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Abstract— When the scheduled demand at an airport exceeds
the forecast capacity, the available capacity needs to be allocated
among airlines in an efficient and equitable manner. The
first stage of this two-step allocation process is a centralized
optimization to determine the initial allocation among airlines.
In the second stage, airlines cancel flights or modify their
schedules based on flight-specific delay costs, which they hold
private. The overall objective is to increase efficiency (that is,
reduce total delay costs) to the extent possible.

This paper demonstrates an inherent trade-off between the
ability of the first-stage optimization to dynamically adapt to
updates of the capacity forecast, and the flexibility available
to airlines in the second stage. A new stochastic optimization
model that balances this tradeoff is proposed. In addition
to increasing the flexibility available to the airlines and the
resultant delay reduction, the proposed formulation is shown
to have attractive computational properties.

I. INTRODUCTION

Ground Delay Programs (GDPs) are used to mitigate
airport congestion due to short-term capacity shortfalls by
rationing the limited capacity among scheduled arrivals.
The underlying principle of a GDP is that by delaying
departure from its origin airport, a flight can avoid expensive
airborne delays at a congested destination airport. More than
150,000 flights incurred 11 million minutes of GDP delays
in 2013, making it one of the most frequently used air traffic
management strategies [1].

The arrival capacity of an airport is measured by the
number of landings that can be conducted in a certain
amount of time, through discrete time-intervals known as
slots. Given an arrival capacity forecast for some future
time, the first step of a GDP is to allocate the available
capacity among the scheduled arrivals. This step, known as
the ground holding problem, aims to schedule the arrival
times and slots (and consequently the departure times of
flights at the origin airports) so as to minimize the sum of
airborne and ground delay costs [2]. It is generally solved
by assuming that the ground delay costs are identical for all
flights, as are the airborne delay costs [3], and exempting
flights of duration longer than a certain threshold (including
international flights).

This assumption of identical delay cost functions across all
flights is typically not true in practice, which necessitates the
second step of a GDP. The slot allocations from the ground
holding problem are revised by the airlines, based on their
privately-held flight-specific delay costs. This step is con-
ducted under a framework known as Collaborative Decision
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Making (CDM). The objective of the CDM revisions is to
increase system efficiency by using airline information [4,5].
Apart from deciding which flights to cancel, airlines may im-
prove their internal delay costs by reassigning flights among
their own slots, and also exchange the slots corresponding to
cancelled flights for alternate slots that can be used for later
flights. This mechanism is preferable for the airlines since it
does not require them to reveal their delay costs. The GDP
framework is illustrated in Fig. 1.
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Fig. 1. Illustration of the overall GDP framework.

Airport capacity forecasts are subject to uncertainties,
especially hours ahead of operation. Prior studies have
therefore considered stochastic capacity forecasts comprising
of multiple capacity scenarios and associated probabilities
[6]–[10]. There are two broad classes of stochastic ground-
holding models: Static stochastic models [7], which are
single-stage integer stochastic programs that determine a
single solution across all capacity scenarios, and dynamic
stochastic models [9,11], which are multi-stage integer
stochastic programs that allow for ground-hold solutions con-
tingent on scenario materialization. Both models minimize
the expected sum of ground and airborne delay costs. Under
the assumption of identical flight delay costs, the dynamic
stochastic model achieves lower delay costs. However, be-
cause the dynamic model differentiates flights based on their
durations when determining their slot allocations, options for
slot substitutions in the CDM step are more limited. This fact
may result in higher final delay costs for the dynamic model
compared to the static model, despite lower pre-CDM delay
costs.

This paper combines the favorable features of the static
and dynamic models to develop a hybrid stochastic ground-
holding model. Similar to the dynamic model, the hybrid



ground holding model uses the latest information on capacity
scenario materialization in determining the ground-holding
solution, but eliminates the dependence of its ground-holding
solution on flight duration. As a result, the hybrid model
provides more flexibility in the CDM step than the dynamic
model. The paper also establishes two useful results on the
tractability of the integer stochastic formulation of the hybrid
model. The hybrid model is shown to consistently reduce
total delay costs and improve efficiency (post-CDM) when
the actual flight-specific delay costs are not homogeneous.

II. STOCHASTIC GROUND-HOLDING MODELS

The inherent uncertainty in capacity predictions has mo-
tivated the development of stochastic formulations for the
ground-holding problem.

A. Scenario trees

The most common representation of the uncertainty is in
terms of scenarios, namely, alternate arrival capacity profiles
for the airport, along with the associated probabilities. Such
a forecast can be visualized in the form of a scenario tree,
as shown in Fig. 2 for the case of a forecast with 5 possible
scenarios. Scenario 1 (S1) corresponds to the airport starting
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Fig. 2. Scenario tree example.

with zero capacity, improving to one unit of capacity in time-
period 2, and further recovering to 2 units of capacity at
time 4. Scenario S2 begins similarly with the airport at zero
capacity, improves to one unit of capacity in time-period
3, and recovers to 2 units at time-period 5. The remaining
scenarios follow, with the airport taking progressively longer
to recover. At the start of the tree (time step 1), all scenarios
are possible. But at time 2, either scenario S1 or scenarios
S2-S5 are eliminated. The scenario tree also shows the a
priori probabilities of occurrence of each scenario. The set
of possible scenarios is denoted by Q, and the unconditional
probability of scenario q ∈ Q by πq .

B. Static vs. dynamic ground holding models

As mentioned in Section I, a static model would determine
a single ground-hold policy independent of which scenario
materializes, whereas a dynamic model would determine
scenario-dependent policies. Consider an example where an
airport faces a capacity forecast from Fig. 2, and has two

scheduled flights, F1 (with travel time of 2 time-steps)
scheduled to arrive in time-period 3, and F2 (with travel
time of 1 time-step) scheduled to arrive at time-period 4.

The solution to a static ground-hold policy [7] in this case
would be to ground-hold F1 for 1 time-period, rescheduling it
to leave at time-step 2 and arrive at time-step 4, and similarly
rescheduling F2 to arrive at time-step 5. The total gate-hold
time would be 2 time-periods, with an airborne delay of 2
units if S4 materializes (with probability 0.02), and 4 units if
S5 materializes (with probability 0.01). If the homogeneous
unit ground and airborne delay costs are assumed to be 0.5
and 2.5 respectively for both flights, the total cost of the
static solution is (2× 0.5) + 2.5× (0.04 + 0.04) = 1.2.

By contrast, the dynamic ground-holding policy [9] would
recommend that F1 receive 1 time-period of ground delay
in all scenarios. F2 will not be delayed if S1 materializes,
receive 1 time-period of ground-delay in either S2 and S3, 2
time-periods in S4 and 3 time-periods in S5, for an expected
delay cost of 1.115.

Although the dynamic ground-holding solution has a lower
delay cost than the static one, it comes at the expense of
flexibility. Suppose, in the above example, that the airline
operating F1 and F2 would like to swap their arrival slots,
since the private flight-specific costs value F2 more than
F1. Given the allocations from the static ground-holding
problem, F2 will now depart at time-step 3 and arrive
at time-step 4, while F1 will depart at time-step 3 and
arrive at time-step 5. The slot allocations from the dynamic
ground-holding problem are, however, scenario-dependent.
On swapping with F2, F1 would have to depart at time-step
2 if S1 materializes, time-step 3 under S2 and S3, time-step
4 in S4 and time-step 5 under S5. This is not operationally
feasible, since scenarios S3 and S4 are indistinguishable at
time-step 3, when a decision would have to be made on
whether F1 should depart. The nature of the dynamic ground-
holding problem is such that CDM swaps are only possible
between flights of equal duration, because the rules of CDM
restrict airlines to use the same arrival slots assigned to
them across different scenarios in the first GDP step. The
benefit of slot swaps in CDM depends on the variability
in the airline flight-specific delay costs: For example, if the
ground and airborne delay costs of F2 are 9 times that of F1
(while maintaining the average delay costs assumed by the
ground-hold problem), the total post-CDM delay cost of the
static solution is 0.355, which is significantly lower than the
optimal cost of 1.115 that could be achieved by the dynamic
solution.

C. Hybrid stochastic ground-holding model

The observation that the multi-stage formulation of the
dynamic model results in better pre-CDM allocations while
the flight duration-independent allocations of the static model
yields more slot swap options motivates the hybrid stochastic
ground-holding problem:
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Notation:
T : GDP planning horizon (input)
Q: Set of possible scenarios, with a priori prob-

abilities πq (input)
Acap

q,t : Airport arrival capacity at time t under sce-
nario q (input)

K: Maximum number of time-steps for which
any aircraft can be ground-held (input)

Gt: Set of scenarios still possible at time t (input)
Cg,n: Ground-delay cost incurred by an aircraft over

n time-steps (input)
Ca: Unit airborne delay cost (input)
Adem

t : Aggregate arrival demand at time t (input)
max dur: Duration of longest flight considered for

rescheduling in the GDP (given)
Aaq

q,t: Length of airborne arrival queue at time t for
scenario q (decision variables)

Xq
t,t+n: Number of flights rescheduled from arrival

time t to arrival time t + n for scenario q
(decision variables)

The objective function minimizes the sum of expected
ground and airborne delay costs. Constraint (1) ensure that
no flight receives a ground delay of more than K time steps.
Constraint (2) ensures that the number of aircraft that land
at any time step does not exceed the airport arrival capacity
under any realized scenario. Constraints (3) are coupling
constraints (also known as non-anticipativity constraints) to
ensure that the same ground-hold decisions are made for all
scenarios that are indistinguishable at the time of a decision,
in such a way that flights can be swapped irrespective of
their duration. It is worth noting that the non-anticipativity
constraints are a key difference between the static, hybrid and
dynamic formulations: The static model would require that
the same ground-hold decisions are made for all scenarios for
all flights at all times; the dynamic model would require that
the same ground-hold decisions are made for all scenarios
that are indistinguishable at the time of a decision for all
flights that have not yet departed; the hybrid model imposes
this constraint in a way that allows swaps irrespective of the
flight durations.

The proposed hybrid ground-holding problem formulation
is a multi-stage stochastic mixed-integer program that per-
mits scenario-specific revisions of the ground-holding solu-

tion like the dynamic model, and yet uses aggregate decision
variables to avoid using individual flight durations (like a
static model). At any time period t under capacity scenario
q, the hybrid model assigns ground holds for all flights
originally scheduled to land in time period t + max dur.
This feature of the hybrid model ensures that slots assigned
to flights of different durations can be swapped, since any
flight of shorter duration than max dur would be yet to
depart when ground delays are assigned for flights arriving
at t+max dur. When max dur = T , the hybrid formulation
reduces to a single-stage stochastic program, namely, the
static ground-holding model.

D. Benefits of the hybrid ground-holding model

1) CDM benefits: We revisit the example presented in Fig.
2 and Section II-B. Since the longest flight in the time-period
of interest is F1, max dur = 2. The optimal solution to the
proposed hybrid ground-holding model would recommend
that F1 receive 1 time-period of ground delay in all scenarios,
departing at time-step 2 and arriving at time-step 4. F2 will
not be delayed if S1 materializes, but receive 1 time-period
of ground-delay in all other scenarios, for an expected delay
cost of 1.195.

The optimal delay cost of the hybrid ground-holding
model is less than that of the static model, but higher than
that of the dynamic model. However, the slots assigned to
flights F1 and F2 by the hybrid model can be swapped, if
the airline so desires. F1 will depart in time-step 2 under
scenario S1 and in time-step 3 for other scenarios, since S1
can be distinguished from the other scenarios by time-step
2, as seen in Figure 2. F2 will now depart at time-step 3,
in all scenarios. The post-CDM expected delay cost in this
case is 0.315. While this cost is an improvement over both
the static and the dynamic allocations, one would expect that
for typical delay cost variations between flights, the hybrid
ground-hold model would result in a final delay cost between
those of the static and dynamic models.

Table I summarizes the expected tradeoffs between the
static, hybrid and dynamic stochastic ground-holding models,
for typical cost structures.

Static Hybrid Dynamic
Pre-CDM delay cost High (Worst) Medium Low (Best)
Benefit from CDM High (Best) Medium Low (Worst)

Equity High (Best) Medium Low (Worst)
Tractability High (Best) Medium Low (Worst)

Ease of implementation High (Best) Medium Low (Worst)

TABLE I
TYPICAL TRADEOFFS EXPECTED IN THE STATIC, HYBRID AND DYNAMIC

STOCHASTIC GROUND-HOLDING MODELS.

2) Equity: The static model is an aggregate model that
does not differentiate between flights or scenarios, and yields
a solution that maintains the original scheduled order of
arrivals. The hybrid stochastic formulation may rearrange
the original arrival schedule under some capacity scenarios,



potentially resulting in inequities in the ground-hold alloca-
tion. Similar concerns have been raised about the dynamic
ground-holding model [9]. The dynamic model typically
delays short-haul arrivals under low capacity scenarios, as
these arrivals are more responsive in the event of new
forecast updates. By contrast, the hybrid ground-holding
solution favors arrivals scheduled for later in the GDP, since
they could potentially be advanced in the event of an early
increase in airport capacity. Since the length of a GDP is not
decided before the time of its initiation, the hybrid ground-
holding solution is less prone to a systematic bias based on
flight duration than the dynamic solution.

3) Computational tractability of the hybrid ground-
holding model: This section outlines two results on the
tractability of the hybrid stochastic model formulation under
a fairly general set of conditions. These results assume
integer demands (Ad

t ∈ Z+, ∀t ∈ {1, .., T}) and capacities
(Acap

q,t ∈ Z+, ∀q ∈ Q, ∀t ∈ {1, .., T}). The proofs
use perturbation analysis to establish key properties of the
optimal ground hold solutions that are sufficient conditions
for the result statements. In this procedure, a possibly
nonconforming optimal solution (i.e., an optimal solution
that does not satisfy the key properties) is perturbed by
an infinitesimal amount in the direction of a conforming
solution, while ensuring no increase in the objective function
value or violation of constraints. A feasible, conforming
optimal solution is thereby constructed through a sequence
of optimality-preserving perturbations to the nonconforming
solution.
Case 1: Integer queue lengths

Lemma 1: The hybrid stochastic ground-holding formu-
lation yields an optimal solution with integer values for all
variables Xq

a,b (∀q ∈ Q; a, b ∈ {1, .., T}) if the queue length
variables (Aaq

q,t ∀q ∈ Q, t ∈ {1, .., T}) are constrained to have
integer values, and the ground-holding costs are marginally
non-decreasing (i.e., Cg,n+1 − Cg,n ≥ Cg,n − Cg,n−1 ∀n).

A sketch of the proof of Lemma 1 is presented in the
appendix. The number of integer variables in the original
hybrid ground-holding model is O(T 3), since there were
O(T 3) ground-holding variables and O(T 2) airborne queue
lengths. Lemma 1 proves that an integral solution can be
guaranteed by restricting the integrality requirement to only
O(T 2) variables.
Case 2: Capacity scenario tree with special structure

Capacity scenario trees often present a special structure
with sequentially non-decreasing capacity scenarios. In other
words, the sole element of uncertainty is the time at which
the branches from the lowest capacity state to the next
capacity state occur. An example of such a scenario tree
with three capacity states (low (L), medium (M) and high
(H), L<M<H) is shown in Figure 3.

Every capacity scenario in the tree in Figure 3 follows
the same deterministic trend once the capacity transitions
from state (L) to state (M). Regardless of the time step when
capacity first increases from low state (L) to medium state
(M), there are two successive medium capacity states (M)
before the capacity rises to the high state (H). The duration of
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Fig. 3. Illustration of a capacity scenario tree with the special structure
described in Case 2.

the lowest capacity (L) in scenario q is denoted durq ∀q ∈ Q.
Given a scenario tree with this special structure, the

scenarios can be labelled in increasing order of durq , i.e.,
durq = q, ∀q ∈ {1, .., |Q|} and |Q| = T , without loss of
generality. The lowest capacity state therefore lasts through
the first time-step for scenario 1, and through the entire
length of the GDP planning horizon (i.e, T intervals) for
scenario T .

Lemma 2: Given marginally non-decreasing ground-
holding cost coefficients Cg,n+1−Cg,n ≥ Cg,n−Cg,n−1, ∀n,
and a capacity scenario tree forecast with sequentially non-
decreasing capacity scenarios and sole element of uncertainty
being time of improvement from lowest capacity state, the
hybrid ground-holding problem formulation is guaranteed
to have an integral optimum solution if the queue length
variables for scenario T (i.e., Aaq

T,t ∀t ∈ {1, .., T}) are
constrained to be integers.

Therefore, total integrality under these conditions can be
guaranteed by restricting the integrality requirement to O(T )
variables in the formulation, instead of O(T 3) variables in
the original formulation. The proof of Lemma 2 is also
sketched in the appendix. The assumption of marginally non-
decreasing ground holding costs is quite non-restrictive in
practice, since each incremental delay only has an increased
risk of propagating through the network.

III. CASE STUDIES

A comparative study of the static, hybrid and dynamic
stochastic ground-holding models was conducted using data
reported from a GDP at LaGuardia Airport (LGA) on Feb
17, 2006. The GDP was in effect from 7 am to midnight,
during which there were 542 scheduled domestic arrivals,
operated by 27 airlines. The original arrival schedule prior
to the issuance of the GDP was obtained from the FAA’s
database [12]. Time-intervals were assumed to be 1 hr long,
and flight durations were rounded up to the nearest hour.



The maximum flight duration among the domestic arrivals
scheduled within the GDP time horizon was 5 hrs.

Representative estimates for unit ground and airborne de-
lay costs for each flight were derived using T-100 schedules
and P-52 data, capturing cost components like aircraft fuel
and crew delays along with passenger delays [13]. The
coefficient of variation in unit delay costs for the 10 airlines
with the most flights ranged from 5% to 58%, with an
average value of 19.4%. Future research would incorporate
some of the cost functions determined in a recent paper by
Bloem and Huang [14].

The arrival capacity of LGA is assumed to be 14 ar-
rivals/15 min or 56 arrivals/hour [15]. Capacity scenario trees
of the form shown in Figure 4 were assumed, with a reduced
capacity of 28 arrivals/hour. The probability distributions for
the scenario trees were randomly generated to obtain varying
values of the expected duration of low-capacity, as well as
the total length of the GDP.
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Fig. 4. Capacity scenario tree used in case studies.

The three stochastic ground-holding models were executed
as the first GDP step under each of these distributions,
followed by intra-airline slot substitutions for each airline.
The run-times of the ground-holding optimization averaged
under 1 second for the static and hybrid models, while the
dynamic model typically took between 5-10 seconds. The
scale of the scenario trees considered in the case studies,
while resembling realistic conditions, is still limited. With
increasing number of scenarios and capacity states, the
discrepancy in the run-times between the models is expected
to widen.

The slot substitution step was formulated as an assignment
problem between flights and their corresponding set of
scenario-specific slots, given the flight-specific delay costs.
Feasibility of assigning a flight to a given set of scenario-
specific slots is enforced based on its duration, as discussed
earlier. Flight cancellations were not explicitly considered in
this study.

The influence of the following GDP parameters in the
context of CDM slot substitution is studied: [P1] Expected
duration of reduced capacity, a measure of the level of
severity of the GDP; and [P2] Total length of GDP planning
horizon, a measure of the total length of disrupted operations.

Fig. 5 presents a comparison of the final delay costs
aggregated across all airlines (after both the ground-holding
allocation and the subsequent CDM slot swaps have been
conducted) over a range of expected low-capacity durations,
for GDP planning horizons of 7 hours and 15 hours. The
figures present the net percentage improvement achieved by
each model over the stochastic model with the largest final
aggregated delay costs after intra-airline substitution. The
missing bar in each set corresponds to the model with the
highest delay costs in each case.

0 

5 

10 

15 

20 

25 

30 

35 

40 

1.00 2.00 3.00 4.00 5.00 6.00 7.00 
%

 im
pr

ov
em

en
t o

ve
r w

or
st

 m
od

el
 

Expected duration of low capacity period 

Static 
Hybrid 
Dynamic 

0 

10 

20 

30 

40 

50 

60 

1.00 3.00 5.00 7.00 9.00 11.00 13.00 15.00 

%
 im

pr
ov

em
en

t o
ve

r w
or

st
 m

od
el

 

Expected duration of low capacity period 

Static 
Hybrid 
Dynamic 

Fig. 5. Percentage improvement in final system delay costs for GDP
horizon lengths of (top) 7 hrs and (bottom) 15 hrs, illustrating the impacts
of the expected duration of reduced capacity and the total GDP planning
horizon. The missing bars correspond to the formulation with the highest
cost.

For a given GDP horizon length, the static model pro-
gressively takes over from the dynamic model as the model
with the lowest final delay costs, as the expected duration
of reduced capacity increases. The benefit of the dynamic
model (for lower values of P1) increases with increasing
GDP horizon length (P2). These trends are due to the
greater pre-CDM benefits of the dynamic model in these
regimes. The dynamic model performs better for longer GDP
planning horizons (15 hrs vs. 7 hrs), because more dynamic
information on capacities can be acquired and utilized.

The hybrid model is rarely the worst-performing model
across the explored ranges of these test parameters. This
observation validates the underlying principle of the hybrid



model, which combines the superior pre-CDM performance
of the dynamic model with the more flexible intra-airline
substitution of the static model, to achieve consistent system
delay cost reductions across a range of settings. While one
might be led to believe that the greatest system benefits
can be realized by choosing between the static or dynamic
model depending on favorable GDP parameters, we note that
the nature of slot allocation information exchanged between
airport and airlines is specific to the selected model. There is
merit to maintaining a consistent modeling framework across
different GDP instances, for the sake of simplicity.

In addition to the total duration and level of severity
of the GDP, the variability in unit delay costs (P3) is
also an important factor. The greater the variability in the
flight-specific delay costs, the more the likely benefits from
CDM slot substitutions. As a result, different airlines can be
impacted differently. More extensive simulations have shown
that the static and hybrid models perform better than the
dynamic model when there is a higher variability in unit
delay costs. Similar benefits have also been demonstrated
for mechanisms that allow slot exchanges between airlines
[15].

A recently emerging family of ground-holding approaches
look to eliminate the dependence of stochastic models on
scenario tree-based inputs. Ball et al. [16] have proposed
a Ration-by-Distance (RBD) model, which is an iterative,
deterministic equivalent of a stochastic ground-holding prob-
lem. The RBD model relies on periodic capacity updates to
perform corresponding adjustments to slot allocations (and
the CDM-based airline responses).

Our work looks to address the GHP and CDM steps of
a GDP in conjunction within a scenario-tree based archi-
tecture. A potential extension could consider a scenario-
free framework involving capacity upgrades at various future
points, wherein the GHP and CDM steps are revised at each
upgrade. The performance of such a framework, which is
closer to the state-of-practice, can be further compared to
our current analysis to understand and quantify its merits.

IV. CONCLUSIONS

This paper proposed a new formulation for the stochastic
single-airport ground holding problem with the objective of
increasing the flexibility afforded to airlines in the Collabo-
rative Decision Making stage of a Ground Delay Program,
in order to increase the efficiency of the final allocation.
The proposed hybrid stochastic ground-holding problem for-
mulation combined the dynamic response of the dynamic
ground-holding model with the ability to swap flights of
different durations that was an attractive characteristic of
the static ground-holding formulation. The paper showed
that with marginally nondecreasing ground holding costs
and when the only uncertainty in the capacity forecast
was the time at which the capacity would improve, the
hybrid ground-holding formulation was guaranteed to have
an integer optimum solution if the arrival queue lengths in
the most severe scenario were constrained to be integers.

The performance of the proposed hybrid model was eval-
uated using realistic data sets, both in terms of the initial
ground-hold allocation, as well as the gains from the intra-
airline substitution processes of the CDM framework. The
detailed evaluation of the three models showed that the
hybrid ground-holding model provided a more consistent
benefit than the dynamic or static models in intra-airline sub-
stitution over a range of capacity uncertainties and variability
in delay costs. A number of extensions are also possible.
First, it is noted that the hybrid model strikes a balance
between the static and dynamic model by aggregating flights
over the maximum flight duration, as opposed to individual
flight duration (dynamic model) or the entire planning hori-
zon of the GDP (static model). The tradeoffs from this design
can be studied by further varying the level of aggregation
by only enabling swaps between flights of a certain length.
Finally, the proposed formulations, while focused on the
allocation of arrival resources, can be easily applied to the
simultaneous allocation of arrival and departure resources at
airports.
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APPENDIX: PROOFS

Lemma 1. The hybrid stochastic formulation yields an optimal solution
with integer values for all variables Xq

a,b (∀q ∈ Q; a, b ∈ {1, .., T}) if
the queue length variables (Aaq

q,t ∀q ∈ Q, t ∈ {1, .., T}) are constrained
to have integer values, and the ground-holding costs are marginally non-
decreasing (i.e., Cg,n+1 − Cg,n ≥ Cg,n − Cg,n−1 ∀n).

Proof: [Proof of Lemma 1] Assume an optimal solution X (with
cost Z) for the hybrid problem satisfying the specified conditions on
Cg,n, and with Aaq

q,t ∈ Z+, but with fractional values Xq
a,b for some

q ∈ {1, .., Q}; a, b ∈ {1, .., T}.X is converted into a fully integral solution
through a sequence of perturbations that do not increase the optimal cost.

1) Amongst the fractional values, let i = min
a:X

q
a,b

/∈Z+ ∀q∈Q
a, and j =

min
b:X

q
i,b

/∈Z+ ∀q∈{1,..,Q}
b. By manner of selection of indices i and j,

there does not exist p < i such that Xq
p,j /∈ Z+ for any q ∈ Q.

2) Since
i+K∑
b=i

Xq
i,b = Ad

i ∈ Z+, if Xq
i,j /∈ Z+ and i from Step 1, there

exists b > j such that Xq
i,b /∈ Z+. Let k = min

X
q
i,b

/∈Z+andX
q
i,j /∈Z+

b.

3) The non-anticipativity constraints (3) imply that Xq
i,b ∀b ∈

i, .., i+K are the same for all q ∈ Gi−max dur. Let δi,j =
1− frac(Xq

i,j), δ
′
i,k = frac(Xq

i,k) for any q ∈ Gi−max dur.
4) Since Aaq

q,t ∈ Z+ ∀q, t, the scenario set Gi−max dur can be
partitioned into two non-overlapping subsets, QA

i and QB
i , such that:

a) ∀q′ ∈ QA
i , ∃pq′ s.t. i < pq′ < j and Xq′

pq′ ,j
/∈ Z+.

b) ∀q′ ∈ QB
i , no such time index pq′ exists. Therefore,

j∑
l=j−K

Xq′

l,j /∈ Z+ (from (2) for time j and scenario q′).

Aaq
q,j ∈ Z+ ∀q ∈ Q =⇒ Aaq

q′,j = 0, implying that there is
spare capacity, Acap rem

q′,j , at time j for scenario q′ such that

Acap rem
q′,j = Acap

q′,j −
j∑

l=j−K

Xq′

l,j ≥ 1− frac(Xq′

i,j) = δi,j .

5) ∀q′ ∈ QA
i , time index p′

q′ = min
i<pq′<j,X

q′
p
q′ ,j

/∈Z+

pq′ is selected,

and δ′
p′
q′ ,j

= frac(Xq′

p′
q′ ,j

) computed.

6) Let δmin = min(δi,j , δ
′
i,k, min

q′∈QA
i

δ′p′
q′ ,j

).

7) For all q ∈ Gi−max dur, q
′ ∈ QA

i ,

X newq
i,j = Xq

i,j + δmin; X newq
i,k = Xq

i,k − δmin;

X newq′

p′
q′ ,j

= Xq′

p′
q′ ,j
− δmin; X newq′

p′
q′ ,k

= Xq′

p′
q′ ,k

+ δmin

Feasibility of perturbed solution, X new:
Case i. ∀q′ ∈ QA

i : There was a balanced swap of δmin units of
flow between times j and k, with no change to the reallocated arrival

demand,
t∑

l=t−K

Xq′

l,t, in the queue balance constraint (2) or airborne

queue Aaq
q′,t ∀t ∈ {1, .., T}. Therefore, X new is feasible.

Case ii. ∀q′ ∈ QB
i : The perturbation transferred δmin units of flow

from k to j, where j < k. Since there was spare capacity at time j
for all q′ ∈ QB

i = Acap rem
q′,j ≥ δi,j , a flow transfer of δmin can

be fully absorbed with no additional airborne queue. In addition, the
queue lengths at k and beyond (Aaq

q′,t ∀t ≥ k) may be reduced by
this transfer. Therefore, X new is feasible.
Cost of perturbed solution: The airborne delay cost component
for X new cannot be greater than that of the original solution
X . Therefore, the incremental ground delay cost for X new
compared to X (i.e., Zg(X new) − Zg(X)) is an upper
bound on the total incremental cost Z(X new) − Z(X). The
incremental ground delay cost, Zg(X new) − Zg(X) equals:
(Cg,j−i − Cg,k−i + Cg,k−p′

q′
− Cg,j−p′

q′
)δmin, ∀q′ ∈ QA

i

(Cg,j−i − Cg,k−i)δmin, ∀q′ ∈ QB
i

0, ∀q′ /∈ Gi−max dur

Since the ground-delay costs are marginally non-decreasing, and i <
p′
q′ ≤ j < k, Cg,k−i − Cg,j−i ≥ Cg,k−p′

q′
− Cg,j−p′

q′
≥ 0.

=⇒ Z(X new)− Z(X) ≤ Zg(X new)− Zg(X) ≤ 0,

implying that Xnew preserves optimality.
8) Steps 1-7 are repeated until no fractional values remain in the optimal

solution. The algorithm will terminate, since after every perturba-
tion, no new fractional solution is created among Xq

a,b ∀a, b ∈
{1, .., T}, ∀q ∈ Q, and at least one fractional solution is eliminated.

Lemma 2. Given marginally non-decreasing ground-holding cost coeffi-
cients Cg,n+1 − Cg,n ≥ Cg,n − Cg,n−1, ∀n, and a capacity scenario
tree forecast with sequentially non-decreasing capacity scenarios and sole
element of uncertainty being time of improvement from lowest capacity state,
the hybrid stochastic ground-holding formulation is guaranteed to have an
integral optimum solution if the queue length variables for scenario T (i.e.,
Aaq

T,t ∀t ∈ {1, .., T}) are constrained to be integers.
Proof: [Proof of Lemma 2] The result is proved in two parts.

Part 1: Given certain conditions on the input parameters, the optimal
solution is shown to have a special structure in terms of flight ordering
with respect to the original schedule.
Part 2: For the given special structure of optimal solution, the stated result
on the integrality of the optimal solution is proved.

In the discussion that follows, max dur denotes the longest duration
among all flights handled in the model, Acap rem

q,b (X) denotes the residual
capacity for scenario q at time-step b given solution X , and Acap rem,a

q,b (X)
represents the residual capacity for scenario q at time-step b given solution
X if only flows Xq

i,j ∀i ≤ a − 1, ∀j were considered. It is noted that
Acap rem,T+1

q,b (X) = Acap rem
q,b (X).

Given the proposed scenario labeling scheme,
(A1) Gq = {q, q + 1, .., |Q|} ∀q ∈ {1, .., |Q|} and Gq\Gq+1 = {q} is

a solitary scenario.
(A2) Acap

q,t ≥ A
cap
q+1,t ∀q ∈ {1, .., |Q|}, ∀t ∈ {1, .., T}.

The special scenario tree structure enables a compact representation of
the hybrid ground-holding solution. A partial solution Xq(i : j) is the
ground-holding allocation under scenario q for flights scheduled to arrive
between time-steps i and j. By the principle of the hybrid ground-holding
model, flights scheduled to arrive at time-step t + max dur are assigned
ground delays at time-step t, based on observed capacities up to time t.
Accounting for non-anticipativity constraints, the ground-hold solution for
a given scenario q can be expressed as the union of two partial solutions:
Xq(1 : T ) = [XT (1 : q + max dur) Xq(q + max dur + 1 : T )].
The component XT (1 : q+max dur) captures the ground-hold decisions
taken up to time-step q and is common to all scenarios indistinguishable
until this time-step (i.e., Gq). The subsequent decisions from time-step q+1
onwards (Xq(q+max dur+1 : T )) are taken independently for scenario
q, following its divergence from scenario cluster Gq .

At time-step t, two sub-problems that determine partial ground-holding
solutions Xq(t+max dur : T ) ∀q ∈ Gt and Xt−1(t+max dur : T ),
given partial solution XT (1 : t+max dur− 1), are considered: The first
subproblem corresponds to a deterministic ground-holding problem that is
solved for the branch of the scenario tree that becomes certain at time t,
while the second one corresponds to the portion of the scenario tree that is
still uncertain at time t. Fig. 6 illustrates the two sub-problems at time t,
namely, the deterministic (in green) and the stochastic (in red).
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Fig. 6. Illustration of sub-problems at time t for given scenario tree.

Deterministic ground-holding subproblem (D subt(X0)): Given a partial
ground-holding solution, XT

0 (1 : t + max dur − 1), the partial solution
Xt−1

0 (t+max dur : T ) is the solution to the following problem:



min
K∑

n=0

Cg,n(

T−n∑
i=t+max dur

Xq
i,i+n) + Ca

T∑
i=t+max dur

Aaq,D subt

i

s.t.
∑i+K

j=i Xq
i,j = Ad

i , ∀i ∈ {t+max dur, .., T}
Aaq,D subt

i ≥
∑i

j0
Xq

j,i +Aaq,D subt

i−1 −Acap rem,t+max dur
q,i (X0),

j0 = max(t+max dur, i−K); ∀i ∈ {t+max dur, .., T}
Xq

i,j ∈ Z+, ∀i, j ∈ {t+max dur, .., T}

The arrival queue length in this subproblem for time interval i is denoted
as Aaq,D subt

i . Due to the inherent property of deterministic ground-
holding, flight ordering in partial solution Xt−1

0 (t + max dur : T ) for
scenario t − 1 in any solution X0 will be the same as in the original
schedule.
Stochastic ground-holding subproblem (S subt(X0)): Given a partial
solution XT

0 (1 : t+max dur−1), the partial solutions Xq
0 (t+max dur :

T ) ∀q ∈ Gt are given by the solution to the following stochastic ground-
holding problem, that minimizes the expected delay cost subject to:

i+K∑
j=i

Xq
i,j = Ad

i , ∀i ∈ {t+max dur, .., T}, q ∈ Gt

Aaq,S subt

q,i ≥
i∑

j=j0

Xq
j,i +Aaq,S subt

q,i−1 −Acap rem,t+max dur
q,i (X0),

j0 = max(t+max dur, i−K), ∀i ∈ {t+max dur, .., T}, q ∈ Gt

Xq1
i,j = Xq2

i,j , ∀q1, q2 ∈ Gi−max dur, ∀i ∈ {t+max dur, .., T}
Xq

i,j ∈ Z+, ∀i, j ∈ {t+max dur, .., T}

The arrival queue length at time i in this subproblem is denoted
Aaq,S subt

q,i ,∀q ∈ Gt.
Lemma 2, Part 1: It is first shown that there exists an optimal solution
X for the hybrid ground-holding formulation such that the ground-holding
allocation for scenario T , XT (1 : T ), has the same ordering of flights as in
the original schedule. The proof is based on perturbation analysis (similar
to Lemma 1), and is omitted here in the interest of space. Details can be
found in [15].
Proof of Lemma 2, Part 2 We now have to prove that an optimal solution X
is integral under the additional condition that Aaq

T,t ∈ Z+ ∀t ∈ {1, .., T}.
The result in Part 1 concerning the structure for the optimal solution

X holds for any general value of Aaq
s,t ∀s ∀t. Therefore, the structure

holds true for specific case of integral Aaq
T,t, ∀t. Once again, we adopt a

perturbation analysis for this proof.
1) Non-conforming solution: Assume we have a non-integral optimal

solution X such that for scenario T (longest duration of lowest
capacity state) there exist time instances p ∈ {1, ..T}, j ∈ {p, p+
1, ..min(p+K,T )} such that XT

p,j /∈ Z+. Let us select the earliest
such time instance p, and corresponding earliest time instance j for
which XT

p,j /∈ Z+. In accordance to the structure for X as derived
in Part 1, the ordering for flights in X for scenario T is the same as
in original schedule.
Since, for a given p, j is the lowest time index for which XT

p,j /∈ Z+,

∃ time instance q > j s.t. XT
p,q > 0, since

min(p+K,T )∑
t=p

XT
p,t = Ad

p

where Ad
p ∈ Z+. Let q be the lowest such time instance. Given

the order preserving structure of the solution for scenario T , we can
infer that no arrival originally scheduled beyond time p is allotted
to any time at or before j. i.e. XT

k,t = 0 ∀k > p, t ≤ j. Also,
since p is the lowest time index for which XT

p,j /∈ Z+, we have
XT

k,l ∈ Z+ ∀k < p, l ∈ {k, k + 1, ..min(k +K, j)}. Therefore,
j∑

t=max(1,j−K)

(XT
t,j) =

p−1∑
t=max(1,j−K)

(XT
t,j)+X

T
p,j /∈ Z+, since

p−1∑
t=max(1,j−K)

(XT
t,j) ∈ Z+.

We know that Aaq
T,j = min(0,

j∑
t=max(1,j−K)

XT
t,j + Aaq

T,j−1 −

Acap
T,j ), where Acap

T,j and Aaq
T,j−1 ∈ Z+. Therefore, if Aaq

T,j ∈ Z+,
the only possibility is that Aaq

T,j = 0. This implies that capacity is

not exceeded at time j for scenario T , that is, Acap rem,p+1
T,j (X) =

Acap
T,j −A

aq
T,j−1 −

j∑
t=max(1,j−K)

(XT
t,j) ≥ 0 and /∈ Z+.

The above, in turn, implies Acap rem,p+1
T,j (X) > 0. From property

(A2) of scenario tree, we can conclude that Acap rem,p+1
q,j > 0 ∀s ∈

{1, .., T}.
As per the hybrid stochastic model’s working principle, the ground-
holding decision XT

p,j is taken at time p − max dur, and affects
scenarios in set G(p−max dur). There are three possible categories
of scenarios within Gp−max dur:

Type 1. q ∈ Gp−max dur such that Acap rem
q,j (X) > 0

Type 2. q ∈ Gp−max dur such that Acap rem
q,j (X) = 0, but ∃m

such that p ≤ m < j and Xs
m,j > 0.

Type 3. q ∈ Gp−max dur such that Acap rem
q,j (X) = 0, and @m

such that p ≤ m < j and Xs
m,j > 0

Note that scenario T falls into Type 1.
2) Perturbation: Consider a new solution X new obtained by advanc-

ing δ units of ground-hold allocation XT
p,r to XT

p,j as follows:

X newT
p,j = XT

p,j + δ; X newT
p,r = XT

p,r − δ, (4)

all else being equal. For scenario s ∈ G(p −max dur) belonging
to Type 2, we consider additional perturbation involving a balancing
transfer of δ units from Xq

m,j to Xq
m,r .

X newq
m,j = Xq

m,j − δ; X newq
m,r = Xq

m,r + δ, (5)

all else being equal.
3) Feasibility of perturbation: Given the perturbation is essentially a

rearrangement of ground-holding allocation for arrivals scheduled for
time indices p under scenario T (and m for scenario q belonging to
Type 2), its feasibility is not affected in any way.

4) Cost of perturbation: We now consider cost of perturbation specific
to scenarios from each of the above three categories.

Type 1. The unbalanced δ units of ground-hold re-allocation to
time index l (from XT

p,r) are absorbed by the available
spare capacity (since Acap rem

p−max dur,j(X) > 0) without
producing any queue. We can thereby show highest cost
of perturbation = Zq(X new) − Zq(X) = (Cg,j−p −
Cg,r−p)δ < 0 (corresponds to situation where the pertur-
bation causes no decrease to airborne delay costs).

Type 2. We can show that cost of perturbation = Zq(X new)−
Zq(X) = (Cg,j−p−Cg,r−p+Cg,r−m−Cg,j−m)δ ≤ 0
for marginally non-decreasing ground delay costs.

Type 3. We can show that Zq(X new)− Zq(X) = (Cg,j−p −
Cg,r−p + Ca(r − j))δ ≤ 0.

Therefore, Z(X new)≤Z(X).
We can repeat the above-described perturbations until we have an optimal
solution that bears only integral values for XT

p,j ∀p ∈ {1, .., T}, j ∈
{p, p+ 1, ..,min(p+K,T )}.

As shown earlier, the compact representation for ground-holding
solution for any scenario q ∈ {1, .., |Q|} is Xq(1 : T ) = [XT (1 :
q + max dur) Xq(q + max dur + 1 : T )], where the partial solution
Xq(q+max dur+1 : T ) can be obtained as solution to the deterministic
sub-problem D subq+1(X).
Given integral values for XT (1 : T ), we know that
Acap rem,q+1+max dur

q,t (X) ∈ Z+ ∀t ≥ q + 1 + max dur. Therefore,
the solution to the deterministic sub-problem D subq+1(X) will also
be integral for all q, ensuring that the overall ground-holding solution
Xq(1 : T ) will be integral for all q.

In summary, if the queue length variables for scenario T (longest duration
of lowest capacity state) are restricted to be integral, the hybrid stochastic
ground-holding model will yield an integral optimum under (1) marginally
non-decreasing ground-holding cost coefficients, and (2) capacity scenario
tree with sequentially non-decreasing capacity scenarios, with the sole
element of uncertainty being the time of improvement from the lowest
capacity state.


