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Abstract—Congestion pricing has long been hailed as a
means to mitigate traffic congestion; however, its practical
adoption has been limited due to the resulting social
inequity issue, e.g., low-income users are priced out off
certain roads. This issue has spurred interest in the design
of equitable mechanisms that aim to refund the collected
toll revenues as lump-sum transfers to users. Although
revenue refunding has been extensively studied for over
three decades, there has been no thorough characterization
of how such schemes can be designed to simultaneously
achieve system efficiency and equity objectives. In this
work, we bridge this gap through the study of congestion
pricing and revenue refunding (CPRR) schemes in non-
atomic congestion games. We first develop CPRR schemes,
which in comparison to the untolled case, simultaneously
increase system efficiency without worsening wealth in-
equality, while being user-favorable: irrespective of their
initial wealth or values-of-time (which may differ across
users), users would experience a lower travel cost after the
implementation of the proposed scheme. We then charac-
terize the set of optimal user-favorable CPRR schemes that
simultaneously maximize system efficiency and minimize
wealth inequality. Finally, we provide a concrete methodol-
ogy for computing optimal CPRR schemes and also high-
light additional equilibrium properties of these schemes
under different models of user behavior. Overall, our work
demonstrates that through appropriate refunding policies
we can design user-favorable CPRR schemes that maximize
system efficiency while reducing wealth inequality.

Index Terms—Congestion Games, Traffic Routing,
Wealth Inequality

I. INTRODUCTION

Road congestion pricing, which typically involves
users paying for the externalities they impose on other
road users, has been widely accepted as a mechanism
to alleviate traffic congestion. However, the practical
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adoption of congestion pricing has been limited [1]
primarily due to the resultant inequity concerns, e.g.,
high income users are likely to get the most benefit
with shorter travel times while low income users suffer
large travel times since they avoid the high toll roads.
Several empirical works have noted the regressive nature
of congestion pricing [2] and a recent theoretical work
[3] has also characterized the influence of tolls on
wealth inequality. In particular, [3] developed an Inequity
Theorem for users travelling between the same origin-
destination (O-D) pair, and proved that any form of tolls
would increase the wealth inequality. These rigorous
critiques are complemented by opinions in the popular
press that congestion fees amount to “a tax on the
working class [4].”

The lack of support for congestion pricing due to its
social inequity issues [5] has led to a growing interest
in designing equitable congestion-pricing schemes [6].
One approach that has been proposed to alleviate the
inequity issues of congestion pricing is direct revenue
redistribution, i.e., refunding the toll revenues to users
in the form of lump-sum transfers. The idea of revenue
refunding is analogous to that of feebates, where refunds
are used as a means to induce desirable behavior in
society. Our work is centered on the design of congestion
pricing and revenue refunding (CPRR) schemes that
improve system performance without reducing wealth
inequality, and benefit every user irrespective of their
wealth or value-of-time. We view our work as paving the
way for the design of practical, sustainable, and publicly
acceptable congestion pricing schemes.

a) Contributions: In this work, we present the
first study of the wealth-inequality effects of CPRR
schemes in non-atomic congestion games, with a focus
on devising CPRR schemes that simultaneously reduce
the total system cost, i.e., the sum of the travel times on
all edges of the network weighted by the corresponding
values-of-time of users, without increasing the level of
wealth (or income) inequality. We consider the setting of
heterogeneous users, with differing values-of-time and
income, who seek to minimize their individual travel
cost, which is a linear function of their travel times,
tolls, and refunds, in the system. As in previous work
[3], we incorporate the income elasticity of travel time,
i.e., increased travel time corresponds to lost income, to
reason about the income distribution of users before and
after the imposition of a CPRR scheme.

https://www.globalfueleconomy.org/transport/gfei/autotool/approaches/economic_instruments/fee_bate.asp
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To capture the behavior of selfish users, we study
the effect of the Nash equilibria induced by CPRR
schemes on wealth inequality. We begin with the study
of exogenous equilibria, which is the standard Nash
equilibrium model with heterogeneous users [7], wherein
users minimize a linear function of their travel time and
tolls, without considering refunds. In this setting, in Sec-
tion IV, we establish the existence of a Pareto-improving
CPRR scheme that, compared with the untolled outcome,
(i) is user-favorable, i.e., every user group, irrespective
of their initial wealth, has a lower travel cost after the
implementation of the scheme, (ii) lowers total system
cost, and (iii) does not increase wealth inequality (see
Fig. 1). When all travel demand is between a single O-D
pair and each user’s value-of-time is proportional to their
income, we further show that the same CPRR scheme
does not increase wealth inequality relative to the ex-
ante income distribution, i.e., the users’ income profiles
prior to making their trips. Thus, our results show that
it is possible to reverse the wealth-inequality effects of
congestion pricing established in the Inequity Theorem
in [3] through appropriate revenue refunding schemes.

Next, we characterize the set of optimal CPRR
schemes that are favorable to all users in the exogenous
equilibrium setting. In particular, in Section V, we estab-
lish the existence of CPRR schemes that simultaneously
minimize total system cost and wealth inequality among
all CPRR schemes that are favorable to any user (see
Fig. 1). Further, we develop a method to compute the
optimal CPRR scheme in Sections VI-A and VI-B and
show for a commonly used wealth inequality measure,
the discrete Gini coefficient, that a simple max-min
allocation of the refunds among user groups with dif-
ferent incomes is optimal. We further present numerical
experiments in Appendix D to demonstrate the efficacy
of optimal CPRR schemes and show that the benefits of
CPRR can even be realized when users’ values of time
are not exactly known to the central planner.

Finally, in Section VI-C, we consider the endoge-
nous equilibrium, a new notion we introduce, wherein
users additionally consider refunds in their travel cost
minimization. In this setting, we show that the optimal
CPRR scheme is robust to coalitions, i.e., any exogenous
equilibrium induced by an optimal CPRR scheme is also
an endogenous equilibrium with coalitions.

We remark that in line with prior literature on traffic
routing with heterogeneous users [3], [8], [9], we assume
a complete information setting wherein the different
attributes (i.e., the income, value-of-time, and O-D pair)
of the user groups are known and can be used to design
CPRR schemes. To this end, our results can be inter-
preted as the theoretical limits of what is achievable in
terms of the efficiency and equity outcomes given perfect
state information. However, we remark that even though
we consider the complete information setting wherein the
tolls and refunds are computed in a centralized manner,
the developed optimal CPRR schemes induce selfish
users to distributedly optimize their individual objectives

and collectively enforce a traffic pattern that minimizes
both total system cost and the level of wealth inequality.
Further, since our results contribute to the literature on
designing intervention and control schemes under perfect
state information [10]–[12], our proposed approach to
designing CPRR schemes serves as more of a design
module rather than an end-to-end solution to the equity
problem associated with congestion pricing. We do note,
however, that there are several methods to estimate user
attributes, e.g., their values of time or preferences, that
have been explored in the empirical literature [13]–[15],
which can be used to inform the inputs that are necessary
for the design of optimal CPRR schemes.

Overall, our work demonstrates that if we appropri-
ately refund the collected toll revenues, we can achieve
system efficiency without increasing inequality. Further,
in doing so, we ensure that our designed schemes are
publicly acceptable as we guarantee that each user is at
least as well off as before the introduction of the CPRR
scheme. Thus, we view our work as a significant step in
shifting the discussion around congestion pricing from
one focused on the societal inequity impacts of tolls
to one that centers around how to best preserve equity
through the distribution of toll revenues.

II. RELATED WORK

The design of mechanisms that satisfy both system
efficiency and user fairness desiderata has been a center-
piece of algorithm design for a range of applications. For
instance, in resource allocation settings, [16] quantified
the loss in efficiency when the allocation outcomes
are required to satisfy certain fairness criteria. In ma-
chine learning classification tasks, [17] studied group-
based fairness notions to prevent discrimination against
individuals belonging to disadvantaged groups. In the
context of traffic routing, [18] introduced a fairness-
constrained traffic-assignment problem to achieve a bal-
ance between the total travel time of a traffic assignment
and its level of fairness. Here, fairness is measured
through the maximum ratio between the travel times of
users travelling between the same O-D pair.

Resolving the efficiency and equity trade-off is par-
ticularly important for allocation mechanisms involving
monetary transfers given their impact on low-income
groups. Although achieving system efficiency involves
allocating goods to users with the highest willingness to
pay, in many settings, e.g., cancer treatment, the needs
of users are not well expressed by their willingness to
pay [19]. Since Weitzman’s seminal work on accounting
for agent’s needs in allocation decisions [19], there
has been a rich line of work on taking into account
redistributive considerations [20] in resource allocation
problems. For instance, [21] analyzed the free provision
of a low-quality public good to low-income users by
taxing individuals that consume the same good of a
higher quality in the private market. More recently,
[22] studied the allocation of objects to agents with
the objective of maximizing agent’s values that may be
different from their willingness to pay.
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Fig. 1. Depiction of user-favorable, Pareto-improving, and optimal congestion pricing and revenue refunding (CPRR) schemes.

In the context of congestion pricing, revenue redistri-
bution has long been considered as a means to alleviate
the inequity issues of congestion pricing [23]. Several
revenue redistribution strategies have been proposed in
the literature, such as the lump-sum transfer of toll rev-
enues to users [24]. In the setting of Vickrey’s bottleneck
congestion model [25]—a benchmark representation of
peak-period traffic congestion on a single lane— [26]
investigated how a uniform lump-sum payment of toll
revenues can be used to make heterogeneous users better
off than prior to the implementation of the tolls and
refunds. In more general networks with a single O-D
pair, [27] established the existence of a tolling mech-
anism with uniform revenue refunds that reduced the
travel cost for each user while decreasing the total system
travel time as compared to before the tolling reform. The
extension of this result to general road networks with
a multiple O-D pair travel demand and heterogeneous
users was investigated by [7]. While [7] characterize
conditions for the CPRR scheme to be user-favorable,
our work studies the influence of such schemes by
characterizing their influence on wealth inequality.

III. PRELIMINARIES

In this section, we introduce basic definitions and
concepts regarding traffic flow, congestion pricing and
revenue refunding (CPRR) schemes, and metrics for
system efficiency and wealth-inequality.

A. Elements of Traffic Flow
We model the road network as a directed graph

G = (V,E), with the vertex and edge sets denoted by
V and E, respectively. Each edge e ∈ E has a flow-
dependent travel-time function te : R≥0 → R≥0, which
maps xe, the traffic flow rate on edge e, to the travel time
te(xe). The flow rate xe on edge e represents the average
number of vehicles traversing through that edge during
a fixed time interval (e.g., over an hour). As is standard
in the literature, we assume that the function te, for
each e ∈ E, is differentiable, convex and monotonically
increasing. While we assume that the edge travel times
have infinite capacities, as is common in the non-atomic
congestion game and transportation literature [3], [28],
we note that our model can be extended to the setting
with soft capacity constraints for appropriate choices of
the travel time functions that grow very steeply once the
road capacities have been exceeded.

Users make trips in the road network and belong to
a discrete set of user groups based on their (i) value-
of-time, (ii) income, and (iii) O-D pair. Let G denote
the set of all user groups, and let vg > 0, qg > 0, and
wg = (sg, ug) denote the value-of-time, income, and O-
D pair represented by an origin sg and destination ug ,
respectively, for each user in group g ∈ G. Each user
belonging to a group g makes a trip on a path, which is
a sequence of directed edges beginning at sg and ending
at ug (without visiting any node more than once). The set
of all possible paths between OD-pair wg is denoted as
Pg and the travel demand dg of user group g represents
the total flow to be routed through paths in Pg .

A path flow pattern f = {fP,g : g ∈ G, P ∈ Pg}
specifies for each user group g, the amount of flow
fP,g ≥ 0 routed on a path P ∈ Pg . In particular, a flow
f must satisfy the user demand, i.e.,

∑
P∈Pg

fP,g =
dg, for all g ∈ G. We denote the set of all non-negative
flows that satisfy this constraint as Ω.

Each path flow f = {fP,g : g ∈ G, P ∈ Pg} is
associated with a corresponding edge flow x = {xe}e∈E

and group specific edge flows xg = {xg
e}e∈E for all g ∈

G, where xg
e represents the flow of users in group g on

edge e. The relationship between the path and edge flows
is given by

∑
P∈Pg :e∈P fP,g = xg

e , for all e ∈ E, g ∈ G
and

∑
g∈G xg

e = xe, for all e ∈ E. Here P ∈ Pg : e ∈
P denotes the set of paths P ∈ Pg that include edge e.

B. CPRR Schemes
A congestion pricing and revenue refunding (CPRR)

scheme is defined by a tuple (τ , r), where (i) τ = {τe :
e ∈ E} is a vector of edge prices (or tolls), and (ii)
r = {rg : g ∈ G} is a vector of group-specific revenue
refunds, where each user in group g receives a lump-sum
transfer of rg . In other words, everybody pays the same
toll for using an edge independent of their group, and all
users with the same income, value-of-time and O-D pair
get the same refund, irrespective of the actual path they
take between the O-D pair wg . We note that the vector of
refunds r, in general, need not be non-negative and can
take on any real values. Under the CPRR scheme (τ , r)
and a vector of edge flows x, the total value of tolls
collected is given by Π :=

∑
e∈E τexe. In this work

we consider CPPR schemes such that the sum of the
revenue refunds equals the sum of the revenue collected
from the edge tolls, i.e.,

∑
g∈G rgdg = Π. In addition,

we consider revenue refunding schemes that depend only
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on the groups G and the total revenue Π induced by a
flow f , but not on the specific paths taken by users under
f . We leave the study of more complex path-dependent
refunding schemes for future work (see Section VII).

The total travel cost incurred by the user consists of
two components: (i) a linear function of their travel
time and tolls, which is a commonly-used modelling
approach [8], [9], and (ii) the refund received. The
overall model we use, which is formally defined below,
has been previously considered in the literature [7].

Definition 1 (User Travel Cost). Consider a CPRR
scheme (τ , r) and a flow pattern f with edge flow x.
Then, the total cost incurred by a user belonging to a
group g ∈ G when traversing a path P ∈ Pg with fP,g >
0 is given by µg

P (f , τ , r) :=
∑

e∈P (vgte(xe) + τe)−rg.

With slight abuse of notation, we will denote
µg
P (f , τ ,0) as a travel cost that does not include refunds,

and µg
P (f ,0,0) as a travel cost that does not account for

tolls or refunds, where 0 is a vector of zeros.

C. System Efficiency and Wealth Inequality Metrics
We evaluate the quality of a CPRR scheme using two

metrics: (i) system efficiency, which is measured through
the total system cost, and (ii) wealth inequality.

a) Total System Cost: For any feasible path flow
f with edge flows x and group specific edge flows xg ,
the total system cost C(f), is the sum of travel times
weighted by the users’ values-of-time across all edges
[7] i.e., C(f) :=

∑
e∈E

∑
g∈G vgx

g
ete(xe). We denote

by C∗ := minf∈Ω C(f) the widely studied cost-based
system optimum.

b) Wealth Inequality: We measure the impact of
a CPPR scheme on wealth inequality in the following
manner. For a profile of incomes q = {qg : g ∈ G},
we let a function W : R|G|

≥0 → R≥0 measure the level
of wealth inequality of society. We say that an income
distribution q̃ has a lower level of wealth inequality than
q if and only if W (q̃) ≤ W (q).

In this work, we assume that the wealth-inequality
measure W (·) satisfies the following properties:

1) Scale Independence: The wealth-inequality is un-
changed after re-scaling incomes by a positive
constant, i.e., W (λq) = W (q) for any λ > 0.

2) Constant Income Transfer Property: If the initial
income distribution is q and each user is trans-
ferred a non-negative (non-positive) amount of
money λ (−λ) where 0 ≤ λ < ming∈G qg , then the
wealth inequality cannot increase (decrease). That
is, W (q+λ1) ≤ W (q) and W (q−λ1) ≥ W (q),
where 1 is a vector of ones.

The above properties are well defined for any wealth
inequality distribution when the incomes of all users are
strictly positive, which we assume in this work. These
properties, including scale independence [29], [30], are
fairly natural [3] and hold for commonly used wealth-
inequality measures, such as the discrete Gini coefficient,
which we elucidate in detail in Section VI-B. Further,

the constant income transfer property is a direct con-
sequence of the fact that regressive (progressive) taxes
increase (decrease) wealth inequality, as elucidated in the
extended version of this work [31].

When using the wealth inequality measure W , we are
interested in understanding the influence of a flow f for
a given CPRR scheme (τ , r) on the income distribution
of users. To this end, we define the income profile of
users before making their trip as the ex-ante income
distribution q0 > 0 and that after making their trip as the
ex-post income distribution, which is defined as follows.

Definition 2 (Ex-Post Income Distribution). For a given
CPRR scheme (τ , r) and an equilibrium flow f , the
induced ex-post income distribution of users is denoted
by q(f , τ , r) and is defined as follows. For a group g,
qg(f , τ , r) := q0g−βµg(f , τ , r), where q0 is the ex-ante
income distribution and β is a small constant such that
the ex-post income of users is strictly positive and rep-
resents the relative importance of the congestion game
under consideration to an individual’s well-being [3].

We reiterate that the small constant β does not depend
on the type of trip being made or the importance of that
trip to the user but solely reflects the importance of the
congestion game under consideration to an individual’s
well-being, as in [3]. The positive income assumption
ensures that the above defined wealth inequality proper-
ties (including scale independence) hold, which would
not be the case if users have negative incomes.

We note that in this paper we consider time-invariant
travel demand that is fixed for all user groups and
assume fractional flows, both of which are standard
assumptions in the literature [3], [7]. In line with prior
work by [7], we assume that users are refunded based on
their income, value-of-time, and O-D pair. Furthermore,
similar to much of the prior literature in traffic routing
with heterogeneous users [3], [8], [9], we assume that
the different attributes (i.e., the income, value-of-time,
and O-D pair) of the user groups are known, and can
be used in the design of CPRR schemes. In practice,
such centralized information on user attributes may not
be known and we defer the problem of dealing with
incomplete information settings to future work.

IV. PARETO IMPROVING CPRR SCHEMES

In this section, we show that if the tolls collected
from congestion pricing are refunded to users in an
appropriate way then the wealth inequality effects of
congestion pricing can be reversed. Throughout this
section and the next we assume that user behavior is
characterized through the exogenous equilibrium model
wherein users minimize a linear function of their travel
time and tolls, without considering refunds.

After formally defining exogenous equilibrium be-
low, we develop a CPRR scheme that simultaneously
decreases the total system cost of all users while not
increasing the level of wealth inequality relative to the
untolled outcome, a property which we refer to as Pareto
improving. Moreover, when designing the scheme, we
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ensure that it is politically acceptable by guaranteeing
that each user is at least as well off in terms of the
travel cost µg , which includes travel time, tolls, and
refunds, under the CPRR scheme than that without the
implementation of congestion pricing or refunds.

Next, we consider the important special case when
users travel between the same O-D pair, and have values-
of-time proportional to their income. In this setting, we
establish the existence of a Pareto improving CPRR
scheme that results in an ex-post income distribution that
has a lower wealth inequality as compared to that of
the ex-ante income distribution. Note that this result is
stronger than the more general case with multiple O-D
pairs, as the wealth-inequality measure of the ex-ante
income distribution is lower than that of the ex-post
income distribution for the untolled case.

A. Exogenous Equilibrium

To capture the strategic behavior of users, we present
below the standard model of Nash equilibrium with
heterogeneous users, which we call exogenous equilib-
rium. The exogenous setting is commonly studied in the
context of non-atomic congestion games without [8],
[9] or with refunds [7]. As the name suggests, in an
exogenous equilibrium the revenue refunds are assumed
to be exogenous and do not influence the behavior and
route choice of users in the transportation network. That
is, users minimize a linear function of their travel time
and tolls, without considering refunds.

We note that such a model of user behavior can be
quite realistic in certain settings, since accounting for
refunds when making route choices may often involve
quite sophisticated decision making for users. Further-
more, for users to reason about how their path choice
will influence their refund, they must know the refunding
policy, which may typically not be known in practice,
thereby making the notion of an exogenous equilibrium
more appropriate in such settings. We do consider the
more sophisticated endogenous setting in Section VI-C
and demonstrate that our results obtained in the exoge-
nous setting also extend to endogenous setting as well.

The following definition formalizes the notion of an
exogenous equilibrium, which only depends on the toll
component τ of a CPRR scheme (τ , r).

Definition 3 (Exogenous Equilibrium). For a given
congestion-pricing scheme τ , a path flow pattern f is
an exogenous equilibrium if for each group g ∈ G it
holds that fP,g > 0 for some path P ∈ Pg if and only
if µg

P (f , τ ,0) ≤ µg
Q(f , τ ,0), for all Q ∈ Pg. We say

that such an f is an exogenous τ -equilibrium.

We reiterate that the above notion of an exogenous
equilibrium is the standard Nash equilibrium concept
used in non-atomic congestion games and follows since
users are infinitesimal, unlike equilibrium concepts in
atomic congestion games or in the presence of coalitions
(see Definition 6). In this work, we refer to this equi-
librium concept as exogenous to explicitly distinguish it

from the endogenous setting when users also account for
refunds when making travel decisions. A key property of
any exogenous τ -equilibrium f is that all users within
a given group g ∈ G incur the same travel cost without
refunds, irrespective of the path on which they travel.
Hence, we drop the path dependence in the notation and
denote the user travel cost without refunds for any user
in group g at flow f as µg(f , τ ,0). Additionally, since
the refund rg is the same for all users in group g, the
travel cost with refunds is denoted as µg(f , τ , r).

Another useful property of an exogenous equilibrium
is that for a given congestion-pricing scheme τ , the
resulting total system cost, user travel cost, and ex-post
income distribution are invariant under the different τ -
equilibria (see the extended version of our paper [31]
for a discussion). That is for any two τ -equilibria f
and f ′ it holds that C(f) = C(f ′), µg(f , τ ,0) =
µg(f ′, τ ,0), and q(f , τ , r) = q(f ′, τ , r). Thus, we will
use the simplified notation Cτ := C(f), µg(τ , r) :=
µg(f , τ , r), and q(τ , r) := q(f , τ , r) for any exoge-
nous τ -equilibrium f , when considering the exogenous
equilibrium model. In this context, note that C0 corre-
sponds to the untolled total system cost, and this quantity
is identical for both the exogenous and endogenous
equilibrium (we consider the latter in Section VI-C).

B. User-Favorable Pareto Improving CPRR Schemes
To ensure that the CPRR schemes we develop are

politically acceptable, we consider schemes, as in [7],
that result in equilibrium outcomes wherein each indi-
vidual user is at least as well off as compared to that
under the untolled user equilibrium outcome, a property
we refer to as user-favorable (see Fig. 1). We note that
the definition below readily extends to the setting of
endogenous equilibria as well.

Definition 4 (User-Favorable CPRR Schemes). A CPRR
scheme (τ , r) is user-favorable if for any (exogenous) τ -
equilibrium the travel cost of any user group g does not
increase with respect to any untolled 0-equilibrium f0,
i.e., µg(τ , r) ≤ µg(0,0).

We mention that the the above definition can readily
be extended to incorporate the notion of a user-favorable
CPRR scheme relative to any status-quo traffic equi-
librium pattern, which is not necessarily equal to the
untolled case, e.g., the traffic pattern in a city that has
already implemented some form of congestion pricing.
Thus, considering the untolled user equilibrium f0 in
the above definition is without loss of generality.

We now present the main result of this section, which
establishes that any pricing scheme τ that improves the
system efficiency compared to the untolled case can be
paired with a refunding scheme r such that the wealth
inequality relative to the ex-post income distribution
under the untolled setting is not increased, i.e., the CPRR
scheme (τ , r) is Pareto improving (see Fig. 1) and
user-favorable. Note that designing CPRR schemes that
achieve a lower wealth inequality and total system cost
as compared to that of the untolled user equilibrium
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outcome is desirable since this implies that the CPRR
scheme improves upon both the efficiency and equity
metrics relative to the status-quo equilibrium pattern.

Proposition 1 (Existence of Pareto Improving CPRR
Scheme). Let τ be a congestion-pricing scheme such
that Cτ ≤ C0, where C0 is the untolled total system
cost. Then, there exists a refund scheme r such that
(τ , r) is user-favorable and does not increase wealth
inequality, i.e., W (q(τ , r)) ≤ W (q(0,0)). That is, the
scheme (τ , r) is Pareto improving.

For a proof of Proposition 1, see Appendix A. Both
Definition 4 and Proposition 1 can readily be extended to
incorporate the notions of user-favorable and Pareto im-
proving CPRR schemes relative to any status-quo traffic
equilibrium pattern beyond the untolled user equilibrium.
For simplicity, we prove those properties relative to the
untolled user equilibrium setting.

We now present a consequence of this result for single
O-D pair travel demand when all users have values-of-
time proportional to their incomes. In this setting, we
show the existence of a revenue refunding scheme that
decreases the wealth inequality relative to the ex-ante
income distribution. Note that this is a stronger result
than Proposition 1 since the wealth inequality of the ex-
ante income distribution is lower than that of the ex-post
income distribution for the untolled case.

Corollary 1 (CPRR Decreases Wealth Inequality for
Single O-D Pair). Consider the setting where all users
travel between the same O-D pair and have values-of-
time proportional to their incomes, i.e., vg = ωq0g for
some ω > 0 for each group g. Let τ be road tolls such
that Cτ ≤ C0. Then, there exists a revenue refunding
scheme r such that the CPRR scheme (τ , r) is user-
favorable and W (q(τ , r)) ≤ W (q0).

For a proof of Corollary 1, see Appendix B. Corol-
lary 1 indicates that appropriate refunding can reverse
the negative consequences of tolls on wealth inequality,
as established in the “Inequity Theorem” [3]. In partic-
ular, the “Inequity Theorem” asserts that for the setting
considered in Corollary 1, any form of tolls increases
the level of wealth inequality compared with the ex-ante
income distribution q0 in the absence of refunds.

A main ingredient in Corollary 1 is that the wealth
inequality of the ex-ante income distribution q0 is equal
to that of the ex-post income distribution under the
untolled user equilibrium. This result holds when users
travel between the same O-D pair and have values-of-
time scaling proportionally with their incomes. However,
it does not hold in general for users travelling between
different O-D pairs, since in such a case, users may incur
different travel times at the untolled user equilibrium. For
multiple O-D pairs, we show through an example in the
extended version of our work [31] that there are travel
demand instances when no CPRR scheme can reduce
income inequality relative to that of the ex-ante income
distribution. Thus, for the rest of this paper we devise

CPRR schemes that do not increase the wealth inequality
relative to the ex-post income distribution under the
untolled user equilibrium outcome rather than relative
to the ex-ante income distribution. Note that doing so
is reasonable, as we look to design CPRR schemes
that improve on the status quo traffic pattern, which is
typically described by the untolled user equilibrium.

V. OPTIMAL CPRR SCHEMES

In the previous section, we established the existence
of a user-favorable CPRR scheme that simultaneously
reduces total system cost without increasing wealth
inequality relative to an untolled outcome. In this sec-
tion, we prove the existence of optimal CPRR schemes
that achieve a total system cost and wealth inequality
that cannot be improved by any other user-favorable
CPRR scheme. In particular, we establish that the op-
timal CPRR schemes are those that induce exogenous
equilibrium flows with the minimum total system cost
while also resulting in ex-post income distributions with
the lowest level of wealth inequality among the class
of all user-favorable CPRR schemes (see Fig. 1). We
further show in Section VI that these optimal CPRR
schemes induce equilibria even when coalitions of users
endogenize the effect of refunds on their travel decisions.

We first present the main result of this section, which
characterizes the set of optimal CPRR schemes.

Theorem 1 (Optimal CPRR Scheme). There exists a
user-favorable CPRR scheme (τ ∗, r∗) such that for any
user-favorable CPRR scheme (τ , r) it holds that Cτ∗ ≤
Cτ and W (q(τ ∗, r∗)) ≤ W (q(τ , r)).

The proof of this theorem is constructive as it pro-
vides a recipe for computing the optimal CPRR scheme
(τ ∗, r∗). The proof relies on two intermediate results of
independent interest. The first lemma shows that under
any user-favorable CPRR scheme, each user’s income is
at least their ex-post income under the untolled case.

Lemma 1 (Ex-post Income Distribution). Let τ be road
tolls such that Cτ ≤ C0. Then, under any refunds r
such that the CPRR scheme (τ , r) is user-favorable, the
ex-post income of any user in group g is qg(τ , r) =
qg(0,0) + βcg , where the transfer value cg ≥ 0 and
satisfies the relation

∑
g∈G cgdg = C0 − Cτ .

Proof. Denote the ex-post income of group g as q̂g =
qg(τ , r). We now prove the ex-post income relation
using the definition of a user-favorable CPRR scheme. In
particular, for any user-favorable CPRR scheme (τ , r)
the user travel cost does not increase from the un-
tolled case, i.e., µg(τ , r) ≤ µg(0,0). As it holds that
µg(τ , r) = µg(τ ,0) − rg , we observe that for some
cg ≥ 0 the following relation must hold for each user
in group g: µg(τ ,0) − rg + cg = µg(0,0). Then, for
an ex-ante income distribution q0, the ex-post income
of each user belonging to group g is given by

q̂g
(a)
= q0g − βµg(0,0) + βcg

(b)
= qg(0,0) + βcg,
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where (a) follows as µg(τ ,0)− rg = µg(0,0)− cg , and
(b) follows as the ex-post income of users in group g for
the untolled setting is qg(0,0) = q0g − βµg(0,0).

Next, to show that
∑

g∈G cgdg = C0 − Cτ we
characterize the quantities C0 and Cτ . In particular,
observe that by definition C0 = C(f0) and Cτ = C(f),
where f0 is the untolled 0-equilibrium and f is an
exogenous τ -equilibrium. Now, note that both flows f0

and f can be expressed in closed form. In particular,
for a given congestion-pricing scheme τ ′ the exogenous
τ ′-equilibrium h(τ ′) can be written as

h(τ ′)=argmin
h′∈Ω

∑
e∈E

∫ x(h′)e

0

te(ω)dω+
∑
e∈E

∑
g∈G

1

vg
x(h′)geτe, (1)

where x(f ′) denotes the edge representation of a path
flow f ′. We note that this program corresponds to the
multi-class user-equilibrium optimization problem [28].

Given this representation of h(τ ′), we derive the
following relation between the total system cost Cτ ′ and
collected revenues, by analyzing the KKT conditions of
this minimization problem. In particular, it holds that

Cτ ′ =
∑
g∈G

µg(τ ′,0)dg −
∑
e∈E

τ ′ex(h(τ
′))e. (2)

Note that the edge flow x(h(τ ′)) is unique by the strict
convexity of the travel-time function. We defer the proof
of (2) to the extended version of this paper [31].

We now leverage (2) to obtain that Cτ =∑
g∈G µg(τ ,0)dg −

∑
e∈E τex(f)e, where x(f) =

x(h(τ )). Furthermore, from (2) for the untolled set-
ting, we obtain that C0 =

∑
g∈G µg(0,0)dg . Finally,

using these two relations and leveraging the fact that
cg = µg(0,0)− µg(τ ,0) + rg we get∑

g∈G
cgdg

(a)
= C0 −

∑
g∈G

µg(τ ,0)dg +
∑
e∈E

τex(f)e,

(b)
= C0 − Cτ ,

where (a) follows as
∑

g∈G rgdg =
∑

e∈E τex(f)e
and C0 =

∑
g∈G µg(0,0), and (b) follows as Cτ =∑

g∈G µg(τ ,0)dg −
∑

e∈E τex(f)e. This proves our
claim.

The second result required to prove Theorem 1 relies
on the observation that there is a monotonic relation-
ship between the minimum achievable wealth-inequality
measure and the total system cost.

Lemma 2 (Monotonicity of Refunds). Suppose that
there are two congestion-pricing schemes τA and τB
with total system costs satisfying CτA

≤ CτB
≤

C0. Then there exists a revenue refunding scheme rA
such that (τA, rA) is user-favorable and achieves a
lower wealth inequality measure than any user-favorable
CPRR scheme (τB , rB) for any revenue refunds rB , i.e.,
W (q(τA, rA)) ≤ W (q(τB , rB)).

Proof. We prove this claim by constructing for each
revenue refunding scheme rB under the tolls τB , a

revenue refunding scheme rA under the tolls τA that
achieves a lower wealth inequality. To this end, we
first introduce some notation. Let cAg and cBg be non-
negative transfers for each group g as in Lemma 1, where∑

g∈G cAg dg = C0 − CτA
and

∑
g∈G cBg dg = C0 − CτB

must hold for the feasibility of the scheme.
Then, by Lemma 1 we have that the ex-post income

of users in group g can be expressed as: qg(τA, rA) =
qg(0,0) + βcAg and qg(τB , rB) = qg(0,0) + βcBg .
Let cAg = cBg + 1∑

g∈G dg
(CτB

− CτA
). We now show

that the refunding rA is feasible by observing that∑
g∈G cAg dg =

∑
g∈G cBg dg + CτB

− CτA
= C0 − CτA

.
Here we leveraged the fact that

∑
g∈G cBg dg = C0−CτB

.
Under the above defined non-negative transfer cAg ,

we observe that the ex-post income distribution under
the CPRR scheme (τA, rA) is the same as the ex-post
income distribution under the CPRR scheme (τB , rB)
plus a constant positive transfer, which is equal for all
users. That is, we have q(τA, rA) = q(τB , rB) + λ1
for λ = β∑

g∈G dg
(CτB

− CτA
) ≥ 0. Finally, by the

constant income transfer property (Section III) it follows
that W (q(τA, rA)) ≤ W (q(τB , rB)).

The above result establishes a very natural property of
any user-favorable revenue-refunding policy for which
the total refund remaining after satisfying the user-
favorable condition is C0 − Cτ . In particular, a smaller
total system cost yields a larger amount of remaining
refund C0−Cτ , which, in turn, results in a greater degree
of freedom in distributing these refunds to achieve an
overall lower level of wealth inequality.

Finally, Theorem 1 follows directly by the mono-
tonicity relation established in Lemma 2, and prescribes
a two-step procedure to find a optimal CPRR scheme
that is also user-favorable. In particular, choose a con-
gestion pricing scheme τ ∗ such that the total travel
cost is minimized, i.e., Cτ∗ = C∗. Next, select the
revenue refunding scheme r∗ to be such that the expres-
sion W (q(τ ∗, r∗)) is minimized and (τ ∗, r∗) is user-
favorable through an appropriate selection of transfers
cg . For more details on computing an optimal CPRR
scheme, we refer to Sections VI-A and VI-B.

a) Significance of Theorem 1: Theorem 1 estab-
lishes that the optimal CPRR scheme is one that si-
multaneously achieves the highest efficiency whilst also
reducing wealth inequality to the maximum degree pos-
sible among all user-favourable CPRR schemes. This
finding is counter-intuitive since equity and efficiency are
typically at odds but Theorem 1 establishes that no such
tradeoff between system efficiency and wealth inequality
exists. The reason for this is that the remaining refund
after satisfying the user-favourable condition increases
as the total system cost decreases (Lemma 2), thereby
giving greater leverage in the design of the refunding
mechanism to achieve a lower wealth inequality. We
further present numerical experiments in Appendix D to
demonstrate the efficacy of optimal CPRR schemes and
also show that the benefits of CPRR can even be realized
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in the setting when users’ values of time are not exactly
known to the central planner.

VI. COMPUTATIONAL AND EQUILIBRIUM
PROPERTIES OF OPTIMAL CPRR SCHEMES

Having established the existence of optimal CPRR
schemes, we now show how such schemes can be com-
puted and highlight additional equilibrium properties of
these schemes. To this end, in Sections VI-A and VI-B,
we provide a concrete recipe for computing the optimal
CPRR scheme (τ ∗, r∗) for a commonly used wealth
inequality measure, the discrete Gini coefficient. Then, in
Section VI-C, we consider the endogenous equilibrium
setting, wherein users minimize a linear function of not
only their travel times and tolls but also refunds. In this
setting, we show that the optimal CPRR scheme is robust
to user coalitions, i.e., optimal CPRR schemes induce
equilibria even when coalitions of users endogenize the
effect of refunds on their travel decisions.

A. Computing Optimal Tolls

The problem of computing optimal tolls τ ∗ has
been widely studied [28]. In particular, [28] showed
by analysing the KKT conditions of the minimum to-
tal system cost problem, presented in Section III-C,
that the optimal toll on each edge is given by τ∗e =(∑

g∈G
xg
e

xe
vg

)
xet

′
e(xe), where edge flows x and the

group specific edge flows xg correspond to the edge
decomposition of the optimal path flow f of the mini-
mum total system cost problem: f = argminf∈Ω C(f).
Observe that the optimal tolls τ ∗ to minimize the total
system cost is akin to marginal cost prices, given by
xet

′
e(xe) for each edge e, when all users have the same

values of time. In particular, the optimal toll on each
edge is given by the travel time externality, i.e., the
marginal cost prices, of users multiplied by the average
value of time of users on that edge.

B. Computing Optimal Revenue Refunds

Given the method to compute optimal tolls τ ∗, as
elucidated in the previous section, we now focus our
attention on deriving the optimal revenue refunding pol-
icy r∗ for a commonly used wealth inequality measure,
the discrete Gini coefficient. In particular, we show in
this section that the optimal revenue refunding scheme
for the discrete Gini coefficient measure corresponds to a
natural max-min refunding scheme wherein the refunds
are given to users belonging to the lowest income groups.

We first present the discrete Gini coefficient measure
and discuss some of its properties.

Definition 5 (Discrete Gini Coefficient [6]). ] Let the
mean income corresponding to the income distribution
q with a demand vector d = {dg : g ∈ G} be ∆(q) =∑

g∈G qgdg∑
g∈G dg

. Then, the discrete Gini coefficient W is given

by W (q) = 1

2(
∑

g∈G dg)
2
∆(q)

∑
g1,g2∈G dg1dg2 |qg1−qg2 |.

A few comments about the discrete Gini coefficient
as a wealth inequality measure are in order. First, the
discrete Gini coefficient satisfies the scale independence
and constant income transfer properties (presented in
Section III-C) required for it to be a valid wealth
inequality measure and we present a proof of this claim
in the extended version of our work [31]. Next, the
discrete Gini coefficient is zero if all users have the
same income, i.e., there is perfect equality in society.
Furthermore, due to the absolute value of the difference
between user incomes in the numerator, the discrete Gini
coefficient is larger if the dispersion of incomes between
different user groups is greater. Finally, note that we
do not write the discrete Gini coefficient measure as a
function of the vector of demands d = {dg : g ∈ G} as
we assume that user demands are fixed in this work.

For the discrete Gini coefficient, we now present a
mathematical program for computing the revenue re-
funding policy r∗. To this end, we first observe by
Lemma 1 that for any user-favorable CPRR scheme
(τ ∗, r∗) each user’s ex-post income is given by
qg(τ

∗, r∗) = qg(0,0)+cg (where, for ease of exposition,
we let β = 1) for some cg ≥ 0, where

∑
g∈G cgdg =

C0 − Cτ∗ . Thus, the choice of the optimal revenue
refunds r∗ can be reduced to computing the optimal
transfers cg . In particular, we formulate the computation
of the optimal transfers cg to minimize the discrete Gini
coefficient through the following optimization problem:

min
cg≥0,∀g∈G

W (q(0,0) + c) s.t.
∑
g∈G

cgdg = C0 − Cτ∗ ,

where c = {cg : g ∈ G} and q(0,0) + c represents the
income distribution of users after receiving the revenue
refunds. Furthermore, noting that ∆(q(0,0) + c) =
C0−Cτ∗+

∑
g∈G qg(0,0)dg∑

g∈G dg
is a fixed quantity, the above

problem corresponds to a linear program (see Chapter
6 in [32]). The optimal revenue refunding policy r∗

corresponding to the above optimization problem results
in a natural max-min outcome and we present further
formalism and a proof of this claim in the extended ver-
sion of our paper [31]. In particular, users in the lowest
income groups are provided refunds until their incomes
equal that of the second lowest income groups, and this
process is repeated until all the refunds are exhausted.
We note here that this greedy process of refunding
revenues to the lowest income groups is reminiscent of
Rawl’s difference principle of giving the greatest benefit
to the most disadvantaged groups of society [33].

C. CPRR Schemes and Endogenous Equilibria
In this section, we consider the setting of the endoge-

nous equilibrium, wherein users minimize a linear func-
tion of not only their travel times and tolls but also re-
funds. In particular, we consider two equilibrium notions
(without and with user coalitions) in this endogenous
setting and show that the optimal CPRR scheme induces
equilibria in both settings. To this end, we first consider
endogenous equilibria without coalitions and show that
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any endogenous equilibrium is an exogenous equilib-
rium. Next, in the setting of endogenous equilibria with
coalitions, we show that while, in general, endogenous
equilibria do not coincide with exogenous equilibria, the
optimal CPRR scheme is robust to coalitions, i.e., any
exogenous equilibrium induced by an optimal CPRR
scheme is also an endogenous equilibrium.

1) Endogenous Equilibria without Coalitions: We be-
gin by considering the setting of an endogenous equilib-
rium without user coalitions and show that endogenous
and exogenous equilibria are equivalent. In this setting
without user coalitions, the definition of an exogenous
equilibrium (Definition 3) can be readily extended to the
setting when users additionally account for refunds in
their travel cost minimization, as is elucidated by the
following definition. In particular, for a given CPRR
scheme (τ , r), a path flow pattern f is an endogenous
(τ , r)-equilibrium without coalitions if for each group
g ∈ G it holds that fP,g > 0 for some path P ∈ Pg if
and only if µg

P (f , τ , r) ≤ µg
Q(f , τ , r), for all Q ∈ Pg .

Given this notion of an endogenous equilibrium with-
out coalitions, we show in the extended version of
our paper [31] that any exogenous equilibrium is also
an endogenous equilibrium without coalitions and vice
versa, i.e., the two equilibrium concepts are equivalent.
This result follows naturally since we are in the setting
of a non-atomic congestion game, wherein users are
infinitesimal, and thus a unilateral deviation by any user
will not influence their overall refunds since the flow of
users remains unchanged and the tolls are fixed.

2) Endogenous Equilibria with Coalitions: We now
consider the stronger endogenous equilibrium notion
wherein coalitions of users minimize a linear function
of not only their travel times and tolls but also refunds.
In particular, we consider the setting wherein each user
group is a coalition. Note that unlike the setting without
coalitions, in this setting, a change in the strategy of the
entire group, i.e., the flow sent on each feasible path,
will likely result in a change in the overall network flow
and correspondingly the revenues obtained by users in
the group. In the presence of coalitions, we show that
while exogenous equilibria and endogenous equilibria
with coalitions do not agree in general, any exogenous
equilibrium induced by an optimal CPRR scheme is also
an endogenous equilibrium with coalitions.

To this end, we begin by introducing the notion of an
endogenous equilibrium with coalitions.

Definition 6 (Endogenous Equilibrium with Coalitions).
Let (τ , r) be a CPRR scheme, and f be a flow pattern.
Then f is an endogenous (τ , r)-equilibrium with coali-
tions if for each group g ∈ G, every path P ∈ Pg such
that fP,g > 0, and any flow pattern f ′ such that f ′

P ′,g′ =
fP ′,g′ , for all g′ ∈ G \ {g}, P ′ ∈ Pg′ , it holds that
µg
P (f , τ , r(f , τ )) ≤ µg

Q(f
′, τ , r(f ′, τ )), for all Q ∈

Pg. Here f ′ denotes a flow that results from f where
exactly one group changes its path assignment.

A few comments about the above definition are in

order. First, it is clear that the above definition of endoge-
nous equilibrium is a stronger notion than the standard
Nash equilibrium considered in non-atomic congestion
games. This is because every endogenous equilibrium
is a Nash equilibrium when users minimize their travel
costs including refunds but not every Nash equilibrium
is necessarily an endogenous equilibrium.

Next, we restrict the set of possible coalitions to those
corresponding to strategies for a given user group. This is
often reasonable, since users belonging to similar income
levels that make similar trips, i.e., travel between the
same O-D pair, are more likely to be socially connected
with each other and share travel information as compared
to users across groups. As a result, we do not consider
the setting of equilibrium formation that is robust to
any arbitrary set of coalitions [34], and defer this as an
interesting direction for future research.

Furthermore, we can view the endogenous equilibrium
as a non-atomic analogue of the atomic equilibrium
setting, wherein each group g controls a flow of dg . In
atomic settings, each group only sends its flow on one
path, whereas in the non-atomic setting, the flows can be
dispersed across multiple paths with equal travel costs.

a) Endogenous Equilibria with Coalitions Differ
from Exogenous Equilibria: We first show that, in gen-
eral, the endogenous equilibria with coalitions and ex-
ogenous equilibria are not the same. To this end, we first
recall that an exogenous equilibrium only depends on the
tolling scheme τ and is independent of the refunds r.
On the other hand, since users take into account revenue
refunds in the case of the endogenous equilibrium, each
user must know the refunding policy r to reason about
their strategies when making travel decisions. In particu-
lar, each user (and coalition of users within a group) must
be able to reason about how a change in their strategy,
i.e., the path(s) on which they travel, will change the total
amount of refund they receive, and in effect their travel
cost. Thus, for this section, we restrict our attention
to revenue-refunding schemes resulting from the max-
min refunding policy described in Section VI-B. That
is, users are given refunds through a process analogous
to a max-min allocation. We now construct an example
to show that an exogenous τ -equilibrium flow may no
longer be an equilibrium when users take into account
refunds in their travel cost minimization.

Proposition 2 (Non-Equivalence of Equilibria). There
exists a setting with (i) a two-edge parallel network,
(ii) three income classes, and (iii) tolls τ , such that the
induced exogenous τ -equilibrium is not an endogenous
(τ , r)-equilibrium with coalitions, where r results from
the max-min revenue refunding policy in Section VI-B.

For a proof of Proposition 2, see the extended version
of our paper [31]. The above proposition is quite natural,
since low-income users may take routes that were pre-
viously unaffordable when taking into account revenue
refunds in their route selection process.

b) Endogenous Equilibria with Coalitions Coincide
with Exogenous Equilibria at the Optimal Solution:
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While Proposition 2 indicates that, in general, the exoge-
nous equilibria and endogenous equilibria with coalitions
do not coincide, we now establish that any exogenous
equilibrium induced by an optimal user-favorable CPRR
scheme (τ ∗, r∗), where the refund satisfies a mild con-
dition, is also an endogenous equilibrium. In particular,
we have the following lemma:

Lemma 3 (Optimal CPRR Scheme under Endogenous
Equilibria). Let (τ ∗, r∗) be an optimal user-favorable
CPRR scheme under the exogenous equilibrium model
and let f∗ be its exogenous equilibrium. In addition, let
f0 be a 0-equilibrium and C∗ be the minimum total
system cost. Further, suppose that the refunding scheme
r∗ is defined as r∗g := µg(τ ∗,0) − µg(0,0) + cg(C

∗),
where the non-negative transfer cg(C(f)) for each group
g is monotonically non-increasing in the total system cost
C(f) for a given flow f . Then f∗ is also an endogenous
(τ ∗, r∗)-equilibrium with coalitions.

For a proof of Lemma 3, see Appendix C. We note that
the condition in Lemma 3 that the non-negative transfer
cg for any group g is monotonically non-increasing in the
total system cost is not demanding. For instance, the op-
timal refunding scheme, i.e., the one minimizing wealth
inequality, for the discrete Gini coefficient respects this
montonicity relation, as described in Section VI-B.

VII. DISCUSSION AND FUTURE WORK

In this paper, we studied user-favorable CPRR
schemes that mitigate the regressive wealth inequality
effects of congestion pricing. Our work demonstrated
that if we look at congestion pricing from the lens of
refunding the collected tolls, then we can simultaneously
achieve the economic and equity goals of sustainable
transportation. Thus, we view our work as a significant
step in shifting the discussion around congestion pricing
from one focused on the inequity impacts of tolls to one
that centers around how to best distribute the revenues
collected to different sections of society. For a more in-
depth discussion on how our work paves the way for the
design of sustainable, publicly-acceptable congestion-
pricing schemes and its associated practical challenges,
we refer to the extended version of our paper [31].

There are several interesting directions for further
research. The first would be to relax some of the
commonly-used assumptions in transportation research
and game theory, e.g., considering time-varying travel
demand or travel cost functions that are non-linear in the
travel times, tolls, and refunds. Next, since we only con-
sider direct refunds to road users, it would be worthwhile
to extend our framework to analyze system designs with
cross subsidies across multiple forms of transport, e.g.,
subsidies to improve the transit infrastructure. Finally, it
would be interesting to go beyond the direct lump-sum
transfers of the collected revenues studied in this work
and investigate more general group-specific differential
congestion pricing mechanisms wherein the price on a
given path may differ by user group.

APPENDIX

A. Proof of Proposition 1
Consider the refunds rg = µg(τ ,0) − µg(0,0) +
1∑

g∈G dg
(C0 − Cτ ) for each user in group g. Through

an argument similar to that in [7, Theorem 1], it can
be shown that the corresponding CPRR scheme is user-
favorable, which we present in the extended version of
this paper [31]. We now show that under this revenue
refunding scheme, the ex-post income distribution q̂ =
q(τ , r) has a lower wealth inequality measure relative to
the untolled user equilibrium ex-post income distribution
q̃ = q(0,0). That is, we show that W (q̂) ≤ W (q̃).

To see this, we begin by considering the ex-ante
income distribution q0. Under the untolled user equilib-
rium, users in group g incur a travel cost µg(0,0), and
thus the ex-post income distribution of users in group g
is given by q̃g = q0g − βµg(0,0), where β is the scaling
factor as in Definition 2. On the other hand, under the
CPRR scheme (τ , r), the ex-post income distribution of
users in group g is given by

q̂g=q0g−β (µg(τ ,0)−rg)= q̃g+β
1∑

g∈G dg
(C0−Cτ),

where we used that q̃g = q0g−βµg(0,0). Since the above
relation holds for all groups g, q̂ = q̃ + λ1, where λ =

β∑
g∈G dg

(C0−Cτ ) ≥ 0. Finally, the result that W (q̂) ≤
W (q̃) follows by the constant income transfer property
(Section III), establishing our claim.

B. Proof of Corollary 1
Consider the same user-favorable CPRR scheme

(τ , r) as is the proof of Proposition 1. We now show that
W (q̂) ≤ W (q), where q̂ = q(τ , r). To see this, we first
show that W (q(0,0)) = W (q0), which follows from the
observation that for any 0-equilibrium flow f0 all users
incur the same travel time, denoted as γ, since they travel
between the same O-D pair. This observation leads to a
travel cost of µg(0,0) = ωq0gγ for each group g. Then,
for the untolled setting, the ex-post income distribution
of users in group g is given by

q̃g = q0g − βµg(0,0) = q0g − βωq0gγ = q0g(1− βωγ).

From the above, it follows that q̃ = λ1q
0 for λ1 =

1−βωγ. Thus, for β small enough it holds that λ1 > 0.
Under this condition, due to the scale-independence
property (Section III) of the wealth-inequality measure
it follows that W (q̃) = W (q0). Finally, since W (q̂) ≤
W (q̃) by the proof of Proposition 1 it follows that
W (q̂) ≤ W (q̃) = W (q0), which proves our claim.

C. Proof of Lemma 3
For any user-favorable CPRR scheme (τ ∗, r∗) it holds

for some cg for each group g that the travel cost to users
in group g under the exogenous τ ∗-equilibrium f∗ is
given by r∗g = µg(τ ∗,0)− µg(0,0) + cg , where cg ≥ 0
and

∑
g∈G cgdg = C0 − C∗.
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We now consider the emerging behavior of users for
the endogenous setting. Since µg(0,0) is a fixed quantity
representing the travel cost at the untolled 0-equilibrium
f0, the best response of any coalition within a group
g under the endogenous equilibrium, when minimizing
each user’s individual travel cost µg(0,0)− cg (see the
analysis in Lemma 1), is to maximize cg .

Next, since for each user group g, cg is monotoni-
cally non-decreasing in C0 − C(f), we have that cg is
maximized for each user group g when C0 − C(f) is
maximized. Since C0 is fixed, C0−C(f) is maximized
for any flow f∗ with the minimum total system cost
C∗. This implies that each user’s non-negative transfer
cg is maximized for any flow f∗ with the minimum
total system cost. Thus, any exogenous τ ∗-equilibrium
flow f∗ that achieves the minimum total system cost is
also an endogenous equilibrium with coalitions, since a
deviation by any coalition of users in group g can never
result in a higher non-negative transfer cg than that at
the minimum total system cost solution.

D. Numerical Experiments
In this section, we present numerical experiments to

demonstrate the efficacy of optimal CPRR schemes in
reducing the total system cost without increasing wealth
inequality. We also show that the benefits of CPRR
can even be realized in the setting when users’ values
of time are not known to the central planner. To this
end, we conducted experiments on four traffic networks
and present the corresponding results in Table I, which
presents the relative percentage differences of the total
system cost and wealth inequality of the ex-post income
distribution for the optimal CPRR scheme and the one
under incomplete information to the user equilibrium
outcome without tolls and refunds. For a detailed dis-
cussion on the implementation details of our experiments
as well as the chosen network structures, O-D demands,
travel-time functions, user values of time, and incomes,
we refer to the extended version of our paper [31].

We first note from columns 1 and 3 of Table I that
the optimal CPRR scheme, as expected, reduces the total
system cost and discrete Gini coefficient compared to the
user equilibrium setting with no tolls or refunds, thereby
corroborating Proposition 1. In addition, since users’
values of time are assumed to be scaled proportions of
their incomes for the experiments [35], our results for the
optimal CPRR scheme for single O-D pair demand also
corroborate Corollary 1 (see our extended paper [31]).

In addition to evaluating the performance of optimal
CPRR schemes, we also perform experiments in the
incomplete information setting when user specific values
of time or incomes may not be known, as is often the
case in practice. In this incomplete information setting,
we only assume access to the mean values of time and
incomes of users and provide all users travelling between
a given O-D pair the same refund, i.e., we consider
anonymous refunding schemes as in [7]. Our results
in Table I indicate that deploying CPRR schemes in
this setting generally results in total system costs and

TABLE I
RELATIVE PERCENTAGE DIFFERENCES OF THE TOTAL SYSTEM COST

(COLUMNS 1 AND 2) AND WEALTH INEQUALITY (COLUMNS 3 AND 4),
EVALUATED BY THE DISCRETE GINI COEFFICIENT, OF THE OPTIMAL CPRR
SCHEME (COLUMNS 1 AND 3) AND THAT WITH INCOMPLETE INFORMATION

(COLUMNS 2 AND 4) COMPARED TO THE USER EQUILIBRIUM OUTCOME
WITHOUT TOLLS ON FOUR TRAFFIC NETWORKS: (I) PIGOU NETWORK, (II)

FOUR EDGE PARALLEL NETWORK, (III) SERIES PARALLEL NETWORK, AND
(IV) GRID NETWORK. FOR THE GRID NETWORK, TWO O-D PAIRS WERE

CONSIDERED FOR THREE SETTINGS DEPENDING ON THE DEGREE OF
VARIANCE OF USERS’ VALUES OF TIME, I.E., LOW, MEDIUM, OR HIGH. HERE,

CI AND qI DENOTE THE TOTAL SYSTEM COST AND EX-POST INCOME
DISTRIBUTION FOR THE SCHEME WITH INCOMPLETE INFORMATION,

W∗ = W (q(τ∗, r∗)), AND W 0 = W (q(0, 0)).

Experiment C0−C∗
C0

C0−CI
C0

W0−W∗

W0
W0−W (qI )

W0

Pigou (2 edge) 5.1147 5.1029 0.0357 0.0297
Parallel (4 edge) 4.1343 4.1223 0.0167 0.0134
Series-Parallel 4.8809 4.8331 0.0609 0.0554
Grid (Low Var) 0.9910 0.9834 0.0107 0.0071
Grid (Med Var) 1.4824 1.3062 0.0161 0.0070
Grid (High Var) 2.3365 1.6787 0.0253 0.0070

level of wealth inequality that are higher than that of
the optimal CPRR schemes in the complete information
setting but lower than that corresponding to the user
equilibrium setting with no tolls and refunds. Table I
also indicates that the performance of the CPRR scheme
with incomplete information depends on the variance in
the user values of time and income around the mean.
In particular, Table I indicates that as the variance in
user values of time is decreased, the CPRR scheme with
incomplete information achieves a performance closer to
that of the optimal CPRR scheme on both total system
cost and wealth inequality metrics.
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