict, prioritize, synchronize, integrate, and
assess joint targeting operations” [5]. Clearly, a coordinated planning framework is in line with this objective, and it certainly could improve the
overall utility of sensing data collected for the intelligence and reconnaissance communities.

In essence, coordinated planning can be implemented within any situation that requires the use of advanced sensor systems that exist in
satellites, unmanned aerial vehicles, underwater vehicles, or ground vehicles.A coordination planner (CP) could be created inside of aweb service
for users to easily upload requests online, using the standards set forth in [6], overcoming the geographical separation problem of the current
stovepiped operations. A CP web service could also help fulfill the concept of a sensor web, which “consists of intra-communicating, spatially-
distributed sensor pods that are deployed to monitor and explore environments” so that “information gathered by one pod is shared and used by
other pods” [7], or even to create a partial sensor web inwhich only a subset of the data is shared across the sensing assets if that ismore preferable.

The initial groundwork for developing aCPwas performed byThomasHerold in [8].Heroldwent into depth describing the operational concept
of the CP in a real-world context, which he used to motivate development of the coordinated planning problem. Using this description, Herold
provided a linear programming formulation to address a deterministic scenario of request allocation across the mission planners.

Related analysis pertaining to centralized planning of multiple viewing assets (satellites, UAVs, etc.) has beenwidely studied. In [9], Sakamoto
considered the problem of efficiently planning missions for a group of UAVs in a centralized manner. He proposed a robust mixed-integer
programming formulation in order to create UAV mission plans that had a high likelihood of being feasible in a stochastic environment. In [10],
Blair Negron solved a very similar problem, planning missions for multiple UAVs given a set of tasks in three dimensions. Negron solved a very
general problem, including time windows, observation duration, and location information for each task, as well as maximum altitude, minimum
altitude, endurance, and travel time between locations as inputs for the UAV. By including such a large amount of generality in her model, the
resulting mathematical programming formulation that Negron developed became inefficient for large applications. To fix this issue, Negron
developed a metaheuristic that created mission plans very efficiently without sacrificing much value from optimality, thereby allowing quick
solutions, even for very large problems.

In [11], the authors approached control of unmanned assets for a wide array of tasks (search, target classification, attack, damage assessment,
etc.). The solution approach used a hierarchical division of the problem into multiple layers of control. The authors constructed and simulated an
auction-based formulation to determine how to best assign tasks to various groups of vehicles. Amain insight was that allowingmultiple assets to
cooperate on a single task provided better global results. However, the hierarchical method employed for the control of UAV task assignment and
completion in [11] still addressed a version of collection planning inwhich all of the agentsworked together toward the sameoverall objective, and
not for the objectives of stovepiped planners.

The authors of [12] solved a problem of completing a large set of tasks with a small number of UAVs by using a mathematical program for
centralized assignment of tasks to assets, and then creating a separate scheduling algorithm to decide the paths taken by the individual assets. The
main two differences between this type of problem and the coordinated planning problem were as follows:

1) The coordinated planning problem assigned tasks to planners, and not to individual assets.
2) The coordinated planning problem allowed planners to have their own scheduling/control algorithms for their assets.
Although these papers provided insights about other potential solution approaches for the coordinated planning problem, they all focused on

highly centralized planning that did not take into account the issue of planning for asynchronous, distributed systems (i.e., stovepipes).
Work has also been performed relating to efficient tasking of satellite and UAVassets. The authors of [13] developed a tool for the centralized

planning of many target points for which a large number of satellites were available. The authors split the decisions hierarchically: first, assigning
tasks to satellites, and then separately planning the task start and end times for each satellite tomaximize the total value of the targets obtained. The
authors of [14] addressed the uncertainty inherent in the planning of photographs taken by a single satellite, using a mathematical programming
formulation that was motivated by a Markov decision process. Their model considered the probability that a photograph would actually be
completed if it was incorporated into the schedule for the current day, as well as the probability that the photograph would be selected and
subsequently completed for a future day under a given policy, to design a schedule thatmaximized the total expected value of realized photographs

subject to any feasibility constraints. The authors suggested that these probabilities could be determined by simulation or could be adaptively
learned in an online manner through a machine-learning-based approach. They recommended the learning approach because it allowed the
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formulation to adapt to changes in the system over time. A more general problem of dynamically assigning abstract resources to tasks over time
was considered in [15]. The problem, coined by the authors as “the dynamic assignment problem,” was solved using a combination of network
optimization and approximate dynamic programming techniques.

This paper presents a method for developing a CP that focuses on allocation of collection requests to scheduling systems rather than complete
centralized planning over the entire system so that the current planning infrastructure can be maintained. This method expands on the previous
work done in [8] by inclusion of a learningmethod to capture information about the uncertainty involved in data collection from such assets,which
are subsequently used in a mathematical programming method for resource allocation. With the information gained using online learning, this
mathematical programming formulation has the ability to model many tradeoffs pertaining to the assignment of collection tasks to planning
systems. This solution technique is tested on a few potential scenarios, the results of which indicate that the models can produce vastly improved
utility in the sensing collection results obtained over the current stovepiped approach, whether “utility” is number of requests completed, the
average priority of the requests (in a system where certain requests are more important than others), or another objective.

II. Problem Definition and Motivation

A. Terminology

Conceptually, the coordinated approach is instantiated in the aforementioned CP, which uses an algorithmic method for analyzing the
parameters of various collection taskswithin a set of planners (i.e.,missions or organizations) in order to determine the best allocation of collection
requests to planners. By performing this analysis and allocation, the CP effectively increases the ability of the assets on each of the stovepiped
planners to complete all collection requests. At the highest level is the coordination system interface. This is the actual computer program, person,
or other device that collects requests from users who wish to use the CP technology. In this context, a request is defined as the collection
specification, input into the CP by some user, for obtaining a piece of data (ground image, infrared image, climate data, etc.) at a given location,
during a specific timewindow, using sensing assets (motivated by the definition of a request found in [10]). A planner is defined as a function that
takes requests as inputs to produce an operation schedule for an asset or set of assets, such as UAVs, airplanes, satellites, ground vehicles, or
underwater vehicles. Each planner has its own planning cycle, not necessarily synchronized with the other planners, which consists of planning,
upload, and execution phases (see Fig. 1).

The coordinated planning problem, which we analyze in this paper, involves coordinating collection requests between stovepiped missions to
increase the overall utility of the system, without forcing themissions to significantly alter their planning systems. The CP first takes user-defined
requests and prior information about collection interests from the participating planners as inputs in order to determine efficient pairings of
requests with planners. The CP then must send its own versions of these requests to the planners that it considers in its system, separately asking
each one to complete some subset of the user-defined requests as determined by the pairings. It is imperative that these requests be sent during the
appropriate planning phases for each planner, so we assume that the CP is aware of the planning cycles for each planner.

The CP builds up a queue of requests over time, which is the set of all user-defined requests that have not yet been completed. The CP reviews
this queue periodically to create pairings and coordination requests, whichwe refer to as the CP iteration. The time length of this review is referred
to as the CP iteration length. To ensure that the CP always has at least one opportunity to send requests during each planning period of a given
planner, the CP iteration length is assumed to be shorter than the lengths of the planning periods for all of the individual planners. This assumption
could be relaxed in reality if needed, but the cost would be that the CPmay not have the opportunity to send requests for some execution phases on
individual planners.

The first step in reviewing the CP queue involves employing an opportunity finder, which is a filter to determine feasible pairings of requests to
planners. For example, consider a system with three planners: one associated with a UAV that flies over the Atlantic Ocean, and two associated with
separate satellites. The planning cycles of these three planners would resemble that shown in Fig. 1 (note that “SAT1” and “SAT2” are short for
“Satellite 1” and “Satellite 2”).ACP sending requests to these three plannerswouldhave knowledge of theseplanning cycles andwould systematically
determine pairings of requests to the planners based on its knowledge of entire system; however, the planners themselves would maintain complete
control of their assets. If two requests were to be submitted to this notional system, one for a visual photograph in Nevada and the other for a point
elevation reading inGermany, the opportunity finderwould filter out the possibility of pairing thevisual photograph inNevadawith the planner for the
Atlantic OceanUAV, or pairing the point elevation request with a satellite that does not have an appropriate sensor (e.g., light detection and ranging) to
complete the task. This opportunity finder finds all pairings that have a positive probability of being completed, and it removes all other pairings.
Aversionof thegeneric opportunity findermentioned in [8] is used for the evaluation in this paper; however, in-depth analysis into specific capabilities,
such as incorporating any knowledge about current plans to exploit piggybacking opportunities, is left to future research.

The next step involves choosing the best pairings, and subsequently sending the coordination requests to the planners. Each of these
coordination requests can then be accepted, rejected, completed, or failed by the individual planners; we call this the status of the coordination
requests. Each of these terms is defined as follows:

1) Accepted indicates that a planner has selected the given coordination request to be included in the planned schedule for its asset(s).
2) Rejected indicates that a planner has decided not to include the given coordination request in the planned schedule for its asset(s).
3) Completed indicates that the given coordination request has been fulfilled by a planner and the data are ready for delivery to the user (this

implies that the request must first have been accepted by this planner).
4) Failed indicates that the given coordination request could not be completed due to unforeseen circumstances, even though it was accepted by

the planner.
To choose themost appropriate pairings, a fewmodeling assumptions about the level of interactionbetween the planners and theCPmust bemade.

Fig. 1 Asynchronous planning cycles.
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1. Assets

Each planner has assets for which the capabilities are known to theCP in advance. In addition, the planners either provide their own opportunity

finder via a web service to inform the CP of request feasibility during an execution phase or the CP has enough knowledge about the planner’s
assets to be able to create its own opportunity finder.

2. Capacity

There exists a maximum number of requests that can be received by each planner in a given execution phase. In most cases, this should be the

result of a predefined contract between the CP and the planners (to satisfy data storage or other limitations inherent to each planner), as is the case
for sensor planning services following the specification in [6]. However, even planners that do not explicitly limit the number of CP requests still

have a practical saturation limit that can bemodeled by a capacity, ensuring that the planners are only taskedwith appropriate requests. In this latter
case, the saturation limit could be determined by historical data analysis to create an initial estimate of the practical saturation limit, or it could be

imposed spatially (e.g., by limiting the mean distance from the center of a request cluster). For this paper, it is assumed that all capacities are
already known, either through a contract or prior historical analysis. By imposing these capacity constraints, we can reasonably assume that, given

the general location in which an asset will be collecting sensing data, the probability that a planner will complete a given request is negligibly
influenced by the other coordination requests being sent to that planner. This allows for the reasonable independence assumption that, if requests

r1; : : : ; rk are all sent to planner l, then the set of probabilistic events of the form “request ri is completed by planner l“ for all i ∈ f1; : : : ; kg form
an independent set of events, as do the events “request ri is accepted by planner l“ for all i ∈ f1; : : : ; kg, conditioned on the known capacity being
obeyed.

3. Reservation Fee

Agiven planner lmight impose a “reservation fee” in dollars of cl > 0 per coordination request that it considers. These funds are assumed to be
collected upon submission of the request, although theymight be refundable at a later time if the planner does not complete the request.We assume

that there is a set budget of funds available to the CP at each iteration for the intent of satisfying necessary reservation fees.

B. Information Flow

General-purpose collection management requires a large flow of information between users and planners. The coordinated system that we use

allows users to input requests to the coordination system interface rather than directly to the planners. It can also be used via a web service to give
users an approximate probability that their request(s) will be completed by various planners. The CP does not actually perform any of the

scheduling for the individual planners, nor does it alter any of the current infrastructure. Rather, it adds towhat already exists, allowing planners to
have asynchronous planning cycles.

A single iteration of coordinated planning consists of two phases: the information-gathering phase and the coordinated planning phase. The

information-gathering phase begins at periodically spaced epochs in time, where the period between epochs is the aforementioned CP iteration
length. This phase continues until the next epoch, when a new coordinated planning phase and information-gathering phase are initiated. This

coordinated planning phase ends when the coordination requests for the current iteration have been sent to planners, and it is, in general, much
shorter than the information-gathering phase. This process is illustrated in Fig. 2. Note that the information-gathering and coordinated planning

phases overlap such that the ith coordinated planning phase starts simultaneously with information-gathering phase i� 1, although the
coordinated planning phase is shorter.

During the information-gathering phase, users input their requests to the CP via the coordination system interface, which adds the requests to
the queue. Also, during this phase, the CP receives feedback from the individual planners pertaining to the status of previously assigned

coordination requests. Any request that is completed during this phase is removed from the queue, and the collected data aremade available to the
appropriate users. All other notifications (i.e., accepted, rejected, and failed) are parsed into data that are stored for later use. It is important to note

that requests that have not yet been completed are not removed from the queue until they are either completed by a planner or the user-defined
observation timewindow expires (at which point, the request is removed and the user is informed that the data were not collected). This allows for

the CP to resend the same request to any feasible planner at multiple points in time if practical. In our example, this could be represented by
assuming that the point elevation request is not urgent, and therefore the user has given a two-day time-window for completion. Thus, if the CP

tasked the planner corresponding to a low-Earth-orbit satellite with collecting the point elevation early on the first day but the satellite was unable

to complete the collection at that time, the request could be resent to that planner to reattempt during a later pass.
We assume that planners return information about accepted/rejected coordination requests at some time after the coordination request has been

sent but before the execution phase begins for the appropriate request/planner pairing. We do not make any explicit assumptions within our
mathematical model as towhen planners inform the CP about completed/failed requests, other than it has to be after the execution phase has ended

for the appropriate pairing. However, for analysis purposes, we will only consider scenarios in which the CP is informed of completions and
failures immediately following the end of the appropriate execution phases. This models the idea that planners should desire to make this

information available as quickly as possible.

Fig. 2 Phases within a coordinated planning iteration.
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During the coordinated planning phase, all of the data are reviewed in order to send requests to planners. This process begins by passing all
requests in the queue through the opportunity finder to determine feasible pairings of requests to planners. Then, a probability estimator reviews all
of the stored data pertaining to the results of prior coordination requests (i.e., the defining attributes of the coordination requests, aswell aswhether
theywere accepted/rejected, completed/failed, and bywhich planner) to create probability estimates for acceptance and completion of the feasible
pairings of requests to planners. This information is sent to an optimization algorithm that determines efficient pairings relative to some predefined
utility (e.g., number of requests completed), and then these pairings are forwarded to the appropriate planners, allowing for the possibility of a
request to be sent to multiple planners if desired. This process of request movement is depicted pictorially in Fig. 3. In this flowchart, the steps
associated with the coordination planning phase are inside of the dotted line, and the information-gathering steps are outside of this line.

Continuing with the example from earlier, the opportunity finder would have filtered out the visual photograph from going to the UAV planner
during the coordinated planning phase. Supposing that both of the satellites had orbits that passed overNevada, as well as appropriate sensors, the
opportunity finder would have identified the photograph request to satellite pairings as being feasible. The probability estimator would then
provide the CP with an approximate probability that the planner for each satellite would accept the request and task their respective asset to take a
visual photograph over Nevada. The estimator would also give an approximation for the chance that the visual photograph would be successfully
collected by the satellite, given that it had already been accepted, and an estimate of the future probability of the request being sent again if needed.
Using this information, an optimization would be run by the CP to determine which of the two satellites should be sent the visual photograph
request based on capacity and budget constraints, described in Sec. II. If it was determined that only the first of the two satellites should receive the
request; then, the CPwould forward the visual photograph request to the planner for the first satellite, ready to be considered during that planner’s
next execution phase.

At this point, the CP would begin its information-gathering phase. The satellite planner would run its own internal process to determine its
willingness/ability to incorporate that photograph request into its plans. It would then inform theCP of its decision to accept/reject the photograph
at some point before the start of the respective execution phase, which the CPwould use to determine if it should resend the request to increase its
chances of completion. After the execution phase, the satellite planner would promptly return the desired visual photograph or inform the CP that
the requestwas unable to be collected (e.g., if therewas excessive cloud cover, or if the sensor failed). If the photographwas completed, it would be
removed from the CP queue and returned to the user, who could then accept the product as final or resubmit for another collection if desired. If the
satellitewas unable to complete the photograph or chose not to accept it, then theCPwould keep that request in its queue until the next coordinated
planning phase.

In the current stovepiped system, users input requests directly to the planners, and planners return completed data requests directly to the users
(see Fig. 4). As already mentioned, stovepiped systems present a vast array of problems and inefficiencies in collection management. The lack of
communication in these systems forces users to bear the burden of finding the best possible sensor(s) to use for their specific requests, which can
lead to users trying to locally optimize their schedules without regard for others. Users may also be unaware of the benefits of certain assets, or
simply not have the personnel contacts to use other assets that would bewell suited for their tasks. Some other major disadvantages of stovepipes
include their inability to efficiently find piggybacking opportunities (i.e., chances to add their requests onto the previously scheduled plans of a
different asset that may be operating in a desirable location) or from pooling requests between various users to find a more efficient allocation of
requests to sensors.

All of these difficulties suggest that a highly centralized planning system could be quite useful. Although there are some domains in which it
makes sense to implement this type of system, often fully centralized planning is highly impractical. We will rarely be able to implement a
centralized planning system, because thiswould require a complete overhaul of the existing planning infrastructure. Computer interfaces between
assets/planners would need to be redesigned, and headquarters of such mission planners would likely need to be relocated so that the operators of
planners/assets could work together. The individual planners would have to give up their respective planning cycles. For these reasons, we do not
focus on centralized systems, even if theoretically more efficient.

A coordinated planning scheme has the potential to maintain many of the benefits of both stovepiped and centralized planning systems while
eliminating their problems.With coordination,we eliminate the lack of communication inherent to the current systemof stovepipes by providing a
single, automated platform that can interface with each planner to send requests and receive information. Planners are given the liberty to choose

Fig. 3 Life cycle of a request.
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their own planning algorithms and control their assets, and they are even allowed to set their schedules before considering any coordination
requests. By coordinating, we can eliminate the communication gap between stovepipes without implementing the impractical restrictions on the
planners that come attached to a centralized system.

III. Mathematical Model

Using the problem definition and background from the previous section, a formal method for request assignment in a single coordinated
planning phase can be developed. For the remainder of this section, all notation refers to a specific coordinated planning phase unless otherwise
noted. Various sets associated with the state of the coordinated planner are defined in Table 1. Each of these sets is defined in terms of its status at
the beginning time tplan of the specific coordinated planning phase being considered. In addition, a few other assumptions are as follows:

1) Each pairing (r, l) of a request r to a planner l has an inherent predicted value of vrl > 0 if rwere to be completed by l, but not by any other
planners.

2) Planner lwill only consider a request r for the execution phase associatedwith the planning phase of l that is currently active at time tplan. If no
planning phase is currently active on l (i.e., during the send/upload phase), then the request can still be paired to that planner, but lwill consider it
for the execution phase associatedwith the first planning phase following tplan (see Fig. 1 for a visual depiction of various planner phases). In either
case, the execution phase for planner l being considered by theCP at time tplan is denoted d

next
l . Note that decisions of this typewill not be finalized

until the last CP iteration before dnextl because, by construction, requests are not sent until the send/upload phase.
3) There are no limits on the number of planners to which the request can be sent in any single coordinated planning phase.
4)Only the “best” completed pairing yields value to the user, so the utility of a past request r is defined to be themaximumof the set of all values

vrl such that a coordination request associated with r is completed by planner l.
5) The total utility is the sum of the individual request utilities for each request r in the queue.
When deciding where to send coordination requests, we do not knowwhich ones will be completed. The objective of the coordinated planning

phase is therefore to produce pairings (r, l) that yield themaximum expected total utility, requiring the existence of awell-defined andmeaningful
probability distribution for “total utility.” To show that such a distribution exists, and subsequently to derive its expectation, we introduce random
variables Zrl such that Zrl � vrl if, and only if, a coordination request associated with r is completed by planner l during execution phase dnextl or

any thereafter; otherwise,Zrl � 0. Following the integer programmingmethodology described in [16], we introduce integer decisionvariables xrl
where xrl � 1 if, and only if, the CP chooses to send request r to planner l for consideration during execution phase dnextl ; otherwise, xrl � 0.
Define q�r; l; xrl� to be the probability that request r will not be completed by planner l during execution phase dnextl or any thereafter,

parametrized as a function of the decision xrl. Then, the probability mass function for an arbitrary Zrl can be written as

P�Zrl � z� �
8<
:
1 − q�r; l; xrl� if z � vrl
q�r; l; xrl� if z � 0

0 otherwise

(1)

Table 1 Set definitions

Set Definition Arbitrary element

R Set of all requests r in the CP queue at time tplan Some request r
L Set of all individual planners l in the coordinated system at time tplan Some planner l
Rl Set of all requests r such that (r, l) is a feasible pairing at time tplan, determined by the opportunity finder Some request r
Lr Set of all planners l such that (r, l) is a feasible pairing at time tplan, determined by the opportunity finder Some planner l
RFErl Set of all remaining known feasible execution phases d for request r on planner l at time tplan Some execution phase d
Srl Set of all execution phases d in which a coordination request associated with r has already been sent to

planner l at time tplan

Some execution phase d

Fig. 4 Information flow in a system of stovepiped planners.
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Using the assumptions mentioned in Sec. II that the events “request ri is completed by planner l” for all i ∈ f1; : : : ; kg form an independent set
of events, as do the events “request ri is accepted by planner l” for all i ∈ f1; : : : ; kg, conditioned on the known capacity being obeyed, and
assuming (for simplicity) that the decisions of future coordinated planning phases can be approximated as being mutually independent, the
quantity q�r; l; xrl� can be expanded as

q�r; l; xrl� �
�
1 − xrl × Pa�r; l; dnextl � × Pc�r; l; dnextl �

�
×

" Y
dl∈RFErl

�
1 − Ps�r; l; dl� × Pa�r; l; dl� × Pc�r; l; dl�

�#

×

" Y
dl∈Srl

�
1 − Pa�r; l; dl� × Pc�r; l; dl�

�#
(2)

where
1) Ps�r; l; dl� is the probability that request r will be sent to planner l for consideration during execution phase dl, conditioned on xrl and the

current status of the queue at time tplan.
2)Pa�r; l; dl� is the probability that request rwill be accepted by planner l for incorporation into the plans of execution phase dl, given that r is

already sent to l.
3) Pc�r; l; dl� is the probability that request r will be completed by planner l during execution phase dl, given that r is already sent to, and

accepted by, planner l.
4) RFErl and Srl are as defined in Table 1.
The functionsPs�r; l; dl�,Pa�r; l; dl�, andPc�r; l; dl�, referred to as probability estimators, are assumed to be known at time tplan (a method for

online learning of these functions is presented in the next section). In addition, once a coordination request for the pairing (r, l) during execution
phase dl is sent or accepted, we updatePs�r; l; dl� � 1 orPa�r; l; dl� � 1, respectively, for that pairing (completed requests are removed from the
queue). Using this model and the notation from Table 1, the utility of request r is a random variable Vr where

Vr � max
l∈Lr

fZrlg

so the expected utility of request r is

EfVrg � E

�
max
l∈Lr

fZrlg
�

To calculate this expectation, the set Lr is sorted into an indexed set ~Lr ordered according to increasing values vrl for all l ∈ Lr so that, if ~Lr�i�
denotes the ith planner of this set for all i ∈ f1; 2; : : : ; j ~Lrjg and v�i� thevalue of the associated request/planner pairing �r; ~Lr�i��, then v�i� ≤ v�j�
for all i ≤ j. FromEq. (1), thevalueZr; ~Lr�i� associatedwith the ith pairing �r; ~Lr�i�� can only take thevalue v�i� or zero, implying thatVrmust take

a value from the set f0; v�1�; : : : ; v�j ~Lrj�g because

Vr � max
l∈Lr

fZrlg

DefineCi to be the eventwhere request r is completed by planner ~Lr�i� but not by any ~Lr�j� satisfying i < j. By construction ofCi,Zr; ~Lr�j� � 0 for

all j > i and Zr; ~Lr�i� � v�i�. This fact implies that

�
Zr; ~Lr�i� � v�i�

�
≥
�
0 � Zr; ~Lr�j�

�
(3)

Now, for all j < i, because v�j� ≤ v�i� and each Zr; ~Lr�j� can only take on the values v�j� ≥ 0 or zero by definition, we have

�
Zr; ~Lr�i� � v�i�

�
≥ v�j� ≥ Zr; ~Lr�j� (4)

Combining Eqs. (3) and (4) means that v�i� � Zr; ~Lr�i� ≥ Zr; ~Lr�j� for all i ≠ j; so, conditioned on the event of Ci having probability P�Ci�,
we have

Vr � max
l∈Lr

fZrlg � Zr; ~Lr�i� � v�i� (5)

Suppose that r is completed by at least one planner ~Lr�k� for some k ∈ f1; : : : ; j ~Lrjg so that the set of all indexed planners in ~Lr that completed

the request r is finite and nonempty. This condition implies the existence of a maximum index k ∈ f1; : : : ; j ~Lrjg, with i ≥ k, such that r is

completed by planner ~Lr�i� but not by any ~Lr�j� satisfying i < j, which corresponds exactly to the event Ci. Define C0 to be the event that the

request r is not completed by any planner in ~Lr. Then,

∪
j ~Lrj
i�0

Ci

covers the entire sample space of possible completions for a request r on planners inLr. Furthermore, each pairCi; Cj ∈ fC0; C1; : : : ; Cj ~Lrjg, with
i ≠ j, must be pairwise disjoint. To see this, assume (without loss of generality) that j > i. Then, j ≥ 1, so Cj ≠ C0, meaning that the event Cj

requires r to be completed by ~Lr�j�. However, Ci necessarily does not have r completed on ~Lr�j� because i < j. Therefore, Ci and Cj can never

happen simultaneously, so they must be pairwise disjoint. This result, in combination with the fact that
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∪
j ~Lrj
i�0

Ci

covers the entire sample space of possible completions, implies that fC0; C1; : : : ; Cj ~Lr jg forms a partition of the sample space. Therefore, using

Eq. (5),

EfVrg �
Xj ~Lr j

i�0

EfVrjCigP�Ci� �
Xj ~Lrj

i�0

v�i�P�Ci� (6)

Recall that q�r; l; xrl� is defined as the probability that zero coordination requests associated with request r will be completed by planner l
during any execution phase, as a function of the decision xrl. Assume (for simplicity) that each planner completes a request r independently of
every other planner. Although this may not be completely accurate (for example, in cases where cloud cover prevents two separate planners from

completing the same request), it does provide a simple method for obtaining a realistic, quantifiable expression for eachP�Ci�. Then, we have the
following:

P�Ci� � P
�
r is completed by ~Lr�i� during some execution period

� Yj ~Lrj

j�i�1

P
�
r is never completed by ~Lr�j�

�

�
h
1 − q�r; ~Lr

�
i�; xr; ~Lr�i�

�i24 Yj ~Lr j

j�i�1

q
�
r; ~Lr�j�; xr; ~Lr�j�

�35 (7)

Combining Eqs. (2), (6), and (7), P�Ci� and, therefore, EfVrg both become nonlinear in the decision variables xrl; see Algorithm 1 for a

combination of Eqs. (2), (6), and (7) into a practical method for computingEfVrg. Therefore, the original objective for this problem, tomaximize

the expected total utility

E

�X
r∈R

Vr

�

at each planning iteration, is also nonlinear because

E

�X
r∈R

Vr

�
�

X
r∈R

EfVrg (8)

We can eliminate the nonlinearity by introducing binary decision variables yrG ∈ f0; 1g into the formulation, which represent composite

decisions. Specifically, each decision variable yrG takes a value of one if we send the request r to each planner l ∈ G, for some setG ⊆ Lr, but not

to any other planners; otherwise, we set yrG � 0. We introduce one such variable for each potential (r,G) pair such that r ∈ R andG ∈ Tr, where

Tr is the set of all subsets ofLr with, at most,Nmax elements, including the empty set, for some given limitNmax > 0 of coordination requests that
can be sent per user request. For each of these composite variables, we introduce a composite utility krG, which is defined to be the expected utility
of request r if a coordination request associated with r is sent to each of the planners inG, thereby choosing each xrl according to Eq. (10). Then,

krG � EfVr; xrl for all l ∈ Lrg (9)

where EfVrg is calculated using Eq. (6) or Algorithm 1 for request r being sent to all planners l ∈ G, and the decision variables xrl for all l ∈ Lr

take the values

xrl �
�
1 if l ∈ G
0 otherwise

(10)

We must have yrG � 1 for exactly one set G ∈ Tr so that we do not count the value of more than one set G for any given request r, which is
equivalent to including the mathematical constraints

Algorithm 1 Expected utility of a request

Inputs: request r, decision variables xrl for all l ∈ Lr

1: Sort the set Lr into a new indexed set ~Lr ordered according to increasing values vrl for all l ∈ Lr. In other words, if ~Lr�i�
denotes the ith planner of this set and v�i� the value of the associated request/planner pairing �r; ~Lr�i��, then v�i� ≤ v�j�
for all i ≤ j.

2: Initialize vtotal � 0 and i � 1.

3: While i ≤ j ~Lrj, loop through the following:
a: Define l � ~Lr�i�, which is the ith element of ~Lr.
b: Define p � q�r; l; xrl� from Eq. (2), the probability that no coordination requests associated with request r will be

completed by planner l during any execution phase, as a function of the decision xrl.
c: Update �p��vtotal� � �1 − p�v�i� → vtotal.
d: Update i� 1 → i.

4: Output EfVrg � vtotal.
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X
G∈Tr

yrG � 1 ∀ r ∈ R (11)

in our integer programming formulation.We also know that, if some yrG � 1, then itmust be true that xrl � 1 for all l ∈ G, sowemust include the
constraints

yrG ≤ xrl ∀ r ∈ R; G ∈ Tr; l ∈ G (12)

Becausewe are performing amaximization of the objective in Eq. (8), the constraints [Eqs. (11) and (12)] are also sufficient to ensure that, if all
estimated probabilities are in the open interval (0,1) with xrl � 1 for all l ∈ G and xrl � 0 for all l ∈= G, then yrG � 1. This is because
krG � EfVrg strictly increases if an extra planner l is added toG, so we have the relationship that, ifG1 ⊂ G2, then krG1

< krG2
. Thus, in order to

maximize Eqs. (8) and (9) while satisfying constraint (11), we must set yrG 0 � 1whereG 0 � fljxrl � 1g, which is exactly the correct composite
variable. (Even if some of the estimated probabilities are not in the open interval (0,1), we still obtain an optimal solution because the only possible
variables yrG that would be set to one in a maximization are those where (r, G) satisfies krG � krG 0 .)

Coordinated planningmay also involve budget and capacity requirements. Letting cl be the fee charged by planner l per submitted request andb
the money available to the CP per iteration, the budget constraint from Sec. II is

X
r∈R

X
l∈Lr

clxrl ≤ b (13)

Similarly, letting nl be the maximum number of coordination requests that can be sent to an arbitrary planner l in an iteration, the capacity
constraints from Sec. II are

X
r∈Rl

xrl ≤ nl ∀ l ∈ L (14)

Combining these constraints, the goal is to choose values for the variables xrl and yrG that solve

max
X
r∈R

X
G∈Tr

krGyrG (15)

subject to
X
r∈R

X
l∈Lr

clxrl ≤ b

X
r∈Rl

xrl ≤ nl ∀ l ∈ L

X
G∈Tr

yrG � 1 ∀ r ∈ R

yrG ≤ xrl ∀ r ∈ R; G ∈ Tr; l ∈ G

xrl ∈ f0; 1g ∀ r ∈ R; l ∈ Lr

yrG ∈ f0; 1g ∀ r ∈ R; G ∈ Tr

Once this integer program is solved, we simply send a coordination request for the user request r to each planner l such that xrl � 1.
The number of decision variables yrG in this composite variable formulation [Eq. (15)] has the potential to grow very quickly at a rate of

O
�
jRjjLjNmax

�

for a fixed value ofNmax, assuming every request is feasible on every planner. This not only has the effect of vastly increasing the computational
complexity of the integer program but also increases the number of operations required to instantiate the integer program at an exponential rate.
For example, Algorithm 1 must be run once per krG value; thus, the number of evaluations increases at the same rate as yrG. Although the
tractability can be controlled to a certain extent through the parameter Nmax, development of an effective alternate approximation or heuristic
approach for sufficiently large problems would be beneficial. One such heuristic related to this work can be found in [17], although evaluation of
the tradeoff between runtime and quality is left to future research.

IV. Estimating Uncertainty

The integer programs of the previous section rely on the probability estimatorsPs,Pa, andPc. Determining these functions can be difficult due
to nonstationary levels of request saturation and the absence of prior data to analyze. For this paper, a Bayesian logistic regression (BLR) model
was used (see [18] for a background intoBayesian analysis and logistic regression). Under thismodel, a set of dataD � f�x1; y1�; : : : ; xm; ym�g is
observed, from which either a classifier or probability estimate must be extracted. WithinD, each yi ∈ f0; 1g is the response variable for the ith
observation, and each xi is a vector of observed attributes related to the ith observation. The assumption is thenmade that the log-odds ratio for an
arbitrary unknown observation y can be expressed as a linear combination of the attributes in x so that

log

�
P�y � 1jx; λ�
P�y � 0jx; λ�

�
� λTx

18 ROBINSON ETAL.
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for somevector of Bayesian parameters λ. Rearranging this expression results in a generalized linear model with the logistic link function given in

[19], implying

P�y � 1jx; λ� � logit−1�λTx� � eλ
Tx

1� eλ
Tx

We assume that all observations yi are independently conditioned on λ, xi. To make this model Bayesian, the parameters λ are assumed to be

random and, as such, are given a prior probability density p�λ�. In addition, it is assumed that λ is independent of all observations xi so that, for a
single observation, Bayes’s rule implies

p�λjf�x; y�g� � p�λ; x; y�
p�λ; y� � p�yjλ; x�p�λ; x�

p�yjx�p�x� � p�yjλ; x�p�λ�p�x�
p�yjx�p�x� ∝ p�yjλ; x�p�λ� (16)

This can be extended to allm observations inD, yielding a posterior distribution on λ fromwhichp�yjx� can be determined via simulation [18].
Due to the dynamic nature of coordinated planning, obsolete data need to be discarded over time, allowing the probability estimators to adapt to

changes in the system. In addition, differences between the probability estimators require observations to be separated by planner according to

whether they refer to a request being sent, accepted, or completed. Thus, if L is the set of planners in the system, a total of 3jLj groups of
observations will be collected: SentData(l), AcceptData(l), and CompleteData(l), for all planners l. Observations for this are constructed as

follows:
1) For a given planner l, an observation ysent�r;l;d� ∈ SentData�l�where ysent�r;l;d� � 1 indicates that a coordination request was sent associated with

the request/planner-execution phase triple (r, l, d); otherwise, ysent�r;l;d� � 0.

2) An observation yaccept�r;l;d� ∈ AcceptData�l� takes the value yaccept�r;l;d� � 1 if the coordination request was accepted for the triple (r, l, d); otherwise,

yaccept�r;l;d� � 0 if the coordination request was sent but not accepted.

3) An observation ycomplete
�r;l;d� ∈ CompleteData�l� takes the value ycomplete

�r;l;d� � 1 if a coordination request was completed for the triple (r, l, d);

otherwise, ycomplete
�r;l;d� � 0 if the coordination request was sent and accepted but not completed.

It is important to note that, for the data in each of the AcceptData(l) sets, only coordination requests that have already been sent are considered;
for CompleteData(l), only coordination requests that have already been sent and accepted are considered. In addition to these, the attribute sets
SentAttributes(l), AcceptAttributes(l), and CompleteAttributes(l) are also recorded, where any attribute vector x�r;l;d� in one of these sets is

associated with the response y�r;l;d� in the corresponding dataset, i.e., SentAttributes(l) corresponds with SentData(l), AcceptAttributes(l) with
AcceptData(l), and CompleteAttributes(l) with CompleteData(l). The observations are recorded in the appropriate sets as they are received

over time.
To allow the user to incorporate complicated prior beliefs, the followingmethod is used to construct the Bayesian prior distribution as a form of

regularization/protection against the high variability inherent in estimates based onminimal data. These beliefs are constructed using quantitative

belief statements of the following form:
We estimate that the probability P�y � 1jxk� given some attributes xk is fk, but we have ck confidence that it is within the interval [ak, bk].
In these statements, 0 < ak < fk < bk < 1 represent estimates about the conditional probabilityP�y � 1jxk�, and ck ∈ �0; 1� is some fractional

level of confidence in the statement. Suppose that we have n such confidence statements, so k � 1; : : : ; n.Wewill use the information from these

statements to produce a prior distribution on λ. We assume a multivariate normal distribution with independent component random variables for

this prior on λ due to its unimodal structure, convenient parametrization in terms of a mean vector and covariance matrix, and property that linear

combinations of its component random variables are still normal. Although this may not induce sparsity in the results as explained in [20], and the

component random variables may not quite form an independent set, the nice structure of the Gaussian allows an analytical method to be used for

injection of outside beliefs that may not be afforded by using a sparsity prior, or by modeling dependencies between the component random

variables. To build this prior distribution, we will first assume that the jth component of λ has a univariate normal distribution with mean μj and
variance vj for all j � 1; : : : ; d, where d is the length of λ. Thus, λ must have a multivariate normal distribution with mean vector

μ � �μ1; : : : ; μd� and covariance matrix diag�v�, where v � �v1; : : : ; vd�. Once we have constructed μ and v, we will have a completely well-

defined model for Bayesian inference.
To figure out good values for μ and v, let us examine the form of our beliefs. We can interpret the values fk to be estimates for the percent of

observations with attribute vector xk that would be expected to have the response y � 1 rather than y � 0. Thus, it makes sense to construct the

mode μ of our prior distribution on λ to mimic traditional maximum-likelihood estimation, discussed in [21], by maximizing the

“pseudolikelihood” function L�λ� where

L�λ� �
Yn
k�1

�
eλ

Txk

1� eλ
Txk

�fk
�

1

1� eλ
Txk

��1−fk�
(17)

We therefore set the values of μ using the convex optimization

μ � λ� � argmax
λ

L�λ� � argmin
λ

− log�L�λ�� � argmin
λ

−
Xn
k�1

�
fk log

�
eλ

Txk

1� eλ
Txk

�
� �1 − fk� log

�
1

1� eλ
Txk

�	

� argmin
λ

Xn
k�1

h
fk log

�
1� e−λ

Txk
�
� �1 − fk� log

�
1� eλ

Txk
�i

(18)

Wenow turn our attention to finding thevalues of thevariancevectorv using the confidence interval [ak,bk] and the scalar ck. Define θ
k in terms

of the random vector λ such that

θk � logit−1�λTxk� � eλ
Txk

1� eλ
Txk
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where logit�p� � log�p∕1 − p� is the logit link function (see [18] for details). Thus, θk represents the estimate of P�y � 1jxk� given by the kth
belief statement. We assume that each confidence interval is “centered” in the interval [0,1] in the sense that, for any given attribute vector xk, we
have

P
�
θk ≤ akjxk

�
� P

�
θk ≥ bkjxk

�
(19)

where

P
�
θk ∈ �ak; bk�



 xk� � ck

Combining this assumption with the confidence statement, we see that

P
�
θk ≤ akjxk

�
� P

�
θk ≥ bkjxk

�
� 1 − ck

2

Manipulating this expression, we have

1 − ck
2

� P
�
θk ≤ akjxk

�
� P

�
logit�θk� ≤ logit�ak�jxk

�
� P

�
λTxk ≤ logit�ak�jxk

�
� ϕ

�
logit�ak� − μTxk�������������������������������
�xk�Tdiag�v�xk

p �
(20)

whereϕ�⋅� denotes the standard normal cumulative distribution function. In this expression, the second equality holds bymonotonicity of the logit

(⋅) function, and the third equality holds by definition of θk. The final equality holds because each of the λj are normal random variables withmean

μj and variance vj, independent of other λi or x
k, implying that λTxk is normal with mean μTxk and standard deviation

�������������������������������
�xk�Tdiag�v�xk

p
. By

similar reasoning, we have

1 −
1 − ck

2
� 1� ck

2
� P

�
θk ≤ bkjxk

�
� ϕ

�
logit�bk� − μTxk�������������������������������
�xk�Tdiag�v�xk

p �
(21)

Unfortunately, it is very possible that some of our belief statements are unintentionally in direct conflict with each other or with some of the

modeling assumptions used to derive Eqs. (20) and (21), implying that existence of a solution v to the system of Eqs. (20) and (21) for all

k � 1; : : : ; n is not guaranteed. Thus, our objective in selecting vwill be to choose parameters that either solve the system of Eqs. (20) and (21)

for all k � 1; : : : ; n if our belief statements are appropriate or are “close” in some sense to solving the system if no solution exists. To

accomplish this goal, we note that having already selected the mode μ of our prior distribution, conflicting belief statements make us less

confident that the mode should actually be located at μ. This in turn implies that the confidence levels ck given in the belief statements should

actually be interpreted as upper bounds on our confidence about the location of the mode μ. In terms of probability statements, we interpret this

bound to mean

P
�
θk ∈ �ak; bk� j xk

�
≤ ck (22)

We choose to enforce this bound by constraining feasible values of v to satisfy

P
�
θk ≤ akjxk

�
� ϕ

�
logit�ak� − μTxk�������������������������������
�xk�Tdiag�v�xk

p �
≥
1 − ck

2

P
�
θk ≥ bkjxk

�
� 1 − ϕ

�
logit�bk� − μTxk�������������������������������
�xk�Tdiag�v�xk

p �
≥
1 − ck

2
(23)

We see that the first line of these constraints involving ak will be automatically satisfied for any ak, μ such that

logit�ak� − μTxk ≥ 0

This property is a direct result of the symmetry of the normal distribution about its mean μTxk combined with the fact that ck ≥ 0. Similarly,

the second line of constraints will be automatically satisfied for any bk, μ such that

logit�bk� − μTxk ≤ 0

Ignoring constraints that are automatically satisfied for all v > 0 and using the properties

ϕ−1
�
1 − ck

2

�
< 0

and

ϕ−1
�
1� ck

2

�
> 0
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we can rewrite Eq. (23) in the equivalent linear form

�xk�Tdiag�v�xk ≥
�
logit�ak� − μTxk

ϕ−1�1 − ck∕2�
�
2

∀ k:logit�ak� − μTxk < 0

�xk�Tdiag�v�xk ≥
�
logit�bk� − μTxk

ϕ−1�1� ck∕2�
�
2

∀ k:logit�bk� − μTxk > 0 (24)

Thus, a vector v satisfies Eq. (24) if, and only if, it also satisfies Eq. (23). Also, any vector v satisfying Eq. (23) has the property that

P
�
θk ∈ �ak; bk� j xk

�
� 1 − P

�
θk ∈= �ak; bk� jxk

�
� 1 − P

�
θk ≤ akjxk

�
− P

�
θk ≥ bkjxk

�
≤ 1 −

1 − ck
2

−
1 − ck

2
� ck

meaning it also satisfies Eq. (22). By limiting our solution space with the constraints [Eq. (23)], we retain a notion of confidence interval

centrality similar to that given by assumption (19).
We also want to reduce our set of potential selections for v to be those in which individual components vi each exhibit a similar amount of

uncertainty relative to the respective Bayesian parameters λi that they describe. We do this to ensure that we are never overly confident in one

parameter, which helps to prevent overfitting of our prior distribution to possibly incorrect beliefs.Wemodel this restriction on v by imposing the

constraints

vi
γ2i

≤ r2
vj
γ2j

; ∀ i; j ∈ f1; : : : ; dg:i ≠ j (25)

where γi represents the mean value of the ith component of the vectors xk, and r ≥ 1 is a constant allowing control over howmuch spread we are

allowing between the elements of v (a value for r that is closer to one represents less spread). We divide each vi by γ
2
i in order to correct between

different scales on the units being used for each attribute of xk. As a final method for protecting against poorly written confidence statements, we

impose the vector constraint

0 ≤ vmin ≤ vi ≤ vmax ∀ i ∈ f1; : : : ; dg (26)

on the set of feasible values for v, where vmin and vmax are constants giving a region of satisfactory values for v. Oncewe have identified all feasible
v satisfying our bounds in Eqs. (23) through (26), our goal is to search this feasible set to find the one giving the “most” information pertaining to

our beliefs. To complete this objective, we note that

var
�
logit�θk� j xk

�
� �xk�Tdiag�v�xk (27)

Qualitatively, smaller magnitudes of var�logit�θk� j xk� for a particular k indicate that we have more information pertaining to requests with

parameters xk. Different magnitudes of the vector xk can inflate or deflate the preceding variance, so we divide Eq. (27) by kxkk22 as a form of

normalization, allowing us to compare on an absolute scale ameasure of the amount of variability thatv creates in the kth belief statement. Because

lower belief variability indicatesmore information, we aim to choose the vector v tominimize the sumover all k of the normalized variances given

by the expression

1

kxkk22
�xk�Tdiag�v�xk (28)

Combining Eqs. (23) through (28), we select v via the linear program (LP)

min
v

Xn
k�1

1

kxkk22
�xk�Tdiag�v�xk (29)

subject to �xk�Tdiag�v�xk ≥ α2k ∀ k:logit�ak� − μTxk < 0 (30)

�xk�Tdiag�v�xk ≥ β2k ∀ k:logit�bk� − μTxk > 0 (31)

vi
γ2i

≤ r2
vj
γ2j

∀i; j ∈ f1; : : : ; dg:i ≠ j (32)

0 ≤ vmin ≤ vi ≤ vmax ∀ i ∈ f1; : : : ; dg (33)

where the constants αk and βk are given by

αk �
logit�ak� − μTxk

ϕ−1�1 − ck∕2�
βk �

logit�bk� − μTxk

ϕ−1�1� ck∕2�
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We note that the box constraints [Eq. (33)] form a closed, bounded set. This implies that, if the feasible set of this LP is nonempty, then it must
form a bounded polytope, guaranteeing the existence of an optimal solution. By construction of this LP, as long vmax is sufficiently large, then this
LP has a nonempty feasible set, and thus an optimal solution v�. By combining the maximum likelihood approach for constructing μ with this
linear program for constructing v, we can translate any positive number of qualitative belief statements into an informative prior distribution on the
Bayesian parameters.

Implementation of the aforementionedmodel requires careful consideration of the attributes used to define each observation xi. For the analysis
in Sec. V, the BLR models used to construct Ps�r; l; t� applied attributes such as the expected value of a single pairing (r, l) ignoring all other
decisions, the expected value of all accepted assignments of request r to any planner in the system at a given iteration, and the expected value of all
accepted assignments of request r to a single specific planner l. For Pa and Pc, attributes included the normalized great-circle distance from the
UAV to the request computed by the algorithm described in [22–24], the mean viewing angle (in radians) required for the satellite on planner l to
service request r during execution phase d calculated using J2 secular theory [24], the amount of time it would take to service a request divided by
the total length of a given execution phase, and the total percent of time a request was feasible during a given execution phase of a specific planner.
Simple closed-form expressions for each of these three probability estimators were created for use in the simulations by constructing point
estimates of λ from the sample mean obtained via posterior simulation (using the package MCMCpack [25] in R).

V. Analysis and Results

To test the limits of themethods developed in the previous sections, performance of the CPwas evaluated against the current stovepiped system
via a Java testbed simulation. The simulation was designed to determine the advantages of the CP in various potential scenarios that could be
encountered, investigate the limits of the approach under various environments, and analyze the tractability of the approach. In particular, the
following specific questions/hypotheses were addressed to provide a significant cross section of the most valuable discussions pertaining to the
implementation of the CP methods:

1) How does the CP respond to differences in the request generation process? Specifically, are there any major differences in performance if
requests are received simultaneously at one time versus continually via a stochastic process?

Hypothesis 1: The CP should provide an approximately equivalent performance regardless of the process by which requests are received.
2) The CP is designed to provide major performance enhancements in a situation with scarce resources (i.e., collection assets) as compared to

requirements (i.e., requests). How scarce do the resources have to be in order to realize these potential improvements?
Hypothesis 2:TheCP should exhibit the same or better performance than a stovepiped system, regardless of the availability of collection assets

as compared to resources. However, the amount of performance gain should increase with increasing levels of scarcity.
3) How does the CP react to changes in request or planner attributes? Specifically, does the use of the probability estimator presented in Sec. IV

effectively capture knowledge about the differences between requests (e.g., longer feasible time windows, differences in location, type of sensor
required) in a manner that increases realized value?

Hypothesis 3: The performance gap between the proposed CP and current stovepiped methods should widen with increasing variability of
request attributes.

A. CP Performance Analysis

Our experimental setup included a one-week planning scenario with two UAV planners and six low-orbit satellite planners, each containing
exactly one asset (approximately the size of the problem considered in the intended notional scenario of [8]). Requests were generated with one of
10 target types and 10 sensor types, where each target-to-sensor pair had a unique observation quality chosen uniformly on the interval [0, 1]. The
number of sensors on assets for any given plannerwas chosen uniformly on the set {1,2,3}, and each sensorwas chosen uniformly across the set of
all 10 sensors. It is important to note that this structure presupposed the existence of commonality between planners that allowed for flexibility in
the tasking of requests. Although the CP should perform equal to or better than the stovepiped system, even without this commonality due to its
ability to consider all requests and planners simultaneously, evaluation of this point is left for future research. The target region from which the
requests were drawn included latitudes on the interval [35°, 40°] and longitudes on the interval [−110°, −100°] (representing a region in the
Western United States). These parameters for the planners, as well as the various parameters for their assets (Keplerian elements for the satellites,
location, endurance, speed, and sensor type for the UAVs) were selected to have random levels of coverage on this target region, with the caveat
that all satelliteswere restricted to lowEarth orbit (in order to providemoreviewing opportunities per unit time), and all parameters remained fixed
for the entire experiment once selected. This setup simulated the concept that a real-world system could have many target types and sensor types,
with planners that hadmultiple sensors. The CP information-gathering phase from Fig. 2was set to be 0.5 h in length, with a coordinated planning
phase length of 120 s. All computation was completed by CPLEX for Java on an Intel Core i5 processor. Planning usedNmax � 3 so that, for the
problem sizes considered, all integer programswere solved to optimality. Each individual planner had a planning period thatwas longer than 0.5 h,
simulating a fast-paced planning operation in which it was necessary to guarantee that each planner iteration was considered in at least one
coordinated planning phase.

Each request was given a single target type selected uniformly from all possibilities, as well as a priority drawn uniformly on the interval [0, 1].
The latitude and longitude of each request were drawn uniformly from the aforementioned target region. The altitude was chosen to have a 50%
chance of being at ground level and a 50% chance of being above ground. Given that the altitude was above ground, it was selected uniformly on
the interval [0, 4] km above ground level. For simplicity, when performing satellite feasibility calculations, we assumed that “ground level”meant
0 ft above the reference ellipsoid for Earth, whichmade little difference becausewewould only have an error on the order of a few kilometers. The
minimum observation duration length for each request was selected on the interval of [0.017, 0.17] h (approximately 1 to 10 min) because this
represented a realistic set of possible duration lengths. Each request/planner pairing was assigned a dimensionless observationQualityrl ∈ �0; 1�
based on the relationship between the type of request being simulated and the sensors attached to the assets for each planner. Each request was
randomly assigned another dimensionless quantity priorityr ∈ �0; 1�, so that

vrl �
1

2
�priorityr � observationQualityrl�

This structure simulated one possible value function construction with equally weighted attributes associated with the request alone (priority),
as well as the request/planner pairings (observation quality). See [8] for a discussion on construction of the value function for more specific
purposes. Feasibility of a request was determined by first ensuring the sensors on board the asset controlled by a planner could collect the desired
request type. If at least one sensor could collect the data, then physical constraints were checked. For satellites, this meant verifying a nonempty
timewindow during a given execution period where there existed a line of sight between the request location and the satellite orbit. ForUAVs, this

22 ROBINSON ETAL.

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 (
C

am
br

id
ge

) 
on

 A
pr

il 
9,

 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
04

15
 



meant verifying that the request location could be reached at maximum speed/maximum endurance. It was assumed that each planner sent

information to the CP at the end of their respective execution periods detailing which coordination requests were just completed or failed. Any

requests not completed by the end of the scenario or by the end of their respective time windows were considered failed, and therefore did not

contribute to the total value obtained.
The execution period length of eachUAVplanner was 2 h, and each satellite planner was the period of one orbit. All UAVplanners had capacity

constraints for each send/upload phase of 15 requests, and all satellites had four request capacities to simulate more stringent data constraints on

satellites. Because the intent of the hypotheses being investigated did not include investigation of the effects of reservation fees on output, it was

assumed that there were no budget constraints for this problem (or equivalently, zero reservation fees for any planner).
With this baseline scenario fixed, the hypotheses presented at the beginning of the section were tested via 12 different cases by varying

parameters as shown in Table 2. This table shows the conceptual intent of how each parameter was varied. Each term is defined formally as

follows:
1) “A priori” implies that all requests were generated and submitted to the CP before the start of the planning scenarios.
2) “Poisson” implies that requests were generated throughout the planning scenario via a Poisson process, and it assumes that they were

submitted last minute to the CP, i.e., there was no delay between the coordinated planning iteration and the beginning of the acceptable time
window defined by the user.

3) “Small,” “medium,” and “large” are 1000, 2000, or 4000 requests for a priori, and 6, 12, and 24 requests/hour for the Poisson process (for an
expected total number of requests similar in size to the a priori generation).

4) “Short” implies that timewindows have lengths drawn uniformly from [0, 4] h, or until the end of the planning scenario if earlier. For a priori
generation, the time window is selected to begin uniformly between 0 and 164 h after the scenario begins, ensuring all windows close before the
end of the scenario.

5) “Various” implies timewindows have lengths drawn uniformly from [0, 48] h, or until the end of the planning scenario if earlier. For a priori
generation, the time window is selected to begin uniformly between 0 and 120 h after the scenario begins, ensuring all windows close before the
end of the scenario.

Within each case, the CP was compared against a notional stovepiped planning system, as well as against a baseline “myopic” coordinated

planned algorithm. Problem sizes for these systems are mostly notional at this time because users currently tend to use data archives due to an

inability to directly manipulate sensing resources, as mentioned in [26], although the evaluation in this paper uses a similar level of tasking

complexity to the intended notional scenario of [8]. The stovepiped explanation wasmotivated by the description of the “current practice” in [26],

where each remote sensing asset was described as being controlled andmanaged by individual science missions.Wemodel this idea by assuming

that the owners of each asset generate requests that are specifically designed for that particular asset but are not submitted to any other assets (future

research could include comparison against a more relaxed stovepipe system where users have the knowledge/capability to submit to every

possible resource, thereby overloading each asset with extraneous inputs). Thus, each request/planner pairing inherently has high value. This was

simulated by assuming that each request r was designed and submitted intelligibly by the users to the planner l� satisfying

vrl� � max
l∈Lr

fvrlg

for every feasible execution period on l�. Capacity constraints were enforced in this environment by only considering the nl� most valuable

requests on each planner l�. The baseline myopic algorithm used an identical construct to the CP methods developed in this paper without

incorporating the probability estimation techniques of Sec. IV. This was done by removing all Zrl random indicator variables and replacing

krG � EfVrg � E

�
max
l∈Lr

fZrlg
�

with

krG � max
l∈Lr

fvrlxrlg

where each xrl was predetermined during construction of the associated composite variable yrG, as discussed in Sec. III, thereby removing the

probabilistic model entirely.

B. Results

All requests considered by the CP were the same ones considered by the stovepiped system and the baseline comparison algorithm. The

planning scenariowas designed to include enough coordinated planning phases that the results should sufficiently converge in each test case (336

coordinated planning phases). Under this design, if each hypothesis is true, we expect to see supporting evidence as follows:
1) For Hypothesis 1, regardless of the request generation process used, or the number/rate of arrival requests, the total realized value of the

proposed CP should meet or exceed that of the stovepiped methods.
2) For Hypothesis 2, regardless of the number/rate of arrival requests, the total realized value of the proposed CP should meet or exceed that of

the stovepiped methods. However, holding the request and time window generation processes constant, the magnitude of the value gap should
increase with larger numbers of requests or larger request arrival rates.

Table 2 Parameter values by case

Parameter type vs value Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

Request generation process A priori Poisson A priori Poisson A priori Poisson A priori Poisson A priori Poisson A priori Poisson
Number of requestsa Small — — Medium — — Large — — Small — — Medium — — Large — —

Poisson parameter — — Small — — Medium — — Large — — Small — — Medium — — Large
Time windows considered Short Short Short Short Short Short Various Various Various Various Various Various

aOnly applicable for the A priori/non-Poisson request generation process.
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3) For Hypothesis 3, regardless of the process by which timewindows are generated, the total realized value of the proposed CP should meet or
exceed that of the stovepiped methods. However, holding the request number/arrival rate and generation process constant, the magnitude of the
value gap should increase with larger variability between time window lengths. This is expected because the CP probability estimator is better
equipped to prioritize based on urgency than a stovepiped system due to its feature extraction and forward-looking capabilities.

Table 3 summarizes the percent of requests that were successfully completed, as well as themeanvalue obtained per number of requests in each
scenario. The results are separated out as stovepiped for the stovepiped planning method, myopic CP for the baseline myopic algorithm, and full
CP for the full coordinated planning method developed in this paper.

Within each environment, the first hypothesis was validated because the stovepiped operations produced values that were much lower than
those produced by either form of coordinated planning, regardless of the conditions surrounding the test case, as shown in Table 3. The results for
the second and third hypotheses were more interesting. The first parts of each hypothesis were supported by the experimental results because the
CP methods outperformed the stovepiped operations in every test case. However, the predictions made by both hypotheses pertaining to the
performance “gap” were incorrect. Rather than exhibiting a monotonic increase in magnitude with higher numbers of requests or greater arrival
rates, the gap generally decreased without a significant pattern as the number of requests increased. This observation suggested that the CP could
continue to exploit synergy between planners up to a certain level of scarcity, at which point the performance might decrease. The large test cases
corroborated this concept, inwhich the full CPwas actually slightly outperformed by themyopic CP in three of the four cases (although not by the
stovepipes).

Regarding the third hypothesis, pairwise comparison of cases 1with 7, 2with 8, and up to 6with 12 showed that, holding the request generation
process and arrival rate constant, increased variability/length in the time windows increased the performance gap for the a priori generation but
actually decreased the performance gap for the Poisson generation, especially between the full andmyopic runs (with themyopic runswinning in a
few situations). It was originally conjectured that the performance gap should increase because there would be higher variability between the
requests, thereby allowing theCP to capitalize on distinction of predictive attributes. This result can likely be attributed to the observation that, in a
situationwhere requests are not knownuntil the lastminute (e.g., the Poisson generationmethod), shorter timewindows imply fewer opportunities
for feasibility, which inherently favors a planning technique that can identify the most advantageous collection opportunities, such as the full CP
method.However, an improvement in the request features being used for learning could potentially reverse this trend, although this study is left for
future research.

In general, the results of the experiments imply that both the estimation procedure and the design of the formulations provided essential
contributions to the increased performance of the stochastic methods over the myopic and stovepiped methods. However, an important piece to
future researchwill be a statistical and expert analysis of planners to identify key predictive features. Because the test results here used only generic
features that were not guaranteed to correlate directly with a probability (see Sec. IV), such an analysis has the potential for huge improvements.
These improvements should be most pronounced in situations where planners are known to be very particular in the requests they prefer. As with
any machine-learning-based method, though, improper application may yield poor results.

VI. Conclusions

The scenarios examined provide strong evidence that the coordinated planning methods described in this paper, including the full math
programming formulation and probability estimation, provided a significant increase in the total value of serviced requests compared to
stovepiped operations. In all of the results, the current stovepiped operations performed considerably worse than coordinated planning. This
benefit to the planning of air and space data collection missions only had a small marginal cost to the owners of the assets, without even requiring
much change in the current infrastructure. Due to the integer programming nature of the model, if the size of the problem was to be increased
beyond the experiments performed here, further research should be pursued into tractability of the formulation, attributes used for probability
estimation, and sensitivity to the various input parameters (e.g., request arrival distributions, scenario size, robustness of the model to probability
estimation errors, and effects of independence assumptions). A tractability analysis for varying Nmax would be particularly useful for
understanding the tradeoff between runtime and opportunities to exploit synergy between planners, especially if compared to a heuristic or
approximate solution for the formulation [Eq. (15)]. It also would be worthwhile to investigate potential tractability improvements that could be
obtained by translating the {0,1} binary constraints of formulation (15) into quadratic constraints, thereby creating a quadratically constrained
quadratic program.Additionally, the cases considered assumed at least somewillingness for planners to share their assets, as well as some overlap
in the feasibility of the requests acrossmultiple planners. The results might not be as applicable if these two assumptions do not hold; further study
into the varying levels of cooperation could reveal insight into the true effect of these assumptions.

A great deal of work has been done in this paper to estimate various probabilities via online BLR. Future research into different models, such as
neural networks or beta regression, may be of value. However, one of the major benefits of the BLR in this paper was the ability to construct a
Gaussian prior distribution that reflected prior beliefs and confidence levels in a simple manner. The ability to do this depended directly on the
special structure and assumptions involved in logistic regressionmodels. Implementing an analogousBayesian approach in a neural networkmay
be much more difficult due to increased model complexity. Additionally, the learning method employed in this paper was designed to exploit
common features between request/planner pairings. This idea assumed that common request attributes yielding some level of improvement in
predictabilitymust exist and be known to theCP learningmethod.An in-depth analysis of such features or attributes, as described in Sec. IV, could
provide a great deal of improvement in the probability estimation process.

Because uncertainty is inherent in this problem, it may be useful to examine robust optimization approaches to finding a solution. A large
benefit could also be obtained by development of an intelligent method for reducing the space of composite variables, which could allow the
formulation to be tractable in much larger problems that may be experienced in the future. In any case, coordinated planning provides a unique
opportunity to expand air and space capabilities, which is an opportunity that should be further pursued.

Table 3 Mean values per request and percent of total requests completed

Parameter type vs value Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

Full CP (mean) 0.39 0.29 0.30 0.25 0.17 0.17 0.43 0.42 0.29 0.30 0.17 0.18
Myopic CP (mean) 0.37 0.28 0.30 0.24 0.18 0.17 0.41 0.42 0.28 0.32 0.16 0.19
Stovepiped (mean) 0.04 0.03 0.03 0.02 0.02 0.01 0.06 0.06 0.04 0.043 0.02 0.02
Full CP (% completed) 87.1 64.4 57.7 54.7 28.7 29.7 92.8 94.4 52.3 56.6 27.7 29.0
Myopic CP (% completed) 82.8 62.9 57.2 51.4 29.0 29.2 86.8 93.2 49.1 58.1 26.3 29.1
Stovepiped (% completed) 6.1 4.6 4.6 3.2 2.8 2.8 8.9 9.8 5.0 5.7 2.6 2.69
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