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This paper presents a novel approach to managing the aircraft taxi-out process at airports, by posing the

problem in a network congestion control framework. A network model of the airport surface with stochastic

link travel times is first developed. The model parameters for Boston Logan International Airport are es-

timated using empirical data from a surface surveillance system. Using the entry times of aircraft into the

network as the control variables, a control algorithm that aims to reduce taxi-out times is proposed. This

algorithm regulates network congestion while limiting the adverse effect on throughput performance. Perfor-

mance characteristics of the proposed control algorithm are derived using simplified theoretical analysis, and

are shown to agree with simulations of traffic on a network model of Boston Logan International Airport.

Nomenclature

ASDE-X Airport Surface Detection Equipment, Model X

BOS Boston Logan International Airport

C Cost function for control algorithm

FAA Federal Aviation Administration

Ns,l Number of stops on link l, modeled as a geometric random variable with parameter pkl

a Weight in the cost function on pushback delay, as compared to expected taxi time

k Current level of traffic (number of active or post-pushback departures) on the surface

kctrl Target number of active or post-pushback departures on the surface

kp Projected traffic level after time tp

∗PhD Candidate, Department of Aeronautics and Astronautics. 77 Massachusetts Avenue, Room 35-217, Cambridge, MA 02139. AIAA Student
Member.
†Associate Professor, Department of Aeronautics and Astronautics. 77 Massachusetts Avenue, Room 33-328, Cambridge, MA 02139. AIAA

Senior Member.



pi,j Probability of transition from traffic state i to j

tl Travel time over link l

tp Pushback delay assigned to an aircraft that calls for pushback at the current time

ts,l,i Stationary time corresponding to ith stop on link l, modeled as exponential random variable with rate µl

tt Expected taxi-out time of an aircraft

tu,l Unimpeded travel time over link l, modeled as an Erlang random variable with order nl and rate λl

∆tkl Average inter-departure time from link l when surface traffic level is k

1
µl

Expected taxi time added per stop on link l

Xl
µl

Expected increase in taxi time on link l due to the addition of one more aircraft on the airport surface

σl Maximum throughput value for link l

ζl Arrival rate to link l

I. Introduction

The reduction of taxi-out times at airports has the potential to substantially reduce delays and fuel consumption on

the airport surface, and to improve the air quality in surrounding communities. The taxiway and runway systems at an

airport determine its maximum possible departure throughput, or the number of aircraft departures that it can handle

per unit time. Current air traffic control procedures allow aircraft to push from their gates and enter the taxiway system

as soon as they are ready. As this pushback rate approaches the maximum departure throughput of the airport, runway

queues grow longer and surface congestion increases, resulting in increased taxi-out times.

The FAA’s Aviation System Performance Metrics (ASPM) database estimates that annually, taxi-out delays (the

difference between actual and unimpeded taxi-out times) at major airports in the United States exceed 32 million

minutes.1 This observation suggests that there are large potential benefits to be attained by implementing congestion

control strategies at airports. While there have been several studies with this goal,2–7 they typically either fail to con-

sider the inherent stochasticity of aircraft movement and pilot behavior, or are intrinsically numerical in nature. By

contrast, this paper presents a formulation that explicitly accounts for stochastic taxi-out behavior, while providing

insight into the system via an analytical treatment of airport performance. The approach proposed in this paper repre-

sents a mesoscopic model, which tries to strike a balance between macroscopic queuing models2–4 and microscopic,

aircraft trajectory-based ones.6, 7 To the best of our knowledge, this paper is the first to develop a model of airport

operations using actual surface surveillance data.



A. Related work

Improving the efficiency of the departure process at airports has been a problem of interest for several years.4–7 Since

surface operations are highly heterogenous in terms of taxi speeds, routes and pilot behavior, Eulerian models8, 9

of traffic flow are not applicable here. Most traditional solution approaches involve the use of optimal scheduling

algorithms6, 7 or queuing theory,3–5 both of which have certain drawbacks. Optimization using linear or mixed-integer

programming assumes that aircraft move at constant velocities at all times and follow time-based taxi instructions

exactly, which are not realistic assumptions given the current state of technology at airports. Ground taxi is controlled

manually by the pilots, and furthermore, the voice communication channel between pilots and air traffic control is

highly congested, making it difficult to add the command and confirmation messages required for detailed control.

Data communication channels are still used only for basic functions, and voice confirmation is considered mandatory

for safety reasons. Therefore, the control of pushback times is the most viable near-term strategy.

Queuing theory based approaches to the surface traffic management problem either make simplifying assumptions

to obtain analytical results, or else require numerical solutions. In addition, a service process needs to be defined at

every queuing node; models typically assume that the queuing occurs only at the runway and not on the taxiways.3

By contrast, posing the problem in a network congestion control framework offers the advantage of being able to

accommodate complex link travel time distributions. At the same time, it allows one to address the issues of network

stability and performance through analytical approaches. It also has the advantage of not requiring an explicit service

process. Prior data-driven modeling approaches have involved aggregate, queuing models, primarily because the only

available data were the gate-out, gate-in, taxi-out and taxi-in times.1 However, the recent deployment of surface

surveillance systems at major airports has enabled the development of network models of the form studied here10 .

The airport surface congestion problems considered in this paper are similar to those encountered in wireless

networks,11, 12 TCP congestion control,13, 14 and manufacturing systems.15–17 One key difference is that, while TCP

requires decentralized control, centralized control with global information is possible for airport congestion manage-

ment. Network models proposed for urban transportation problems18, 19 are suited to networks with a large number of

nodes and links, while the airport model contains only a few of each. Airport models also require detailed models of

link travel times, and greater emphasis is placed on the optimal time of entry into the airport network than on optimal

routing. In the context of airport operations, aggregate rate-control approaches that aim to stabilize surface traffic

at a specific level have been proposed.20 These algorithms are easy to implement in practice, but do not realize the

full potential fuel savings and performance gains that may be possible though more detailed congestion management

strategies. The solution approach proposed in this paper tries to decrease the level of aggregation in order to increase

the benefits from congestion control, while only recommending pushback times to aircraft.



II. Modeling of taxi-out times

A. Surface surveillance data

Airport Surface Detection Equipment, Model-X (ASDE-X) is primarily a safety tool designed to mitigate the risk

of runway collisions.10 It incorporates real-time tracking of aircraft on the surface to detect potential conflicts and

monitor conformance.21 There is potential, however, to use the data generated by it for surface operations analysis

and modeling of aircraft behavior. Reported parameters in ASDE-X include each aircraft’s position, velocity, altitude

and heading. The update rate is 1Hz for each individual flight track. The main dataset used in this study consisted of

45 days of operations from May-June 2011 at Boston Logan International Airport (BOS), split into a training data set

(30 days) and a test data set (15 days). A total of 24,636 departing aircraft were included, and the raw surface tracks

were processed using a multimodal unscented Kalman filter developed in prior work.22 Additional validation of the

identified model parameters was conducted using ASDE-X data from February-August 2011.

B. Modeling framework

Figure 1 shows the runways and taxiways at BOS that are represented in the network model. The taxiways form

the links of the network, and their major intersections are marked as the nodes. The taxi-out phase for an aircraft is

defined to begin when an aircraft leaves the gate, and end when it starts its takeoff roll from the runway threshold.

Therefore, the source nodes in the network are the ones adjoining the gates, while the destination/terminal nodes

are the runway thresholds. The resulting network abstraction is shown in Figure 2 (a). While the figure shows the

union of the networks for all possible airport configurations (allocation of runways to landings and takeoffs), only one

configuration is active at a time, and each aircraft has a unique source node and terminal node.

Figure 1. Layout of the surface at BOS

Figure 2 (b) shows the effective network layout when the airport is performing departures from Runway 27. In

any specific configuration such as this one, aircraft maintain a flow from the gates to the runway, and generally do not
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Figure 2. Abstraction of the airport surface as a graph

taxi in cyclic paths. Consequently, the configuration-specific networks are directed acyclic graphs with random link

travel times. Since arrivals taxiing-in at Boston Logan airport tend not to interact with departures taxiing-out, these are

not specifically addressed in the proposed model. However, the stochasticity introduced by the occasional interactions

between arrivals and departures is captured by the probability distribution of link travel times.

C. Parameter estimation

Aircraft on the surface taxi at fairly constant velocities, occasionally stopping because of other aircraft crossing their

path, or when about to cross an active runway. Notionally, the taxi-out process can thus be classified into two modes:

unimpeded taxi, and stopped. Empirical distributions derived from surface surveillance data were used to postulate

theoretical models for these two modes. There are three physical processes that govern the taxi time of each aircraft.

Firstly, the unimpeded portion of the taxi is a direct result of the length of the link and the velocity at which the aircraft

moves. The number of stops that an aircraft makes on each link depends on the congestion on the surface. Finally, the

total time that an aircraft spends in the stopped mode also depends on the duration of each stop.

Three sets of theoretical distributions were thus selected to explain the empirical data. The distribution of the

number of stops and the duration of each stop showed clear characteristics of geometric and exponential random

variables respectively. In the case of the unimpeded taxi time distribution, three candidate theoretical models were

considered: Gaussian, log-normal and Erlang. Optimal parameter values for each distribution were calculated by

minimizing the Kullback-Leibler (KL) divergence from the true distribution to the model.23 This resulted in the

information projection (p∗G, p∗L and p∗E respectively) of the empirical distribution (q) on each model family. The

procedure is illustrated in Figure 3, with the notation D(p||q) denoting the KL divergence from p to q. It was seen that

the Erlang family was consistently closest to the empirical distribution for all links in the network, with D(p∗E ||q) <

D(p∗L||q) < D(p∗G||q). Therefore, the unimpeded taxi times were modeled as Erlang random variables.
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Figure 3. Information projection of the empirical distribution q on three candidate model families

D. Model for link travel times

The travel time over a link l is modeled as,

tl = tu,l +

Ns,l∑
i=1

ts,l,i (1)

Here, tu,l > 0 is the unimpeded travel time over the link l, an Erlang random variable with order nl and rate λl.

Ns,l ∈ {0, 1, 2, ...} is the number of stops on the link, modeled as a geometric random variable with parameter

pkl ∈ [0, 1], where k is the current level of traffic on the surface and l is the current link. Finally, ts,l,i > 0 is the

stationary time corresponding to the ith stop on link l, modeled as an exponential random variable with rate µl > 0.

The values of ts,l,i are assumed to be independent and identically distributed (i.i.d.).

If the number of stops is Ns,l = 0, then tl = tu,l. Further, each instance of travel time on a link is independent

of all other instances, whether on the same link or on other links, conditioned on the level of surface traffic. This

observation was derived from empirical data, which showed that surface traffic level as a whole had a greater influence

on the taxi time of a given aircraft than aircraft in the immediate vicinity (such as on the same link). Since most

departing aircraft on the surface taxi towards a common destination (the runway), there are few instances of interaction

between successive aircraft on a given taxi path. The effect of such instances is captured by conditioning on the total

surface traffic level. A sample comparison between the empirical and the theoretical probability densities for taxi

times on several links marked in Figure 1, is shown in Figure 4. The empirical distribution used is from a set of days

independent of those used for training the model. Similar matches were seen between the empirical data and the model

for all frequently used links.

The consistency of parameter estimates was tested in order to account for possible seasonal variations in taxi

behavior at the airport. An extended data set was used for this purpose, consisting of seven months of ASDE-X data

from February to August 2011. The parameter estimation process was carried out for one month of data at a time.

Figure 5 shows the results for the unimpeded taxi parameters nl and λl, and the stop time duration µl, for a subset

of links. The estimated values for each link had fairly small standard deviations, with the exception of link 8→10.

Further investigation revealed that the there was a significant deviation for link 8→10 in only one month of data,



while the parameter estimates for the other six months were similar. This anomaly is therefore believed to be due to

a lack of sufficient data points in that month. Cumulatively, the above results imply that the network model is a good

representation of the actual processes on the airport surface.
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Figure 4. Comparison of probability density of taxi times on some of the major links at BOS
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Figure 5. Means and standard deviations of the parameters for several links at Boston airport

E. Parameter variation with surface traffic

Taxi-out times at airports increase with increased surface congestion, and this needs to be accounted for by the model.

The surface traffic level, k, is defined as the total number of departures that have pushed back from their gates but have



not taken off yet. Empirical evidence shows that the unimpeded travel time parameters nl and λl, as well as the stop

time parameter µl, remain invariant with changes in k. The additional taxi-out time due to congestion is accounted

for by an increase in the stopping probability on each link, pkl. This fact implicitly accounts for the ‘departure queue’

that forms at the runway, such as on link 5→7 in Figure 1. An increase in the value of pkl will lead to an increase in

the number of stops, and each additional stop will add, on average, a penalty of 1
µl

to the queuing and taxi-out times.

The average travel time for each link l can be calculated by taking the expectation of both sides of Equation (1).

E[tl | k] =
nl
λl

+ E[Ns,l|k]
1

µl
=
nl
λl

+
pkl

1− pkl
1

µl
. (2)

Furthermore, assume that each additional aircraft on the surface adds a fixed time penalty to the expectation in Equation

(2). Denoting this penalty as a fraction Xl of the expected stop time 1
µl

, it may be observed that for an aircraft that

pushes from its gate at a traffic level of (k + 1) instead of k,

E[tl | k + 1] =
nl
λl

+
pkl

1− pkl
1

µl
+
Xl

µl
. (3)

Comparing Equation (3) with Equation (2) evaluated at (k + 1), the following recursive relationship is seen:

pk+1,l

1− pk+1,l
=

pkl
1− pkl

+Xl.

pkl
1− pkl

=
p0l

1− p0l
+ kXl

=⇒ pkl =
p0l + kXl(1− p0l)
1 + kXl(1− p0l)

. (4)

As shown in Figure 6 for the link 5→7, the variation of pkl as derived from Equation (4) is consistent with empirical

data, where the probability of stopping was independently measured by looking at the fraction of aircraft that stopped

on a link, as a function of the level of traffic on the surface when the aircraft entered the link.
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Figure 6. Variation of stopping probability on link 5→7 with the level of surface traffic



III. Development of control strategy

A. Derivation of maximum link throughput

Before deriving the maximum throughput of a generic network, it is necessary to find the maximum throughput of a

network containing a single link l. Initially, let the link be capable of accommodating an infinite number of aircraft.

Furthermore, let it be operating in deterministic steady state, with the taxi time of each aircraft being equal to its

expectation value. Aircraft are distributed regularly along its length, with each departure from the link occurring after

a fixed time interval, and each arrival to the link happening at the same instant. If ζl is the arrival rate to the link,

under this assumption, a new arrival occurs every
(

1
ζl

)
seconds. In steady state, the number of aircraft on the link will

be maintained at some value k. From Equation (3), note that the (deterministic) taxi time on the link is given by

tkl = E[tl|k] =
nl
λl

+
p0l

(1− p0l)µl
+
kXl

µl
= ηl +

kXl

µl
, (5)

where ηl is a constant comprised of the first two terms. During this time interval in which an aircraft travels over the

link, the k aircraft ahead of it depart from the link. Therefore, the inter-departure time ∆tkl is

∆tkl =
tkl
k

=
ηl
k

+
Xl

µl
. (6)

In steady state, k is the result of equating the inter-arrival interval
(

1
ζl

)
to ∆tkl. Consequently, the minimum inter-

arrival interval that can be sustained by the link is
(

1
ζl

)
min

= Xl
µl

, achieved as k → ∞. The maximum sustained

throughput of link l is the inverse of this value, that is,

σl , (ζl)max =
µl
Xl
. (7)

In the stochastic case, the average inter-departure times will be governed by the expectation in Equation (5). Therefore,

the result from Equation (7) still holds. Relaxing the assumption of infinite link capacity is also quite simple. Assuming

the maximum capacity of the link to be kmax, the minimum sustained inter-departure time, as derived from Equation

(6), will be
(

1
ζl

)
min

= ηl
kmax

+ Xl
µl

. The maximum throughput will be the inverse of this quantity. In further analysis in

this paper, only infinite-capacity links are considered, with the knowledge that all results may be extended for finite-

capacity links. If the input rate to a link l is less than σl, the link will be referred to as being stable. Once the maximum

throughput values for each link are known, it is straightforward to derive the maximum network throughput, using the

mincut/maxflow theorem.24, 25 Note that in general, simply ensuring that each individual link remains stable does not



ensure stability of the entire network.15, 16 However, it is known that for the special case of directed acyclic graphs,

such stability is guaranteed.

B. Definition of control strategy

A control algorithm that aims to maintain a steady level of traffic on the airport surface, is described here. It has been

shown20 that regulating traffic on the airport surface to a well-chosen level results in fuel savings. Therefore, this

objective is a logical starting point for any new control strategy. Consider a scenario where an aircraft calls ready to

pushback at time t = 0. Now consider a First-Come-First-Served (FCFS) algorithm that aims to minimize a weighted

linear cost function for the aircraft, composed of pushback delay tp and expected taxi-out time tt (equal to E[tl|k]).

That is, the cost function is C = a · tp + tt, with a being a constant weighting factor. Its relationship with the target

traffic level is developed towards the end of this section. The control value tp that minimizes expected cost is given by

tp = arg min
tp≥0

E [a tp + tt] = arg min
tp≥0

(
a tp +

lr∑
l=l1

[
nl
λl

+
pkpl

1− pkpl
1

µl

])

⇒ tp = arg min
tp≥0

(
a tp +

lr∑
l=l1

[
ηl +

kpXl

µl

])
, (8)

where the last two steps follow from Equation (2) and the definition of ηl. Equation (8) assumes that the aircraft’s route

follows links l = l1, l2, ..., lr, and that pkpl is the stopping probability on link l, when the projected surface traffic level

at tp is kp. The expected taxi time is thus also a function of tp. The projected traffic level, kp, can be calculated based

on the procedure outlined below. Since entry into the network is assumed FCFS, the projected traffic level decreases

as tp increases (there can be no additional aircraft entering the network while the current aircraft is waiting). Also,

Equation (6) shows that the expected time between departures increases as kp decreases. Therefore, at some value of

kp, the increase in expected cost due to the first term in Equation (8) is going to outweigh the decrease in cost due to a

smaller kp in the second term. The actual value of this ‘target’ kp is controlled by the weight a.

B.1 Simplified model of departure process from the network

To develop a control strategy from an analytical perspective, some simplifying assumptions about the departure pro-

cess need to be made. The following derivation will be helpful in providing intuition about the departure process.

Furthermore, simulations carried out using the full-scale model with no simplifying assumptions (described in the

next section) show that the ensuing control strategy is still valid. For simplicity, first consider the single-link network.

For moderately large values of surface traffic k, it may be assumed that departures from the link occur as exponential



processes, one for each aircraft. If there are k aircraft on the link, there are k racing exponential processes. Using the

memoryless property26 and Equation (2), the expected departure time of each aircraft (relative to the present time) is

given by ηl + kXl
µl

. Consequently, the rate of each process is the inverse of this quantity, and the net departure rate for

k independent exponential processes is

Rkl = k · 1

ηl + kXl
µl

aircraft per unit time. (9)

Since each departure from the link corresponds to an expected taxi time reduction of Xlµl for the aircraft being assigned

pushback delay, the instantaneous rate of decrease of expected taxi time is given by

− d

dt
tt = Rkl

Xl

µl
.

B.2 Relation between target traffic level and control weight

In order to target a certain level of traffic (say k = kctrl), the value of the weight is chosen such that the rate of

reduction of expected taxi time is equal to the rate of increase of the term a · tp, when k = kctrl. Since the term a · tp
increases at the constant rate a, the relationship between the weighting factor a and the target traffic level kctrl is

a = − d

dt
tt = Rkctrll

Xl

µl
=

kctrl
Xl
µl

ηl + kctrl
Xl
µl

. (10)

C. Optimal control strategy

Since no new aircraft enter the link until the current aircraft pushes back, Rkl is the rate of decrease of the projected

traffic level kp. It is therefore possible to find the optimal control tp required to maintain a specific value of kp.

An implicit assumption is that the exponential nature of the departure process for each aircraft is maintained as this

projected value evolves. If kp(tp) is the projected traffic level after time tp,

d

dt
kp(tp) = −Rkpl = − kp

ηl + kp
Xl
µl

⇒ tp = ηl ln
kp(0)

kp(tp)
+ (kp(0)− kp(tp))

Xl

µl
. (11)

Since kp(0) is a known quantity (the current traffic level), the optimal control for each k = kp(0) is defined by

substituting kp(tp) = kctrl in Equation (11). If the optimal value is negative, tp is assigned a value of zero, in order to

obey the constraint tp ≥ 0. Note that this happens if and only if kp(0) < kctrl, which means that the control strategy

calls for immediate pushback if the traffic level is below the target value. If the current traffic level is above kctrl, the



pushback delay becomes progressively larger with kp(0). Another point to note is that for every value of k = kp(0),

there is a unique control tp that is commanded. Thus there is a discrete (but infinite, since the possible values of kp(0)

are infinite) set of commanded control values that is generated by this control strategy. This fact is used in the next

section, when considering the regulation characteristics of the control strategy described above.

IV. Simulations

In this section, the control strategy developed in Section III is demonstrated through simulations, first for a single-

link network, and then for the full surface network of Boston Logan.

A. Single-link example

Since the optimal control strategy as derived above relies on a number of approximations, it is necessary to validate it

using independent simulations. In Figure 7 and Figure 8, simulation results are shown for a single-link network, set

up using the model from Equation (1) and the controls defined by Equation (11). It is assumed that there is an infinite

buffer of aircraft waiting for release, and that the current traffic level is known at all times. In addition, aircraft are

released according to a First-Come-First-Served (FCFS) policy. From Figure 7, the average steady-state traffic level

is seen to stabilize to kctrl. Figure 8 shows that the average taxi times are close to the value of 105.5 sec predicted

by Equation (2). As predicted by Equations (6) and (7), kctrl = 10 adds on average, ηl
kctrl

= 6 sec to the minimum

inter-departure times. However, this throughput shortfall can made arbitrarily close to zero by increasing kctrl.
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Figure 8. Variation of average taxi-out times seen in simulations of control algorithm for single link, with kctrl = 10

B. Complete Boston Logan Airport network example

Figure 9 and Figure 10 show results from a simulation based on the full network abstraction of Boston Logan airport.

All departures are assumed to happen from Runway 27 (marked as node 6 in Figure 1). The relevant network is

depicted in Figure 2. It is assumed that there is a finite number of aircraft waiting for release at any time. The

pushback requests from these aircraft appear at a rate based on the historical variation over a day, as derived from

surface surveillance data. The x-axis shows the local time at the airport. Each curve in Figure 9 (a) plots the variation

of simulated average traffic level in that 15-minute interval over the course of the day, for different values of kctrl. In

all the restricted cases, the control strategy successfully limits surface traffic levels to the corresponding target values

in times of high departure demand. Since the same pushback schedule is used for all four tests, the total number of

departures is the same when summed over the whole day. The curve for unrestricted entry (or kctrl = ∞) into the

network clearly shows the morning and evening demand peaks, with high levels of surface congestion during these

times. The cases with kctrl = 15 and kctrl = 20 mitigate this effect to a large extent, by delaying aircraft at the gate

during periods of excessive demand. Note that the traffic peaks become wider with decreasing kctrl, as the control

algorithm takes longer to clear out delayed aircraft. For kctrl = 10, the peaks are so wide that they merge with each

other, and the algorithm is unable to clear the built-up demand until the end of the day. This value of kctrl is too

aggressive, as seen from the excessive pushback delays assigned in this case (Figure 10 (b)).

Practically, the choice of kctrl may be made on a case-to-case basis for each airport. It should be low enough to

avoid gridlock on the surface, which leads to large and highly variable delays. At the same time, it should be high

enough to keep up with pushback demand and the throughput capacity of the airport. For example, in the unrestricted

case, a comparison of Figure 9 (a) and Figure 9 (b) shows that the peak traffic level is higher than the maximum

departure rate from the airport, leading to a buildup of traffic. On the other hand, the maximum departure rate of



around 20 aircraft per 15 min is never achieved by setting kctrl = 10. This is because the surface traffic density is

too sparse for 20 aircraft to reach the runway within 15 min. Once a feasible range of kctrl is derived from such

considerations, the value can be tuned by deciding on the relative importance of one minute of taxi time reduction

versus one minute of pushback delay.

The parameter a in the objective function (Equation (8)) determines the relative weighting of taxi-out time reduc-

tion and pushback delay, assuming small perturbations from the initial state. Its value varies slightly depending on an

aircraft’s source node, since the expected taxi times are slightly different. Figure 10 (b) shows the average taxi-out

times per 15-min interval by time of day. We notice that during peak demand times, taxi-out times for the unrestricted

case can be as high as 24 min. By contrast, a value of kctrl = 10 (which corresponds to an average value of a = 0.45)

results in average taxi-out times of around 12 min. Similarly, when kctrl = 15 (average a = 0.55), the algorithm

regulates the system to the point where 1 minute of additional pushback delay is traded off for 0.55 min, or 33 sec, of

taxi time reduction.

00:00 04:00 08:00 12:00 16:00 20:00 00:00
0

5

10

15

20

25

30

35
Average traffic seen by aircraft pushing within a 15−minute period

Time of day (hrs)

N
um

be
r 

of
 a

irc
ra

ft

 

 
k

ctrl
 = 10

k
ctrl

 = 15

k
ctrl

 = 20

Unrestricted

(a) Average traffic levels

00:00 04:00 08:00 12:00 16:00 20:00 00:00
0

5

10

15

20

25

Time of day (hrs)

N
um

be
r 

of
 ta

ke
of

fs

Number of departures in 15 minutes

 

 k
ctrl

 = 10

k
ctrl

 = 15

k
ctrl

 = 20

Unrestricted

(b) Throughput per 15 minutes

Figure 9. Simulated traffic levels and throughput for the Boston Logan network, with departures from Runway 27
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Figure 10. Simulated gate delays and taxi times for the Boston Logan network, with departures from Runway 27

C. Regulation characteristics of proposed control algorithm

C.1 Markov chain model

To analyze the effect of the control algorithm on traffic level, it is useful to consider the single-link case. As noted

earlier, a fixed delay is assigned to each state, based on the target traffic level. Since departures from the link are

stochastic, the state seen by the next aircraft to pushback is a random variable. It is possible to calculate the probability

mass function of this state conditioned upon the previous state and the delay assigned. A Markov chain structure is

seen to emerge, with the states corresponding to the traffic level seen by successive aircraft, and with known transition

probabilities out of each state. Figures 11 and 12 depict this structure, assuming that the target traffic level is kctrl =

k − 1. For states at or below kctrl, no delay is assigned according to Equation (11), and the transition is deterministic.

For states above kctrl, the transitions are stochastic.
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Figure 11. Markov chain model for transitions under the proposed control strategy, if k < kctrl
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Figure 12. The Markov chain model for transitions under the proposed control strategy, if k ≥ kctrl

C.2 Calculation of transition probabilities

Consider the scenario depicted in Figure 12, in which the current aircraft sees a traffic level of k. Then, according to

Equation (11), it is assigned a pushback delay

tp = ηl ln
k

k − 1
+ (k − (k − 1))

Xl

µl
.

From Equation (9), the Poisson departure rate from the link is given by Rkl = k

ηl+
kXl
µl

aircraft per unit time. Note that

a transition from state k to k+1 will occur if no aircraft depart from the link in time tp. From the Poisson distribution,

the probability of this transition is

pk,k+1 =
(Rkltp)

0 e−Rkltp

0!
= e−Rkltp .

In a similar manner, the transition probabilities pi,j can be calculated for each pair {i, j}. The chain may be truncated

at a state K sufficiently larger than kctrl, such that the probability of ever reaching state K is very low. Steady

state occupation probabilities for k = 0, 1, . . . ,K are then given by the left eigenvector of the matrix of transition

probabilities pi,j . This matrix is nearly stochastic for a sufficiently large value of K. For the given system, these

steady state values correspond to the proportion of traffic states seen by successive aircraft, when released according

to the control algorithm defined by Equation (11). As shown in Figure 13 for kctrl = 10, these theoretical values

match well with fractional state occupancies observed during simulation runs. The system is found to occupy one of

the states kctrl, kctrl± 1 and kctrl± 2 more than 95% of the time. Furthermore, the same result can be easily extended

to more complicated networks. In this manner, the control algorithm is able to regulate the traffic level to the desired

target value.
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Figure 13. Comparison of Markov-approximated steady state occupancy and average simulated occupancy, for kctrl = 10

V. Discussion of approach

The simulations in Section IV showed that the proposed control algorithm is capable of maintaining a steady traffic

level on the airport surface under realistic conditions. Since the approach is not limited by the large time constants of

algorithms previously available in literature, it reduces the variability in traffic levels seen in these studies. However,

there is potential to further refine the control strategy. Specifically, the primary objective of congestion control methods

is to reduce the fuel consumption and emissions on the surface. While maintaining steady, reasonable traffic levels

does this to some extent, even greater savings may be possible by optimizing for these objectives directly. Therefore,

there is incentive to develop control strategies that explicitly aim to minimize aircraft fuel consumption and emissions

by considering the behavior of aircraft and their engines.27

Finally, the applicability of any proposed strategy in the current air traffic control framework is an essential con-

sideration. Implementation of the algorithm proposed in this paper would require a continuous knowledge of current

traffic levels on the airport surface. Since real-time ASDE-X feeds are already available at most major airports within

the US, this is a feasible requirement. Another issue that needs to be addressed is that of fairness, in terms of the

order in which aircraft depart as compared to the order in which they call ready for pushback. Although the FCFS

policy is perceived to be the most equitable by airlines and air traffic controllers, it may not result in the best possible

performance, in terms of fuel savings and departure throughput. Therefore, a balance needs to be struck between the

performance objectives and the perceptions of the stakeholders in the system. Control algorithms with a specific focus

on handling these requirements are currently under development.28



VI. Conclusions

This paper modeled the aircraft taxi-out process by representing the airport surface as a network and the total taxi

time as the sum of the travel times along different links in the surface trajectory of an aircraft. A set of suitable random

processes was proposed to model the distribution of link travel times. A control algorithm that attempts to minimize

the delay cost for aircraft while limiting the effect on throughput was developed. Using the test cases of a simple,

single-link model as well as the complete airport network for BOS, it was shown that the algorithm can successfully

maintain the level of surface traffic at a specified average value. When suitably calibrated, this steady traffic level can

provide significant reduction in aircraft surface fuel burn without adversely affecting airport performance.
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