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Stability Analysis of Explicit Congestion
Control Protocols

Hamsa Balakrishnan, Nandita Dukkipati, Nick McKeown and Claire J. Tomlin

Abstract—In the context of explicit congestion control
protocols like XCP and RCP where the equilibrium queue
lengths are zero, we show that the stability region de-
rived from traditional Nyquist analysis is not an accurate
representation of the actual stability region, and that the
use of switched linear system models with time delay and
new Lyapunov tools can provide sound sufficient stability
conditions.

I. I NTRODUCTION AND MOTIVATION

To demonstrate the stability of fluid-flow models of
protocols (modifications to TCP such as STCP, FAST
and HSTCP as well as new congestion control algo-
rithms, such as the eXplicit Control Protocol (XCP) [5]
and the Rate Control Protocol (RCP) [2]), researchers
have used a combination of control-theoretic analysis
and simulation, often relying on control theory to demon-
strate soundness. The existing techniques to analyze
such models linearize the system equations about the
equilibrium and then use linear system analysis tools
such as the Nyquist criterion to find parameters that
determine the response to congestion, as well as rate
increases, for which the system is stable. The success
of such linearized analysis depends on how well the
system dynamics can be approximated by its first-order
behavior about the equilibrium point. In particular, when
the equilibrium point lies on a discontinuity in the system
dynamics (often caused by physical constraints, such as
nonnegative queue lengths), the stability of the linearized
system givesno guarantees on the stability of the system,
even for simple network topologies such as bottleneck
links.

The motivation for this work stems from the system
dynamics of XCP and RCP. For a single bottleneck link
of capacityC traversed byN flows with equal round trip
delaysd, aggregate flow ratey(t), and queue lengthq(t),
the system can be modeled by the following delay differ-
ential equations, whereα andβ, chosen through stability
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analysis, determine the aggregate feedback giveny(t)
andq(t) [5]:

ẏ(t) = −α
d
(y(t − d) − C) − β

d2 q(t − d)

q̇(t) =

{

y(t) − C, q(t) > 0
max(0, y(t) − C), q(t) = 0

(1)

We refer to this system asSYSTEM 1. Linear analysis,
such as that in [5], would analyze the linearization by
considering only one possible mode of behavior of the
system, namely,

ẏ(t) = −α
d
(y(t − d) − C) − β

d2 q(t − d)
q̇(t) = y(t) − C.

When we compare the stability of this system for dif-
ferent system parameters (α and β) obtained through
linear (Nyquist) analysis, with the simulated system for
d = 200ms (Fig. 1, left), the Nyquist analysis suggests
that the shaded region of parameters is stable; simula-
tions, however, suggest that a potentially much larger
region, that to the left of the dotted line shown, is stable.
If we simulate both the linearization and the switched
systems for two sets of parameter values (α = 0.8,
β = 0.55 and α = 1.4, β = 0.3), we notice that
the first set of parameters results in a stable system;
while for the second set of parameters, linear analysis
predicts a stable system, while simulations indicate that
the system is unstable [1]. The considerable difference
in the stable region predicted by linearization and the
actual stable region motivates a more careful analysis.
We notice thatSYSTEM 1 is a switched system with
two modes of operation, one when the queue length is
positive, and one when the queue length is zero, and
that the equilibrium point lies on the line (q(t) = 0) on
which the switching between the two systems occurs. It
is known that for a switched system, linearizing about
an equilibrium point at which the system dynamics are
discontinuous could lead one to erroneous conclusions,
even on its local stability [4].

We advocate caution in the use of linear stability
theory in the analysis of explicit congestion control
protocols in which the equilibrium queue lengths are
zero. Instead, we propose a method for taking dis-
continuities in the system dynamics into account by
modeling the protocol as a switched system, and present
a computational technique to analyze the stability of



Fig. 1. (Left) Comparison of linearized stability region (shaded area) with simulated stability region (area to the left of the dotted line), for
the SYSTEM 1. (Right) Provably safe regions ofα andβ (for d = 200 ms).

switched linear time-delay systems, thereby obtaining
sound sufficient criteria for the stability of explicit con-
gestion control protocols.

II. T HEORY: DISCRETIZEDLYAPUNOV FUNCTIONALS

FOR SWITCHED SYSTEMS WITH TIME-DELAY

We propose a new method to search for piecewise
quadratic Lyapunov functionals for switched linear sys-
tems. There has been a recent attempt to solve simi-
lar problems using Lyapunov functions of a different
form [6]. Following results for switched systems with no
time-delay and linear systems with time-delay [1], given
a switched time-delay systeṁx(t) = Aix(t)+Adi

x(t−
d), statex(t) ∈ Xi, whereXi is a partition of the state
space given by the dynamics,xt is the trajectory, and
i indexes the partition in the state space, we search for
Lyapunov functionals of the form

Vi(xt) = x(t)TPix(t) + 2x(t)T
∫ 0

−d
Q(ζ)x(t + ζ)dζ

+
∫

0

−d

∫

0

−d
x(t + ζ)TR(ζ, η)x(t + η)dηdζ

+
∫

0

−d
x(t + ζ)TS(ζ)x(t + ζ)dζ

where Pi = FT

i TFi for continuity, as in the case of
switched linear systems. We tackle this problem by
combining time-discretization methods, so far used for
linear time-delay systems [3], with a space discretization
technique used to analyze switched systems with no
time-delay. We try to find the matrix functions of space,
Pi, and the matrix functions of (discretized) time,Q,
R andS. Details of our approach are presented in [1].
There are several advantages in designing an analysis
tool of this form: the time-discretization technique is
known to decrease conservatism in proving stability for
linear systems in which the stability depends on the
values of the delay [3]; partitioning the state space is
an efficient way of analyzing the stability of switched

hybrid systems [4]. The combination of the two methods
reduces the stability analysis to the solution of Lin-
ear Matrix Inequalities (done efficiently using standard
solvers such as SeDuMi [8]). This method can be ex-
tended to systems with heterogeneous delays [1].

III. R ESULTS: FINDING PARAMETERS WITH

PROVABLE STABILITY FOR THE XCP EQUATIONS

We use the methods described above to find Lyapunov
functions that prove the stability of the XCP equations
for different values ofα, β, andd. We embed the XCP
system equations (1) in a switched system which is
defined for allx(t) = y(t) − C andq(t), given by

q̇(t) = x(t)

ẋ(t) = −α
d
x(t − d) − β

d2 q(t − d)
if q > 0 or x ≥ 0

q̇(t) = −q(t)

ẋ(t) = −α
d
x(t − d) − β

d2 q(t − d)
if q ≤ 0 andx ≤ 0

(2)

We refer to this system asSYSTEM 2. SYSTEM 1 is
stable if SYSTEM 2 is stable. This is becauseevery
trajectory of (1) is a trajectory of (2). Since a system
is stable if and only if every trajectory of it is stable,
SYSTEM 2 is stable implies thatSYSTEM 1 is stable.

The outer boundaries of the provably stable regions of
parameters for a round trip delay of 200 ms are plotted
in Fig. 1 (right). The smaller (dark) region corresponds
to the stable region predicted by linear analysis, which
ignores the switch. The inset shows a closer look at
the region where the switched Lyapunov results are
conservative (which is to be expected, since they are
derived from a sufficient condition for stability) – while
the linear analysis results predict a stable system, the
switched system is unstable. Fig. 1 (right) also shows
that the actual stable region is much larger than that
predicted by the linearization.
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Fig. 2. Provably safe boundaries ofα andβ (for d = 10ms to200 ms). The dotted lines in the figures on the right correspond tothe simulated
stability boundaries.

Effect of delay on stability criteria

The proposed Lyapunov functionals for switched
systems provide us with sufficient conditions for
delay-dependent stability. Since studies have shown that
85% of Internet traffic has round trip delays between
15-500 ms [7], we analyze the stability for this range of
round trip delays. The provable stability boundaries, in
terms ofα andβ are shown in Fig. 2. We find that for
small delays, it is more difficult to prove the stability
of the switched system. We should bear in mind that
these results are based on sufficiency conditions, and
therefore our not being able to prove stability does not
imply instability. For values of delay more than 100 ms,
we can prove stability for a substantially large range of
parameters. Even for small values of delay, we note that
the region stays larger than previously derived using
linearization.

In particular, we can prove that the range of
parameters recommended for XCP in [5], namely
0 < α < π

4
√

2
and β = α2

√
2, is, in fact, stable

for values of delay ranging from 10 ms to 500 ms.
While the linear analysis that was used to prove the
stability of XCP in [5] was not valid for the XCP model
(the equilibrium lies on a line of discontinuity in the
dynamics), their results and choice of parameters have
been validated in this work. These techniques can also
be extended to the case of heterogeneous delays on
bottleneck links [1].

IV. CONCLUSIONS

We have presented a new computational technique that
handles discontinuities and time-delays, and provides

less conservative estimates of stable regions of explicit
congestion control protocols which do not satisfy linear
approximation and analysis tools. This technique also
applies to the analysis of traffic engineering protocols
such as TeXCP, and networks with heterogeneous delays.
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