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Abstract

Modern air transportation systems are complex cyber-physical networks that are critical to global travel and
commerce. As the demand for air transport has grown, so have congestion, flight delays, and the resultant
environmental impacts. With further growth in demand expected, we need new control techniques, and
perhaps even redesign of some parts of the system, in order to prevent cascading delays and excessive
pollution.
In this survey, we consider examples of how we can develop control and optimization algorithms for air
transportation systems that are grounded in real-world data, implement them, and test them in both
simulations and in field trials. These algorithms help us address several challenges, including resource
allocation with multiple stakeholders, robustness in the presence of operational uncertainties, and developing
decision-support tools that account for human operators and their behavior.

Keywords: Air transportation, congestion control, large-scale optimization, data-driven modeling, human
decision processes

1. Introduction

The air transportation system operated nearly
85 million flights worldwide in 2014, serving 6.7 bil-
lion passengers and 102 million metric tons of cargo.
The Asia-Pacific region served more than a third of5

these passengers, while Europe and North Amer-
ica served about a quarter each. Emerging mar-
kets in the Middle East are experiencing an annual
growth in traffic of more than 10% annually [1]. Al-
though there are nearly 42,000 airports worldwide10

(nearly 20,000 airports in the United States), traffic
demand tends to be concentrated at a small number
of them: The top 30 airports serve more than one-
third of all passengers, while the busiest airports
(Chicago O’Hare, Atlanta and Los Angeles) each15

see more than 700,000 aircraft operations annually
[1, 2].

The increasing demand for air traffic operations
has further strained this already capacity-limited
system, leading to significant congestion, flight de-20

lays, and pollution. Domestic flight delays in the

US have been estimated to cost airlines over $19
billion and the national economy over $41 billion
annually, waste 740 million gallons of jet fuel, and
release an additional 7.1 billion kilograms of CO225

into the earth’s atmosphere [3]. The demand for
airspace resources is expected to significantly in the
upcoming decades, and to also include operations of
autonomous aircraft [4, 5]. The networked nature
of the air transportation system also leads to the30

propagation of delays from one part of the system
to another. To prevent cascading delays and even
congestive collapse, there is a need for new analysis
techniques and operational strategies for air trans-
portation systems.35

The design of algorithms for air transportation,
as in the case of most real-world infrastructures,
yields a range of multi-objective optimization prob-
lems: For example, one would like to improve the ef-
ficiency (in terms of reducing total flight delays, fuel40

burn, delays per passenger, etc.), robustness (that
is, minimize the propagation of delays through the
system), while still maintaining the safety and se-
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curity of the system. These objectives are difficult
to achieve in practice, due to the challenges posed45

by the presence of uncertainties, human factors,
and competing stakeholder interests. However, it is
possible to overcome these challenges by leveraging
the increasingly available operational data to build
simple yet realistic models, and to use these mod-50

els to develop and implement scalable control and
optimization algorithms to improve system perfor-
mance.

In this paper, we present three examples of how
the challenges mentioned above can be addressed55

in the context of air transportation systems:

1. Airport congestion control.

2. Large-scale optimization algorithms for air traf-
fic flow management.

3. Learning models of air traffic controller deci-60

sion processes and the associated utility func-
tions.

This paper is based on a semi-plenary lecture given
by the author at the American Control Conference,
Chicago, IL, 2015.65

2. Airport congestion control

Taxiing aircraft consume fuel, and emit pollu-
tants such as Carbon Dioxide, Hydrocarbons, Ni-
trogen Oxides, Sulfur Oxides and Particulate Mat-
ter that impact the local air quality at airports70

[6, 7, 8, 9]. Although fuel burn and emissions are
approximately proportional to the taxi times of air-
craft, other factors such as the throttle settings,
number of engines that are powered, and pilot and
airline decisions regarding engine shutdowns during75

delays also influence them [10]. Domestic flights
in the United States emit about 6 million metric
tonnes of CO2, 45,000 tonnes of CO, 8,000 tonnes
of NOx, and 4,000 tonnes of HC taxiing out for
takeoff; almost half of these emissions are at the 2080

most congested airports in the country [11]. Air-
craft in Europe have been estimated to spend 10-
30% of their flight time taxiing [12]. Data also show
that 20% of delays at major US airports occur not
due to bad weather, but due to high traffic volume85

[13]. Better congestion management at airports has
the potential to mitigate these impacts.

2.1. Impacts of airport congestion

Pujet et al. analyzed surface congestion by con-
sidering the takeoff rate of an airport as a function90

of the number of aircraft taxiing out [14]. Fig. 1
shows a similar analysis for Philadelphia Interna-
tional Airport (PHL) in 2007, for one runway con-
figuration (set of active runways at the time), under
visual meteorological conditions (VMC) [10].
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Figure 1: Average take-off rate as a function of the number
of departing aircraft on the ground at PHL. The error bars
represent the standard deviation of the take-off rate [10].

95

Fig. 1 illustrates that although the take-off rate
increases at first, it saturates once there are ap-
proximately 20 departing aircraft on the ground.
Any further pushbacks will just lead to congestion,
and will not result in an improvement in the take-100

off rate. It is also worth noting that for a very
high numbers of departures on the ground (more
than 30 in Fig. 1), the departure throughput can
even decrease due to surface gridlock. Similar phe-
nomena have been observed at several major air-105

ports in the US, including Boston Logan Interna-
tional Airport (BOS), Newark Liberty International
Airport (EWR), New York John F. Kennedy In-
ternational Airport (JFK), New York La Guardia
International Airport (LGA), and Charlotte Dou-110

glas International Airport (CLT) [10, 15, 16, 17].
This phenomenon of throughput saturation is also
typical of queuing systems, motivating the develop-
ment of queuing network models of major airports
[17, 18].115

2.2. Congestion management strategies

One of the earliest efforts at airport congestion
control was the Departure Planner project [19]. This
project proposed the concept of a virtual departure
queue, where aircraft would be held (at their gates)120

until an appropriately determined pushback time.
The resultant N-Control strategy was a threshold
heuristic, where if the total number of departing
aircraft on the ground exceeded a certain thresh-
old, Nctrl, any further aircraft requesting pushback125
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were held at their gates until the number of depar-
tures on the ground fell below the threshold [19, 11].
Other variants and extensions of this policy have
also been studied [20, 21, 22, 14]. Interestingly, a
similar heuristic has been known to be deployed by130

Air Traffic Controllers at BOS during times of ex-
treme congestion [23]. The N-Control policy is sim-
ilar in spirit to constant work-in-process or CON-
WIP policies that have been proposed for manufac-
turing systems [24].135

Several other approaches to departure meter-
ing have been proposed, including the Ground Me-
tering Program at New York’s JFK airport [25,
26], the field-tests of the Collaborative Departure
Queue Management concept at Memphis (MEM)140

airport [27], the human-in-the-loop simulations of
the Spot and Runway Departure Advisor (SARDA)
concept at Dallas Fort Worth (DFW) airport [28],
and the trials of the Departure Manager (DMAN)
concept [29] at Athens International airport (ATH)145

[30]. In addition, Mixed Integer Linear Program-
ming (MILP) formulations of surface traffic opti-
mization have been considered, but are generally
known to be NP-hard [31, 32, 33, 34, 35]. In prac-
tice, these strategies are treated as open-loop poli-150

cies that are periodically reoptimized. Full-state
feedback policies have also been proposed, but have
presented practical challenges [36].

2.3. Design and implementation of a congestion con-
trol algorithm155

While there has been prior research on the op-
timal control of queuing systems [37, 38], the ap-
plication of these techniques to airport operations
has remained a challenge. In particular, the need
to interface with current air traffic control proce-160

dures, and the different sources of uncertainty (the
variability in departure throughput and the ran-
domness of taxi-out times) pose practical concerns.

2.3.1. Rate control strategies

On-off or event-driven pushback control policies165

(such as a threshold heuristic) are not desirable in
practice, since both air traffic controllers and air-
lines prefer a pushback rate that is periodically up-
dated. This observation motivates the development
of Pushback Rate Control policies, wherein an op-170

timal pushback rate is recommended to air traffic
controllers for each 15-minute interval, and the rate
is updated periodically [11, 39]. The threshold N-
Control policy can be adapted to obtain a rate con-
trol policy by predicting the average throughput175

under saturation over the next 15-minute interval,
and then determining the number of pushbacks in
that interval that would help maintain the desired
level of traffic (typically around the threshold value
at which the throughput saturates). Such an ap-180

proach has been developed and tested at BOS in
2010 with promising results: During the course of
eight 3-hour periods, a total of nearly 16 hours of
taxi-out time savings were achieved, resulting in
fuel burn savings of 10,500-13,000 kg [11]. While185

simple and easy to implement, this approach does
not explicitly consider the variability in through-
put and taxi-out times, thereby increasing the risk
of runway starvation.

2.3.2. Dynamic programming for Pushback Rate Con-190

trol

A better approach to accommodating the uncer-
tainties in throughput and taxi-out times is through
the formulation of a dynamic control problem. Us-
ing a queuing model of the departure process built195

from operational data, we can use dynamic pro-
gramming to determine the optimal pushback rate
that minimizes taxi-out times, while still maintain-
ing runway utilization [39].
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Figure 2: An illustration of the optimal pushback rate as
a function of the number of aircraft in the departure queue
and the number of aircraft traveling to the runway [39].

The dynamic programming formulation consid-200

ers the system state consisting of the number of
aircraft taxiing to the runway and the length of
the departure runway queue. Using predictions of
the runway throughput in the next time period, the
runway queue is modeled as a semi-Markov process,205

and the system state is projected by solving the re-
sultant Chapman-Kolmogorov equations. The op-
timal policy is determined by solving the Bellman
equation for the infinite horizon average cost prob-
lem [39]. Fig. 2 illustrates one such optimal con-210

trol policy that is determined for the case of a par-
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ticular runway configuration at BOS under visual
conditions. In comparing the resultant policy with
the adapted N-Control policy described in Section
2.3.1, the dynamic programming approach is found215

to handle uncertainty better (as expected), and re-
sults in more robust policies that reduce the risk
of runway starvation. The implementation of the
dynamic programming based pushback rate control
policies at BOS in 2011 showed that during eight220

4-hour tests, taxi-out time was reduced by nearly
13 hours, while fuel use was reduced by more that
8,200 kg [39].

2.3.3. Interfacing with air traffic controllers

The optimal pushback rates need to be commu-225

nicated to the air traffic controllers in the airport
tower, with minimal distraction from their responsi-
bilities. For this reason, vocal communications with
tower personnel are not desired. We therefore de-
veloped AndroidTM tablet-based decision-support230

displays to present a color-coded suggested push-
back rate (as was done using cards at BOS in 2010),
and an alternate display that provided additional
support to the controllers. This decision support
tool was used to implement the dynamic program-235

ming policy at BOS airport in 2011, with positive
feedback from the air traffic controllers [40]. Fig. 3
(left) shows a color-coded cards in the tower, while
Fig. 3 (right) shows the tablet-based display.

Figure 3: (Left) Display of a pushback rate control card in
the Boston airport tower; (right) Tablet-based rate control
input interface [40].

2.3.4. Results, extensions and open problems240

Over the course of 15 metering periods during
the 2010-2011 trials, Pushback Rate Control strate-
gies were found to result in a total fuel savings of
20,800-23,600 kg. The average metered flight was
held at the gate for only an additional 4.7 min, and245

saved more than 52 kg of fuel as a result. The poli-
cies were shown to be fair, in that for every minute

of gate-hold that an airline experiences, it also re-
ceives a minute of taxi-out time savings. In addi-
tion, the policies were shown to accommodate prac-250

tical constraints, such as gate-use conflicts, when a
departure would need to leave the virtual departure
queue (its gate) early because the next aircraft to
use that gate had arrived [39].

An alternate approach to airport surface con-255

gestion management is through drawing an analogy
to more general network congestion management
problems. The airport is modeled as a network con-
sisting of major taxiways and their intersections,
using surface surveillance data [41]. Terminal-area260

operations and aircraft arrivals can also be accom-
modated by these models. Although the resultant
models are of significantly higher complexity than
the ones considered in Section 2.3.2, the optimal
control problems can be solved efficiently using ap-265

proximate dynamic programming [42]. This ap-
proach effectively accounts for operational uncer-
tainties, and practical resource constraints such as
limited gate availability. Integrated arrival-departure
control policies can be shown to yield taxi-out time270

and fuel burn reductions of 10% across all flights
operating at an airport, while reducing practical
problems such as gate conflicts by 30% [42].

Finally, the wide-spread deployment of depar-
ture metering strategies requires the adaptation of275

these algorithms to a range of airport operating en-
vironments [16, 43]. In order to do so, several open
research questions, such as the impact of uncer-
tainty on the efficacy of departure metering, as well
as the value of information-sharing among different280

stakeholders, need to be studied. These are topics
of ongoing research on airport surface operations.

3. Large-scale, distributed air traffic flow man-
agement

Air Traffic Flow Management (ATFM) is the285

process of modifying departure times and trajecto-
ries of flights in order to address congestion, namely
imbalances between available resource capacity and
demand, and thereby reduce delay costs. These
adjustments are typically made strategically, a few290

hours ahead of flight operations. Capacity-demand
imbalances can occur either because capacity is re-
duced (for example, due to weather impacts) or be-
cause demand is high (for example, over-scheduling
during peak periods). Weather is estimated to cause295

nearly two-thirds of flight delays, while high traffic
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Figure 4: Sector boundaries for enroute sectors in the con-
tinental US. The markers denote the top 30 airports [44].

demand is responsible for nearly 20% of delays at
major US airports [13].

The air transportation system consists of many
interconnected resources, the chief among which are300

the airports and airspace sectors. Fig. 4 shows the
30 major US airports, along with the high altitude
enroute sectors [44]. Although airports are typi-
cally the most constrained air traffic resources in
the US, airspace sectors may also experience con-305

gestion. By contrast, airspace sector congestion is
a more frequent problem in Europe [45].

There are two main challenges to the develop-
ment of ATFM algorithms: First, weather influ-
ences capacity, and tends to be uncertain and dy-310

namic in nature, requiring algorithms that can be
easily updated in the event of new information; and
secondly, flight connectivity implies that the same
aircraft may operate multiple flights in a day result-
ing in delay propagation. Nearly one-third of all do-315

mestic flight delays in the US are because the previ-
ous flight operated by that aircraft arrived late [46].
Fig. 5 shows the flight connectivity on a typical day
in the US: Only about 6% of flights have no connec-
tion, while aircraft typically operate 4–6 flights in a320

day. Such high levels of connectivity make myopic,
rolling horizon formulations of ATFM significantly
suboptimal.

The control actions available in determining a
flight trajectory are ground delays (i.e., to delay325

the departure of the aircraft so as to arrive at a con-
strained resource at a different time), airborne de-
lays (i.e., modify its speed), rerouting (i.e., chang-
ing its spatial path), and cancellation (i.e., not oper-
ate the flight on that day). Of these options, ground330

delays have the lowest cost per unit time (since
they are absorbed on the ground, and frequently
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Figure 5: Histogram showing the level of connectivity on
July 8, 2013 with a total of 4,054 distinct aircraft and 19,217
flights (average of 4.75 flights per aircraft) [47]. Data from
[46].

while the aircraft is parked at the gate with en-
gines off), airborne delays are more expensive than
ground delays (since the aircraft is active and in335

the air). Ground delays are also considered “safer”
than airborne delays. A reroute requires additional
coordination among stakeholders, and can be ex-
pensive if it is significantly longer than the nominal
route. A cancellation is the most expensive option,340

since it implies that the passengers and crew must
be reaccommodated on other flights. In addition,
connectivity implies that if a flight is significantly
delayed or cancelled early in the day, all subsequent
operations by that aircraft may have to be delayed345

or cancelled. The goal of ATFM is to maximize a
system objective which is the sum of flight-specific
objectives; where each flight achieves some benefit
(revenue) when it is operated, but also incurs a cost
depending on the trajectory flown.350

Nearly every element in the air transportation
system is capacity-limited. As a result, ATFM al-
gorithms are faced with the task of not just de-
termining the trajectory of each aircraft (i.e, the
departure time, route, enroute speeds along differ-355

ent segments of its route, etc. for each flight that
it operates over the course of a day), but also need
to satisfy the capacity limits and other operational
constraints described below:

1. Airspace sector capacity constraints: These360

constraints limit the number of aircraft that
can be in a given airspace sector at any time.
The actual values depend on the size and ge-
ometry of the sector, as well as air traffic con-
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troller workload [48, 49].365

2. Airport capacity constraints: These constraints
limit the arrival and departure throughputs
at an airport at any time. Since airport re-
sources such as runways are shared by arrivals
and departures, airport capacities are repre-370

sented as envelopes that represent the trade-
off between arrival and departure capacities
at any time [50, 51]. An example of such a
capacity envelope for Newark (EWR) airport
is shown in Fig. 6. The capacity envelope is375

usually modeled as a polytope, and depends
on the airport, choice of runway configura-
tion, weather conditions, etc.
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Figure 6: Observed capacity envelope for Newark air-
port, under good weather conditions [51]. Any pair of ar-
rival/departure rates within the envelope is achievable.

3. Operational constraints: Operational constraints
are limitations on what actions may be per-380

formed by a specific flight. They include mini-
mum and maximum transit times on airspace
links, maximum ground and airborne delay
that can be incurred by a flight, minimum
turnaround time between successive flights for385

an aircraft, and any routing restrictions. These
constraints may also vary by aircraft perfor-
mance characteristics such as the nominal speed
and altitude.

The deterministic ATFM problem can be described390

as follows:
Given a set of flights (and associated air-

craft operating them), and airport and airspace
capacity constraints, identify a trajectory for
each aircraft that maximizes a system-wide395

objective (difference between benefit and cost,
summed over all flights), and that obeys op-
erational and capacity constraints for all time
periods.

3.1. Algorithms for ATFM400

The problem of developing automation and de-
cision support for ATFM has been a rich topic of
research for several decades [52, 53, 49]. The ATFM
problem has typically been formulated as a very
large-scale integer program, and has been shown to405

be NP-hard [54]. Extensions that consider limited
routing and rerouting have also been considered [55,
56]. Most of these prior approaches have faced com-
putational challenges (for example, the prior state-
of-the-art considered problems with ∼6,745 flights,410

30 airports and 145 sectors; a time-discretization of
15-minutes and a planning time horizon of 8 hours;
with a computation time of approximately 10 min-
utes [56]).

In order to address these computational chal-415

lenges, researchers have also developed models that
do not consider space-time trajectories for each air-
craft, but instead consider aggregate flows [57, 58,
59, 60, 61]. Eulerian models have been shown to be
able to have reasonable predictive capabilities [59],420

and to reflect the current manner in which air traf-
fic controllers conduct handoffs of aircraft between
airspace sectors [82]. Eulerian models have been
found to be amenable to the development of feed-
back control schemes, in a centralized setting [58,425

62], in a decentralized setting for networks with a
single origin and destination [63], and in distributed
multi-airport network settings [64]. These tech-
niques have also been shown to guarantee stabil-
ity of aircraft queues in each sector, thereby better430

managing air traffic controller workload [64]. The
state-of-the-art in Eulerian models has considered
only airborne delays (no ground delays) with 3,419
flight-paths and 284 sectors, at a time-discretization
of 1-minute and a planning time horizon of 2 hours,435

and achieved run times of approximately 21 minutes
[65]. While computationally more tractable than
the disaggregate models, these Eulerian models are
of considerably lower fidelity that the integer pro-
gramming based ones, and do not model individual440

trajectories.

3.2. Large-scale, optimal ATFM

In recent work, we have developed a new algo-
rithm to solve very large-scale ATFM problems in a
fast and scalable manner. Given flight-specific op-445

erating and delay costs, our method determines op-
timal trajectories, taking into account network and
flight connectivity constraints as well as uncertain
airport and airspace capacities [47]. Using a column
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generation based formulation, the problem can be450

efficiently decomposed into a set of parallelizable
sub-problems, with an easy-to-solve master prob-
lem that coordinates between the sub-problems. Fig.
7 shows a schematic of the solution process [47].
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Figure 7: Schematic of the distributed solution process for
very large-scale ATFM [47].

3.2.1. Results, extensions and open problems455

Computational experiments using US nation-scale
examples drawn from operational data show that
the proposed approach can determine very good
(close-to-optimal) integer solutions. For instances
with ∼17,500 flights, 370 airports and 375 sectors,460

at a time-discretization of 5-minutes and a planning
time horizon of 24 hours, the computation time is
found to be under 5 min, a significant improvement
over prior state-of-the-art [47].

The easily parallelizable nature of the approach,465

in addition to having computational benefits, has
the potential to enable distributed, yet collabora-
tive, decision-making among the different airlines
[66]. . In order for any resource allocation pro-
cess such as ATFM to yield efficient outcomes, air-470

lines must be incentivized to participate, and to
also truthfully report their delays and cancellations.
These issues have received only limited attention to
date, and only in the context of single-resource allo-
cation [67, 68] or for aggregate models [69, 70]. The475

analysis of these issues in the context of networked
ATFM problems remains an important open chal-
lenge.

4. Determining utility functions of human
decision processes480

Like most modern infrastructure systems, the
performance of the air transportation system de-

pends significantly on decisions made by human
operators. Modeling these systems and providing
decision support to operators needs an understand-485

ing of the objective functions in the decision pro-
cesses, in addition to efficient algorithms that can
optimize them. Currently, the use of idealized ob-
jective functions (that do not reflect the true sys-
tem goals) and the difficulty in adapting decision490

support tools to particular operating environments
(which can take months, or even years) pose signifi-
cant barriers to implementing advanced algorithms.
For these reasons, the problem of inverse optimiza-
tion, or reverse-engineering the objective functions495

that best reflect the decision-maker’s desire, is an
important one. We consider this problem for the
case of airport configuration selection.

Most major airports possess multiple runways
(Fig. 8), and a subset of these runways (and as-500

sociated traffic directions) are selected at any time
to handle arrivals and departures. This choice of
runways is known as the airport or runway config-
uration, and is a strong driver of the airport capac-
ity envelope. As seen in Section 3, airport capacity505

is an essential input to ATFM algorithms. Several
factors, including weather conditions (wind and vis-
ibility), traffic demand, air traffic controller work-
load, and the coordination of flows with neighboring
airports influence the selection of runway configu-510

ration. However, little is known about the relative
weightings given to the different factors that influ-
ence runway configuration selection.

4.1. Runway configuration selection

Two classes of models have been developed for515

runway configuration selection: Prescriptive mod-
els and descriptive models. Most prior research has
belonged to the former class, and aim to recom-
mend an optimal runway configuration, subject to
operational constraints. These include efforts to op-520

timally schedule runway configurations, taking into
account different models of weather forecasts and
the loss of capacity during configuration switches
[71, 72, 73, 74, 75].

Descriptive models analyze historical data in or-525

der to predict the runway configuration selected by
the decision-makers, and have received limited at-
tention. A 24-hour forecast of runway configuration
was developed for Amsterdam Schiphol airport, us-
ing a probabilistic weather forecast [76]. A logistic530

regression-based approach was used to develop a
descriptive model of runway configuration selection
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Figure 8: Layouts of San Francisco (SFO) and La Guardia (LGA) Airports.

at LaGuardia (LGA) and John F. Kennedy (JFK)
airports [77].

4.2. Discrete-choice models535

Discrete-choice models are behavioral models that
describe the choice selection of a decision maker, or
the nominal decision selection among an exhaus-
tive set of possible alternative options, called the
choice set [78]. Each alternative in the choice set540

is assigned a utility function based on defining at-
tributes that are related to the decision selection
process. At any given time, the feasible alternative
with the maximum utility is assumed to be selected
by the decision maker.545

In other words, the utility function is modeled as
stochastic random variable, with an observed (de-
terministic) component, V , and a stochastic error
component, ε. For the nth selection, given a set of
feasible alternatives Cn, the utility of choice ci ∈ Cn550

is represented as

Un,i = Vn,i + εn,i. (1)

The decision maker selects the alternative j with
maximum utility, that is, cj ∈ Cn that maximizes
Un,j . The random error component of the util-
ity function reflects all measurement errors, includ-555

ing unobserved attributes, variations between dif-
ferent decision-makers, proxy variable effects, and
reporting errors. The Gumbel distribution is used
to approximate a normal distribution due to its

computational advantages. Different model struc-560

tures (Multinomial Logit, Nested Logit, etc.) corre-
spond to different assumptions on the correlations
between the error terms [78, 79, 80].

4.3. Results, extensions and open problems

Maximum-likelihood estimates of the linear util-565

ity functions and the underlying structure can be
estimated from the training data. The estimation
problem is a nonlinear optimization problem, and is
solved computationally using an open-source soft-
ware package called BIOGEME [81]. Case stud-570

ies from Newark (EWR), LaGuardia (LGA) and
San Francisco (SFO) airports have demonstrated an
over 20% improvement in the predictions of actual
runway configuration selection decisions compared
to prior models [79, 80].575

Conclusions

The objective of the three research vignettes dis-
cussed in this survey paper was to demonstrate the
value of real-world operational data in the develop-
ment of control and optimization algorithms for air580

transportation systems. In particular, we see that
such approaches have the potential to enhance sys-
tem efficiency, robustness and safety, while address-
ing the challenges presented by uncertainty, human
operators and competition.585
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