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Abstract

Knowledge of the fuel flow rate is important
for accurate fuel burn and emissions inventory
generation and for accurate engine performance
modeling. In this paper, machine learning tech-
niques are applied to aircraft flight recorder data
to model the fuel flow rate as a function of the
aircraft altitude, ground speed, vertical speed,
and takeoff mass in the airborne phases of flight.
Models are built using the Classification and Re-
gression Trees (CART) and the Least Squares
Boosting algorithms. The models are found to be
interpretable. They are also shown to predict fuel
flow rate and its variability more accurately than
other frequently-used methods for fuel flow rate
estimation. A sensitivity analysis of the predicted
fuel flow rate to takeoff mass is also conducted.
The proposed nonparametric models can help set
a benchmark for developing more sophisticated
data-driven statistical models of engine fuel flow
rate.

1 Introduction

The fuel flow rate of an aircraft engine is a key
indicator of engine performance. Correct mod-
eling of the fuel flow rate is important both for
assessing engine performanc, and for estimating
aircraft emissions, since emissions are a direct
consequence of fuel burn. Knowledge of fuel
burn is also essential to estimate the direct op-
erating costs to an airline.

Engine simulation software [1] model the ide-
alized performance of an engine, which can dif-
fer from that of a real engine in flight. More-
over, the use of such software requires the knowl-
edge of many internal engine parameters and
component characteristics. Prior studies have
looked into the problem of modeling aircraft en-

gine fuel burn [2, 3], but have typically used non-
operational data (e.g., from flight manuals, soft-
ware or ground tests) to model the fuel burn.
These studies have therefore not accounted for
operational factors. For example, the Interna-
tional Civil Aviation Organization (ICAO) Air-
craft Engine Emissions Databank (hereafter re-
ferred to as the ICAO Databank) provides values
of the fuel flow rate for different aircraft engines
in the Landing and Take Off (LTO) cycle based
on ground tests [4], but these values have been
shown to differ from those seen in actual oper-
ations [5, 6]. Moreover, methods based on the
ICAO Databank and the Base of Aircraft Data
(BADA) [7] give point estimates of the fuel flow
rate and do not quantify uncertainties in its val-
ues. These problems can be overcome by the use
of operational data from real flight operations.

There exist relatively few studies which have
used operational flight data to model engine fuel
burn [8, 9]. The incorporation of different types
of operational data has been shown to improve
estimates of aircraft fuel burn [10, 11]. Data-
driven models of engine fuel flow rate can also
give estimates of uncertainties in the fuel flow
rate values. With these advantages in mind,
in this paper, operational data from Flight Data
Recorders (FDR) are used for modeling the en-
gine fuel flow rate. Since it records values of
different aircraft and engine parameters during
flight, the FDR provides a reliable archive of real
flight data.

An aircraft engine is better modeled as a
stochastic (and not a deterministic) system due
to random variations in internal characteristics
(arising from manufacturing errors, flow turbu-
lence, component deterioration, etc.) and exter-
nal ambient disturbances (ambient air tempera-
ture and pressure fluctuations, wind gusts, etc.)
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[12]. These properties motivate the use of ma-
chine learning techniques to develop statistical
models from aircraft engine data.

Since all the variables involved in the model-
ing of fuel flow rate in this paper are metric and
continuous, the machine learning problem is fun-
damentally a regression problem. Two nonpara-
metric machine learning algorithms based on re-
gression trees – the Classification and Regression
Trees (CART) algorithm and the Least Squares
Boosting (LSB) algorithm – are used to model
the engine fuel flow rate in this paper. These
algorithms have seen widespread application in
diverse areas like solar radiation modeling [13],
strength modeling of composites [14], model-
ing of signalling traffic in mobile networks [15],
highway safety studies [16], health monitoring of
engineering components [17], pollution studies
[18], ecological studies [19], etc.

We start with giving a brief description of the
FDR dataset in Sec. 2. The regression variables
are explained in Sec. 3. Section 4 briefly explains
the CART and LSB algorithms and their advan-
tages. We then describe the regression methodol-
ogy employed in this paper in Sec. 5. Section 6
presents the main results of the regression anal-
ysis. In Sec. 7, the sensitivity of the analysis to
takeoff mass is explored. We wrap the paper up
with the main conclusions and directions for fu-
ture research in Sec. 8.

2 Dataset

Our dataset comprises flight recorder data for
10 different aircraft types, as shown in Tab. 1.
Each flight of each aircraft type is split into dif-
ferent phases, based on flight trajectory, velocity,
and acceleration parameters [5]. In this paper,
only the airborne phases of flight, that is, ascent,
cruise and descent, are considered. Prior to the
statistical analysis, the fuel flow rate profiles in
the dataset were studied as a function of time and
altitude, and were found to qualitatively conform
to a physical understanding of aircraft and engine
performance [20].

Table 1. FDR data: aircraft types and engines.

Sr.
No.

Aircraft Type Engine No. of
Flights

1. A319-112 2 × CFMI CFM56-5B6/2 or 2P 130

2. A320-214 2 × CFMI CFM56-5B4/2 or P or
2P

169

3. A321-111 2 × CFMI CFM56-5B1/2 or 2P 117

4. A330-202 2 × GE CF6-80E1A4 84

5. A330-243 2 × RR Trent 772B-60 100

6. A340-541 4 × RR Trent 553 52

7. A340-313 4 × CFMI CFM56-5C4 or 5C4/P 76

8. B767-300 2 × GE CF6-80C2B7F 91

9. B777-
3FX(ER)

2 × GE GE90-115B1 131

10. ARJ85/100 4 × LY LF507-1F 153

3 Regression Variables

The predictor/explanatory/input variables for
regression are chosen by considering the underly-
ing physics of aircraft and engine operations [21].
These principles suggest that the fuel flow rate
depends on the ambient atmospheric density, the
true airspeed, the aircraft mass, the wing refer-
ence area, and the time. We assume International
Standard Atmospheric conditions (the density is
a function of only the altitude), no winds aloft
(the true airspeed is equal to the ground speed),
constant wing area for a particular aircraft type,
the ratio of the altitude to the vertical speed as
a surrogate for time, and the instantaneous air-
craft mass to be a function of the takeoff mass,
the fuel flow rate, and time. Thus, the fuel flow
rate functionally depends on the aircraft altitude,
the ground speed, the vertical speed, and the air-
craft takeoff mass. A key benefit of these sim-
plifying assumptions is that with the exception
of the aircraft takeoff mass, all of these predic-
tor variables are derivable from aircraft trajec-
tory data alone, which are more readily accessi-
ble than FDR data. In our analysis, the speeds
are normalized by the design cruise speed, the
aircraft takeoff mass is normalized by its Max-
imum Take Off Weight (MTOW), and the fuel
flow rate is normalized by the ICAO Databank
[4] climb out fuel flow rate in ascent and cruise
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and the ICAO Databank approach fuel flow rate
in descent for the appropriate engine type. This
normalization is done with the aim of eventually
developing generalized, aircraft type independent
models of fuel flow rate.

4 Modeling Methods

This section explains the regression trees-
based Classification and Regression Trees
(CART) and Least Squares Boosting (LSB)
algorithms for developing regression models.

4.1 Classification and Regression Trees
(CART)

CART is a popular classification and regres-
sion algorithm developed by Leo Breiman et al.
[22]. Starting with the root node containing all
the data points, CART carries out recursive bi-
nary splitting of the data. The split criteria are
always of the form X < χ where X is a particular
predictor variable and χ is the split point. Points
in a node satisfying the split criterion go into the
left child node and the others go into the right
child node. This split at each node is a locally
optimal split, chosen so as to maximally reduce
the weighted sum of the mean squared errors of
the resulting nodes. The sum is weighted by the
fraction of the observations going in the left child
and the right child nodes. The algorithm assigns
the mean of the values of the dependent variable
in a node as the value of that node. The recur-
sive splitting continues till the algorithm reaches
a stopping criterion. The nodes which do not fur-
ther split are known as leaf nodes. The algorithm
stops splitting a node when either the improve-
ment in mean squared error due to a further split
drops below a threshold, or when a further split
drops the number of observations in a node be-
low a pre-defined value, or when splitting is no
longer possible as the predictors have the same
distribution for all the points in the node, or when
only one observation remains in the node. In
this paper, a minimum number of 10 observa-
tions is required to be present in each node. In
each leaf node, the algorithm assigns a constant

value equal to the mean of the dependent vari-
able for all the observations in that node. The
tree growing procedure normally produces a very
deep tree which overfits the data. Hence, the tree
is pruned as a means of regularization. Prun-
ing re-combines leaves (to reduce the total num-
ber of leaves and hence, the tree complexity) in
a manner which keeps the increase in training
mean squared error to a minimum. This suc-
cessive pruning produces a sequence of subtrees.
The mean squared error given by each subtree on
out-of-sample data is chosen as the metric of its
generalized performance. In this paper, 10 fold
cross validation is used to calculate the out-of-
sample mean squared error and its standard de-
viation. The most parsimonius subtree having its
mean squared error within one standard deviation
of the minimum error across all subtrees is cho-
sen as the final tree to be used further for model-
ing and prediction of the fuel flow rate. There are
several advantages of using CART [23]. CART
is a fast and a relatively automatic algorithm, not
requiring much intervention from the user. It can
be easily scaled to large datasets. The trees gen-
erated are easily interpretable. Being a nonpara-
metric method, the problem of having to choose a
set of basis functions or of assuming an underly-
ing generative process for the data does not arise.
The trees also capture interaction among different
predictors (upto the depth of the tree). Regression
trees are also robust to outliers in the input data
and can deal with irrelevant data. The CART al-
gorithm can easily handle missing values in the
data. Lastly, the algorithm is invariant to mono-
tonic transformations of the input variables.

4.2 Least Squares Boosting (LSB)

The CART algorithm generates only one tree,
which may be unstable and can have low predic-
tive power. A combination of several such ‘weak’
regression trees can be expected to yield models
with better prediction capability. Boosting [23]
is an ensemble method which combines several
‘weak’ learners to yield a ‘stronger’ model. In
this paper, each weak learner is a regression tree
generated by CART (as explained in Sec. 4.1).
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The boosting algorithm is run for many ensem-
ble cycles. Based on the minimization of the
cross validated mean squared error over the train-
ing dataset, the number of ensemble cycles in this
paper is 100. The algorithm starts by building a
CART-based weak learner to the entire dataset.
In each successive cycle, the boosting algorithm
fits a weak tree learner to the residuals from the
previous cycle. The objective is to minimize the
squared error loss and hence, the name Least
Squares Boosting (LSB). The output predictions
at a particular input from all the cycles are lin-
early combined to give the model prediction at
that input. The contribution from each cycle is
controlled by a manually set learning rate which
in this paper is set to a value of 0.1. The learn-
ing rate thus, shrinks the contribution from each
tree. The advantage of the LSB algorithm lies in
its superior predictive ability compared to a sin-
gle CART model. However, by combining many
single CART models, the algorithm loses the in-
terpretability seen in a single tree. The LSB al-
gorithm is also slower than the CART algorithm.

5 Regression Methodology

This section briefly explains the regression
methodology employed for model building from
the data. It also explains the different metrics
used for model evaluation.

5.1 Model Training

For each aircraft type, the dataset (combined
for all flights) is divided randomly into training
and test sets in the ratio of 65:35. The training
set is used to build (or train) the models and the
test set is used to check model performance on
unseen data (that is, data not seen during model
training). For the A320-214, the dataset is ran-
domly divided into training, validation, and test
sets in the ratio of 65:25:10. The purpose of the
validation set is to provide out-of-sample data
to select few best models out of several models
trained on the training data. The A320-214 is
chosen for validation as it has the most number
of flights in the FDR dataset.

To start with, the training dataset is used to
build models by using different parametric re-
gression techniques, such as ordinary and robust
least squares, and ridge regression. However,
these methods are found to have poor predic-
tive performance on out-of-sample data. More
importantly, the data is found to violate many
underlying assumptions of the parametric meth-
ods. To overcome the problems of using para-
metric methods (such as assumption of an un-
derlying distribution over the data, choice of ba-
sis functions, etc.), nonparametric methods are
resorted to to model the fuel flow rate. Based
on the modeling methods explained in Sec. 4,
different CART and LSB models are built for
each aircraft type in each of the three airborne
phases of ascent, cruise, and descent. The air-
craft altitude, h, the normalized ground speed,
VGS, the normalized vertical speed, ḣ, and the
normalized takeoff mass, mTO are the predic-
tor/explanatory/input variables. The ICAO Data-
bank normalized fuel flow rate per engine, ṁ f is
the predicted/dependent/output variable. Though
all the variables constitute a time series in the
FDR dataset, in this paper, time series analysis
is ignored for simplification and the ordering of
the observations is considered to be unimportant.
The regression models trained using CART and
LSB are further subjected to evaluation.

5.2 Model Evaluation

The main focus of the research is to build mod-
els which can predict well the fuel flow rate val-
ues on new data. The following metrics are used
for model evaluation on the test dataset to quan-
tify the generalized prediction performance of the
models.

• Mean Error (ME): This is the mean rela-
tive prediction error on the test dataset. It is
determined by Equation 1.

ME =
1

ntest

ntest

∑
l=1

∣∣∣ṁ f l − ˆ̇m f l
ṁ f l

∣∣∣ (1)

Here, ṁ f l is the actual normalized fuel flow
rate value in the test dataset, ˆ̇m f l is the mean
predicted normalized fuel flow rate using the
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trained model, and ntest is the number of ob-
servations in the test dataset. A model with
a lower ME is preferred.

• Percentage Coverage (PC): This is the
percentage of the observations in the test
dataset for which the 95% prediction inter-
vals for the normalized fuel flow rate values
include the actual normalized fuel flow rate
values. A model with a higher PC is pre-
ferred. The 95% prediction intervals are de-
termined by bootstrapping [24].

6 Results

In this section, some of the features of the re-
gression models built, their interpretation, and
their prediction performance are discussed. The
model predictions on test data are also compared
with those given by the ICAO Databank and the
BADA methods, two methods commonly used
for fuel flow rate estimation.

6.1 Model Interpretation

Figure 1 shows a typical regression tree built
by CART and the partitions induced by it in pre-
dictor space for an A320-214 in ascent. For ease
of representation and interpretability, only 1000
observations randomly chosen from the complete
training dataset are used for model building in
Fig. 1 (though for prediction, the complete train-
ing dataset upto the memory limitation of the
software is used). Since, the partitions of the pre-
dictor space induced by a tree can be shown eas-
ily only for two predictors, the two most impor-
tant predictors are chosen for tree building here
(again, for prediction all the four predictors are
used). The choice of the most important predic-
tors is done using predictor importance methods
[23]. Though all the models are trained using
normalized variables, in Fig. 1 (and also in Fig.
2 shown later), the variables are re-converted to
their dimensional values for ease of interpreta-
tion.
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Figure 1. A320-214: CART tree visualization in ascent:
(top) the tree, and (bottom) the partitions of the predictor

space induced by the tree. The numbers inside the
partitions correspond to the leaf node numbers in the tree.

The tree clearly shows that prediction is based
upon a set of simple decision rules which di-
rect each input to a leaf node and assign a node-
specific value for the fuel flow rate. This sim-
plicity enables fast prediction. It is also easy
to see how the tree seamlessly captures interac-
tions among predictors. This is evident from the
fact that splitting variables seen in the left sub-
tree of a node could be different from those seen
in the right subtree. The tree breaks up the pre-
dictor space into different partitions, each corre-
sponding to one leaf node. Each partition rep-
resents that region of predictor space where all
points show homogeneity in fuel flow rate val-
ues. Thus, instead of fitting a global model to
the entire dataset, CART (and also LSB) identi-
fies homogenous regions of data and fits a sepa-
rate model in each region. This has the capabil-
ity of improving model accuracy as well as cap-
turing the variability in data properly. The parti-
tions diagram can also help make quick interpre-
tations about the data. For example, according
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Figure 2. A320-214: one variable partial dependence plots from the CART models: (top) ascent, (middle) cruise, and
(bottom) descent

to the partitions induced by the particular CART
model for the A320-214 in Fig. 1, above about
4650 m (about 15260’) altitude during ascent,
the fuel flow rate shows no dependency on the
ground speed and is solely determined by the al-
titude. The highest fuel flow rate during ascent
is seen for altitudes below about 950 m (about
3120’) at ground speeds greater than about 80
m/s (about 290 km/h). The lowest fuel flow rate
is seen at ground speeds lower than about 60 m/s
(about 220 km/h) and altitudes below about 4650
m (about 15260’).

Figure 2 shows one variable partial depen-
dence plots [23] developed using CART for the
A320-214 in ascent, cruise, and descent. Partial
dependence plots show the approximate depen-
dence of the prediction function on each predic-
tor variable, with the effect of all the other pre-
dictor variables averaged out (and not ignored).

These plots can be used to quickly and approxi-
mately interpret the models and find interesting
trends in the predictions. The plots from the
CART models built for the A320-214 here show
that in ascent and cruise, the fuel flow rate de-
creases with altitude. This is expected as the
drop in density with altitude reduces the engine
thrust requirement. During descent, as the air-
craft drops in altitude, the fuel flow rate also de-
creases. However, it increases at low altitudes to
compensate for the increase in drag arising out of
the deployment of auxiliary devices (flaps, slats)
and the landing gear close to landing. The fuel
flow rate is also seen to increase with the verti-
cal speed as more energy is typically required for
higher speeds. The fuel flow rate also increases
with the takeoff mass as more thrust is needed
to maintain a heavier aircraft in flight. Two in-
teresting features are observed in the dependence
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of the fuel flow rate on ground speed. During
ascent, the fuel flow rate maximizes around 125
m/s (450 km/h). During descent, the fuel flow
rate minimizes around 150 m/s (540 km/h). Such
knowledge derived from the partial dependence
plots about the behavior of the fuel flow rate with
each predictor variable as well as from the par-
tition plots (Fig. 1) about the different regimes
within each phase can help plan a flight trajec-
tory from a fuel flow rate perspective. It should
be noted that single variable partial dependence
plots give only approximate interpretation as they
do not capture interactions among different pre-
dictor variables. Another important point to note
is that the plots do not appear to be smooth. This
is because CART fits piecewise constant models
which are discontinuous at the boundaries of the
tree partitions (leaf nodes).

6.2 Model Prediction

The CART and the LSB models are used to
predict the fuel flow rates for the test data. These
predictions are compared with the target values
in the test dataset using the metrics listed in Sec.
5.2. Table 2 shows the different prediction met-
rics for the models as ranges over the different
aircraft types. As one would expect, the LSB
models give a better prediction performance (as
indicated by the lower ME and higher PC) than
the single tree CART models in all the airborne
phases. However, the computational time for
model building is higher for LSB as compared
to CART. The descent phase has the largest mean
error among all the phases. The lower prediction
accuracy in descent could arise from the fact that
the descent phase shows more variability com-
pared to the other airborne phases. Part of this
variability could be due to operational reasons as
descent is a controlled phase.

6.3 Comparison with the ICAO Databank
and the BADA Method

The ICAO Databank [4] maintains values of
the fuel flow rate and emission indices for ev-

ery certified engine at four thrust settings - take-
off (100% thrust), climb out (85% thrust), ap-
proach (30% thrust), and idle (7%) thrust. It is
widely used for fuel burn and emission inven-
tories. Since this paper deals with only the air-
borne phases of flight, we compare model pre-
dicted fuel flow rate values in climb out and ap-
proach with those tabulated in the ICAO Data-
bank. Climb out and approach are the part of
ascent and descent, respectively, below 3000’
Above Ground Level (AGL). The ICAO Data-
bank enumerates values of fuel flow rates through
ground tests done at sea level static conditions on
an uninstalled engine. Hence, to do a comparison
with the ICAO Databank values, the at-altitude
fuel flow rate values for an installed engine pre-
dicted by the regression models in the climb out
and approach phases are converted into equiva-
lent values at sea level static conditions for an
uninstalled engine. This conversion is done using
the equations of the Boeing Fuel Flow Method 2
(BFFM2) [5]. The Base of Aircraft Data (BADA)
method [7] is another popular method used to de-
termine aircraft and engine performance parame-
ters, including the fuel flow rate. It is a total en-
ergy based method. It uses empirical equations
to determine performance. The constants in the
equations are enumerated in a database. In this
paper, the comparison between model predictions
and BADA results is made for five aircraft types:
A321-111, A330-243, A340-541, A340-313, and
Avro RJ85/100 (as these are the only aircraft
types for which the engines in the FDR and the
BADA databases match). Unlike the ICAO Data-
bank, the BADA method estimates the fuel flow
rates for at-altitude conditions. Hence, for com-
parison with the BADA estimates, the model pre-
dictions are not converted to equivalent values at
sea level static conditions for an uninstalled en-
gine. Table 2 shows the comparison between the
model predictions and the ICAO Databank and
BADA fuel flow rate values. The comparisons
show that the CART and the LSB models pre-
dict the test dataset fuel flow rates more accu-
rately as compared to both the ICAO Databank
and the BADA values in all the phases. More
importantly, both the ICAO Databank and the
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Table 2. Model predictive performance on the test dataset across the different aircraft types and comparison with ICAO
Databank and BADA values. It is important to note that the model results in ascent, cruise, descent, and the BADA values

are the at-altitude results for an installed engine. However, the model results in climb out and approach have been converted
to sea level static conditions for an uninstalled engine for comparison with the ICAO Databank results. The BADA results

range over only 5 aircraft types. The model and the ICAO Databank results range over all the 10 aircraft types.

CART LSB ICAO Databank BADA
ME, % PC ME, % PC ME, % PC ME, % PC

Ascent 1.4–4.5 50.3–60.3 0.7–2.5 67.6–77.0 N/A 5.9–22.4 0

Climb out 1.0–4.8 55.3–63.8 0.3–2.5 69.8–79.1 6.2–33.8 0 –

Cruise 2.8–8.2 49.4–62.4 2.0–6.3 58.8–66.5 N/A 12.4–130.6 0

Descent 12.1–20.1 50.9–59.8 6.8–13.6 61.8–70.3 N/A 31.8–60.4 0

Approach 13.7–20.5 55.0–61.2 6.5–12.8 63.4–70.9 35.0–96.3 0 –

BADA method give only point (and not interval)
estimates of the fuel flow rates, thereby giving a
percentage coverage of 0. This problem is over-
come by the CART and the LSB models which
give bootstrapped prediction intervals, resulting
in a higher percentage coverage. Hence, fuel flow
rate modeled by using operational data from sev-
eral flights is more reflective of the variability ob-
served in flight as compared to methods like the
ICAO Databank or the BADA method.

7 Model Sensitivity to Takeoff Mass

Out of the four predictors being used to build
the models, altitude, ground speed, and verti-
cal speed can be obtained/derived from trajec-
tory data which are easily accessible. Hence,
accurate values of these three predictors can be
known from trajectory data. However, it is dif-
ficult to know the true value of the takeoff mass
for a flight. Hence, one would normally use an
estimate of the takeoff mass for building the re-
gression models. Thus, it is imperative to know
how sensitive the models are to errors in the esti-
mated takeoff mass. For this analysis, the values
of the takeoff mass in the test dataset for each air-
craft type are changed systematically by a fixed
percentage of the true value to give a modified
test dataset. All the other predictors are held at
their original values (which is an approximation
as the other variables might depend on takeoff
mass too). Models trained using the true take-
off mass are run on the modified test dataset, and
the percentage mean error in the predicted fuel
flow rate is calculated. The variation of this er-

ror with the percentage deviation of the estimated
takeoff mass from its true value indicates the sen-
sitivity of the model predictions to the takeoff
mass. Table 3 shows the percent increase in per-
centage mean error on the modified test dataset
when there is a 1% deviation in the takeoff mass
about its true value. The behavior of percentage
mean error with deviation in takeoff mass for the
B767-300 is shown in Fig. 3 for cruise. Other
phases and aircraft types show similar behaviors.

Table 3. Percent increase in percentage mean error in
predicted fuel flow rate for a ± 1% deviation in takeoff

mass from its true value across the different aircraft types.
The results in this table are from the LSB method.

-1% Deviation +1% Deviation
Ascent 57.3–223.2 57.1–213.4

Cruise 4.3–111.3 9.2–91.1

Descent 40.2–126.7 41.8–129.9
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Figure 3. B767-300: effect of deviations in takeoff mass
on percentage mean error in predicted fuel flow rate on the

modified test dataset in ascent. The results are from the
LSB model.

As expected, the error is the minimum when
the takeoff mass values in the modified test
dataset equal the true values. The error increases
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as the deviation from the true takeoff mass in-
creases and stabilizes for large positive and neg-
ative deviations in the takeoff mass. The model
predictions are seen to be sensitive to even a 1%
deviation from the true takeoff mass.

8 Conclusions

This paper studied the application of machine
learning techniques to aircraft engine fuel flow
rate modeling. Two nonparametric methods –
Classification and Regression Trees and Least
Squares Boosting – were employed. A physical
understanding of the aircraft and engine dynam-
ics helped in the choice of the variables for re-
gression. The approaches were tested on FDR
data from 10 different aircraft types.

CART gave simple and fairly interpretable
models of fuel flow rate, while the LSB models
had higher predictive ability than CART models
on test data. Both approaches performed better
than the ICAO databank and the BADA method
used commonly for fuel flow rate estimation. Our
models based on real data can give uncertainty
estimates for the fuel flow rates which are help-
ful to any user of the models. The uncertainty
estimates quantify the extent of variability seen
in real flight operations. The model performance
was found to be sensitive to takeoff mass estima-
tion. Hence, the accuracy of fuel flow rate esti-
mate is closely linked to that of the takeoff mass
estimate.

The results of this paper can be used as a
benchmark for developing other, more sophis-
ticated models of fuel flow rate. A promising
next step is the use of Bayesian regression trees,
whereby a prior is put on the distribution of trees
to account for prior beliefs about the problem.
The advantage of Bayesian methods lies in their
ability to directly give a full posterior predictive
distribution for new data. Another future direc-
tion a time series analysis of flight data.
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