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Abstract

This paper presents an integer programming approach for solving large-scale air traffic flow management
problems. Given flight-specific operating and delay costs, the proposed approach uses column generation to
determine optimal trajectories in space and time in the presence of network and flight connectivity constraints
as well as airport and airspace capacity constraints. Ground holds, airborne delays, reroutes and cancellations
are considered as possible control actions. The approach is then extended to generate recourse strategies in the
presence of uncertain capacity constraints, which are represented using probabilistic scenario trees. A scalable,
parallel implementation of our approach is used to solve nation-scale examples from the United States, showing
that the approach is fast enough for real-time implementation.

1 Introduction

Air traffic delays result in significant costs to airlines as well as passengers, and can cause massive disruptions in
the air transportation network. The Joint Economic Committee, US Senate (2008) has estimated that domestic
flight delays in the United States (US) in 2007 had a $31-40 billion impact on the economy. In 2013, over 20%
of domestic air carrier flights were delayed by more than 15 minutes; the Bureau of Transportation Statistics
(2014) estimates that 30% of these delays were weather-related, while another 12% were due to traffic volume.

Air Traffic Flow Management (ATFM) refers to the task of strategically modifying the departure times
and trajectories of flights in order to address capacity-demand imbalances, which occur either when capacity
is reduced, or when demand is high. The corresponding mathematical formulation is referred to as the Traffic
Flow Management Problem (TFMP). Although airports have traditionally been the most capacitated elements
of the National Airspace System (NAS) in the US, airspace sectors also experience congestion, especially during
periods of bad weather. Airspace sector congestion is a more chronic problem in Europe, where it occurs in
conjunction with airport congestion (Lulli and Odoni 2007).

The NAS serves approximately 20,000 scheduled air carrier operations on a typical high-demand day (Bureau
of Transportation Statistics 2014), and this number is expected to grow significantly in the next decade (Joint
Planning and Development Office 2007). Flight connectivity, when the same aircraft is used on multiple legs
in sequence, further complicates the ATFM problem. Figure 1 shows the high levels of flight connectivity on a
typical day in the NAS (only 6% of flights on the day had no connection while a typical aircraft performed 4–6
flights in a day). As a result of high levels of connectivity, accounting for downstream impacts of TFM actions is
critical. Consequently, the problem cannot be solved by considering small geographical regions or time horizons
in isolation without loss of efficiency. It is therefore desirable to develop scalable optimization approaches that
can handle problems of a nationwide scale over time horizons spanning an entire day.

Uncertainty in capacities also poses a significant challenge to air traffic flow management. Airport and
airspace sector capacities are greatly influenced by weather conditions, including visibility, winds and the location
of storms. As a result, the exact capacity of an airport or sector is often not known with certainty hours ahead
of time, when strategic traffic flow management decisions need to be made. This fact motivates the need for
stochastic optimization algorithms for ATFM that explicitly account for capacity uncertainty.
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Figure 1: Histogram showing level of connectivity on July 8, 2013 with a total of 4,054 distinct tails and 19,217
flights (average of 4.75 flights per tail). Data from Bureau of Transportation Statistics (2014).

2 Related work

Since Odoni (1987) proposed the first mathematical formulation of the flow management problem in air trans-
portation, many researchers have investigated approaches to address air traffic congestion. Bertsimas and Odoni
(1997), Richard (2007) and Vossen et al. (2012) present comprehensive literature surveys on this topic. Helme
(1992) formulated the NAS traffic management problem with airport and sector capacity constraints as a multi-
commodity minimum-cost flow problem space-time network, but this approach was found to have weak computa-
tional performance. In their seminal paper on the TFMP, Bertsimas and Stock Patterson (1998) showed that the
problem was NP-hard and proposed a binary integer programming formulation that considered both airspace
and airport capacities, but did not make routing decisions. A key contribution of this work was the development
of a strong formulation of the TFMP in which many of the constraints were shown to be facet-defining, which led
to good computational performance. Subsequently, Bertsimas and Stock Patterson (2000) used multi-commodity
network flows to model rerouting. Their approach to solving the problem was to aggregate the flows, decompose
the problem using Lagrangian relaxation to solve the linear program, and then apply rousing heuristics and solve
a packing problem to generate individual flight paths.

In more recent work, Bertsimas et al. (2011) presented an extension of the formulation in Bertsimas and
Stock Patterson (1998) to account for reroutes on an acyclic network. They developed valid inequalities for
nodes in the network with in-degree or out-degree equal to 1, which were shown to be facet-defining for the
problem. This model was shown to have good computational performance when applied to regional-sized and
nation-sized instances.

Richard (2007) and Richard et al. (2011) developed a column generation approach to generate 4-dimensional
trajectories for tactical ATFM problems. Their approach generates detailed routing and altitude guidance for
flights to relieve localized short-term capacity imbalances, typically 30 minutes before overload.

In Sherali et al. (2003) and Sherali et al. (2006), the authors considered tactical air traffic control issues
such as potential aircraft conflicts, as well as Collaborative Decision Making (CDM) between airlines. Similarly,
Chaimatanan (2014) developed genetic algorithms to minimize aircraft trajectory interactions during air traffic
flow management.

Aggregate models of the traffic flow management problem inspired by fluid flows have also been investigated
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Reference Control Scale Horizon/disc. Run times

Deterministic instances

Maugis (1995) Ground holds; cancella-
tions

4,743 flights; 1,153 sector-
saturated time periods (no
airport capacity limits)

1 day/5 min 2+ hours
(no cancel-
lations)

Bertsimas and Stock
Patterson (1998)

Ground/air holds 1,002 flights; 18 airports;
305 sectors

8 hours/5 min 8+ hours

Bertsimas and Stock
Patterson (2000)

Ground/air holds; limited
rerouting

71 flights; 4 airports; 42
sectors

8 hours/5 min 4 min

Bertsimas et al.
(2011)

Ground/air holds; rerout-
ing network

6,745 flights; 30 airports;
145 sectors

8 hours/15 min 10 min

Wei et al. (2013) Aggregate model; air holds 3,419 flight paths; 284 sec-
tors

2 hours/1 min 21 min

This paper Ground/air holds; unre-
stricted rerouting network;
cancellations

17,500 flights; 370 airports;
375 sectors

24 hours/5 min 5 min

Stochastic instances

Alonso et al. (2000) Ground/air holds; max.
delay 4 periods

160 flights; 4 airports; 5
sectors; 13 scenarios

4 hours/5 min 31 min

Marron (2004) Ground/air holds; rerout-
ing

148 flights; 40 sectors; 3
scenarios

Not spec./5 min 12 min

This paper Ground/air holds; unre-
stricted rerouting network;
cancellations

17,500 flights; 370 airports;
375 sectors; 5–25 scenarios

24 hours/10 min 5–20 min

Table 1: Comparison of the test cases presented in this paper, relative to the state-of-the-art. Note that run times
are not necessarily comparable across these models given differences in computing environments, but are presented
here for context.

(Menon et al. 2006, Sridhar et al. 2006, Sun et al. 2007, Sun and Bayen 2008). These models, known as Eulerian
models, record aircraft counts in a region, and have been found to qualitatively reflect traffic in congested
airspaces. Traffic flow management algorithms for these aggregate models have also been proposed, including
distributed approaches using dual decomposition (Bayen et al. 2006, Sun et al. 2011, Wei et al. 2013).

Airport and airspace capacities can vary significantly with weather conditions, which are difficult to predict
with certainty at long time horizons (Pfeil and Balakrishnan 2012). As a consequence, there is a need for
approaches that can work under uncertainty (Odoni 1987). Given the difficulty in solving large-scale deterministic
ATFM problems, the literature on solving stochastic TFM problems is typically limited to optimizing flows into
a single capacitated airport under probabilistic scenario-tree forecasts of airport capacity (Richetta and Odoni
1994, Ball et al. 2003, Mukherjee and Hansen 2007). Liu et al. (2008) and Buxi and Hansen (2009) have developed
techniques to determine probabilistic capacity profiles and scenario tree forecasts from historical data. Mukherjee
and Hansen (2009) proposed a model that incorporated dynamic rerouting into the single-airport ground holding
model. Nilim et al. (2002) and Nilim et al. (2003) modeled weather uncertainty as a stationary Markov chain,
and proposed a dynamic programming algorithm to route aircraft. Marron (2004) proposed a column generation
approach to the ATFM problem with rerouting, and demonstrated it on a regional-scale example with about
150 flights. Gupta and Bertsimas (2011) studied robust and adaptive optimization formulations of the ATFM
problem to address capacity uncertainties. Andreatta et al. (2011) proposed a stochastic programming model
for ATFM by aggregating aircraft flows between the same origin-destination pairs. Table 1 compares the test
cases solved in this paper relative to the state-of-the-art.

In a practical implementation, the stochastic ATFM problem will be used to determine a strategic operational
plan in the presence of uncertain forecasts. As new information is obtained, the deterministic ATFM problem
will provide the tactical plan. In other words, both the stochastic and the deterministic ATFM solutions play
an important role in the efficient operation of the air traffic system.
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2.1 Contributions of this paper

This paper considers the problem of determining the optimal departure times, routes, speeds and cancellations
for aircraft in the entire National Airspace System, given deterministic as well as probabilistic scenario-tree
forecasts of airport and airspace capacities. The proposed column generation approach is demonstrated using
national-scale examples drawn from operational data. Our computational experiments show that the proposed
approach can determine very good integer solutions to the deterministic and stochastic ATFM problems, solving
large-scale instances (24 hours at a 5-minute or 10-minute discretization, with ∼17,500 flights and realistic airport
and airspace sector constraints) in approximately 5 minutes (deterministic capacities) and 5-15 min (stochastic
capacities, depending on the number of scenarios), respectively. To the best of our knowledge, these experiments
are among the largest realistic instances of the ATFM problem that have been optimized to date.

3 Model and Notation

3.1 Network structure

Our representation of the problem is a standard node-link network along which aircraft are routed. The model
consists of the following components, as illustrated in Figure 2.

Node: A node can be either a physical location, corresponding to a region in the airspace, or a decision point.
For example, in Figure 2, the “Hold” node represents a decision to hold an aircraft at the origin gate and
not a physical movement of the aircraft, whereas the “Dep. fix” node is a physical location that the aircraft
passes through.

Arc: An arc is a directed segment connecting two nodes. It is associated with a strictly positive minimum transit
time, maximum transit time, and cost as a function of transit time.

Sector: A sector is a contiguous region of airspace. An arc is required to be fully contained within a sector
(i.e., it cannot cross sector boundaries); therefore, a sector could be viewed as a collection of arcs. Nodes
are introduced at the sector boundaries to ensure that arcs do not cross sectors, although a node could be
present in the interior of a sector.

Tail: A tail refers to a physical aircraft.

Flight: A flight is a an operation of an aircraft from an origin to the destination; a tail may consist of multiple
flights over a time horizon. For a given tail, the destination airport of a flight must be the origin airport
of the successor/connecting flight. Each flight is associated with a set of arcs that form the network along
which that aircraft can be routed from its origin to destination. The parameters of the arcs (minimum and
maximum transit times and cost) are flight-specific.

Trajectory: A trajectory or “4D-trajectory” is a sequence of node-time combinations that represent the flight
path of an aircraft. It implicitly specifies the arcs along the path and the transit times on those arcs.

Dest. gate

Orig. gate

Hold

Arr. fix

RunwaySector 1

Sector 2

Dep. fix

Runway

1 4n

3n

2n
5n

6n

n

Figure 2: Network representation of the ATFM problem.
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3.1.1 Network model of an airport:

While the interpretation of a node, arc, and sector is straightforward in the en-route airspace, our network model
of an airport requires a deeper discussion. The airport network consists of an origin node (which could be viewed
as the gate), represented by the “Origin” node in Figure 3.

En−route network

Origin Hold

Destination

(1, c)

(a, b)

(a, b)

(d, f)

(g, h)
Runway

Airport network

Figure 3: Network representation of an airport. Values in parentheses represent the minimum and maximum
transit times on each arc. Physical movement of aircraft occur on arcs with solid lines.

From the origin node, the aircraft could proceed to the departure runway with minimum and maximum taxi
times of a and b respectively. Note that this arc implies that the aircraft leaves the gate and any delay is accrued
on the surface of the airport after pushback. The second option available at the gate is to hold the airport for at
least 1 time unit and up to c time units (the minimum hold cannot be zero since otherwise it would be equivalent
to the direct arc to the runway). If the aircraft is held, it “proceeds” to the gate node (although this is not a
physical movement of the aircraft) and then to the runway with the same minimum and maximum times of a
and b as before. The aircraft then leaves the airport at the runway and enters the en-route network until it gets
to its destination.

At the arrival airport, an aircraft arrives at the runway, and then taxis to the gate with minimum and
maximum transit times of d and f respectively. If the aircraft is continuing on to a next flight, it “travels”
from the destination node to the origin node with a minimum transit time equal to the turnaround time g, and
maximum transit time h which is the difference between the scheduled departure of the outgoing flight and the
earliest arrival of the incoming flight. Instead of a single runway node, the model could alternatively consist of
independent departure and arrival runways.

3.2 Constraints

There are two types of constraints that are imposed in our model, as follows.

3.2.1 Operational constraints:

These constraints are flight-specific and specify what actions may be performed by a flight. They include
minimum and maximum transit times on arcs, maximum ground and air delay, minimum turnaround time
between successive flights, and routing restrictions, which are imposed by limiting the set of arcs that a flight
can use. The feasible actions vary by aircraft performance characteristics such as the nominal speed and altitude.
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3.2.2 Capacity constraints:

Capacity constraints represent aggregate limits on flows in the network. There are two types of capacity con-
straints, as listed below.

Sector capacity constraints: These constraints limit the number of aircraft that can be in a sector at any
time, and are driven by the geometry of the sector as well as air traffic controller workload (Vossen et al.
2012). On the surface, the taxi arcs (represented by the solid lines in Figure 3) collectively form the
“surface” sector, and it is possible to apply a limit on the number of aircraft that are on the surface at any
time. Such constraints may be necessary in order to avoid surface gridlock during extreme events.

Node throughput constraints: These constraints limit the flow through a node at any time. For example,
miles-in-trail and minutes-in-trail constraints stipulate the minimum spacing between two aircraft (Vossen
et al. 2012); if there is a spacing requirement of 2 minutes between successive aircraft, it translates to a
node throughput of 30 aircraft per hour.

0

40

30

10

20

10 30 40

Deps per hr

Arrs per hr

20

(30, 30)

0

Figure 4: Example of runway capacity envelope with four segments.

The throughput constraints at some nodes, such as runways, are more complex since different types of
operations (departures and arrivals) can occur at them. In that case, the node throughput constraint at
any time is represented by a capacity envelope composed of segments that specify the tradeoff between
arrival and departure operations. For example, the envelope shown in Figure 4 stipulates that if the runway
is in a “departures-only” or “arrivals-only” operating mode, the limit on the number of operations is 40
per hour. However, in the case of mixed (arrival and departure) operations, the throughput may be higher.
For instance, the runway is capable of handling 30 arrivals and 30 departures per hour. Since envelopes
are typically convex (Gilbo 1993), the individual segments can be modeled as independent constraints, the
intersection of which forms the capacity envelope.

3.3 Capacity uncertainty

Both airport and sector capacity depend on the weather conditions such as the visibility, cloud ceiling and the
location of thunderstorms, and are therefore prone to uncertainty (Pfeil and Balakrishnan 2012). Buxi and
Hansen (2009) have developed techniques to determine scenario tree forecasts of airport capacity from historical
meteorological data.

Similar to the representation of uncertainty in Ground Delay Programs (Richetta and Odoni 1994, Ball
et al. 2003, Mukherjee and Hansen 2007), we represent capacity uncertainty using scenario trees, an example of
which is shown in Figure 5. In the example, scenario S1 starts at 9 AM. At 9:30, scenario S2 materializes with
probability 0.4 and scenario S3 with probability 0.6. If scenario S2 materializes, then at 10:45 AM, scenario
S4 occurs with probability 0.3 and scenario S5 with probability 0.7, and so on. The capacity of a sector or a
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node during a scenario is represented by its profile, which specifies the capacity or envelope at each time during
duration of the scenario.
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Figure 5: Example of a scenario tree with 12 scenarios.

When solving for the route for an aircraft in the presence of a scenario tree, our solution for an aircraft
is a trajectory for each scenario that could unfold; such a set of trajectories is called a trajectory tree. The
trajectory tree specifies the location of the aircraft at each time during a scenario and conditional statements on
what actions to perform as each new scenario unfolds. For example, the trajectory tree for an aircraft given the
scenario tree in Figure 5 might be “Leave the gate at 9:05, arrive at the runway at 9:15, arrive at the departure
fix at 9:30; if scenario S2 materializes, proceed toward node n1 and arrive at 9:45, else if scenario S3 materializes,
proceed toward node n2 and arrive at 10:05,” and so on. The trajectory tree satisfies the “coupling constraint”
that any decision can be based only on information that is available at the time that the decision is made, i.e.,
only on scenarios that have materialized up until that point.

3.4 Time-discretization

The time horizon is discretized in the mathematical formulation of the problem, implying that all transit times
in the network are integer multiples of the time period, and all operations occur at a set of periodic epochs. Prior
TFMP studies have typically used time periods of 15 minutes (Bertsimas and Stock Patterson 2000, Bertsimas
et al. 2011), while we explore time discretizations of 5 to 10 minutes in our experiments.

Apart form uncertainty in capacities, there is some uncertainty in the ability of the aircraft to precisely
follow a 4D-trajectory, also known as conformance uncertainty. Trajectory conformance is affected by several
sources of uncertainty, including the capabilities of onboard equipment such as the Flight Management System
(FMS), weather and wind conditions, pilot behavior, etc. In this paper, we choose not to model conformance
uncertainty since some of this uncertainty is implicitly absorbed in the time discretization. Further, even in
the current environment, air traffic controllers accommodate small deviations from the expected capacity using
tactical maneuvers such as vectoring and speed changes, and conformance is expected to improve significantly
in the future (Joint Planning and Development Office 2007).

The deterministic problem is stated as follows.

Problem statement (deterministic): Given a set of flights (and associated tails), and airport and
airspace capacity constraints, identify a 4D-trajectory tree for each tail that maximizes the system-
wide benefit (revenue plus cancellation penalty) minus costs (operating costs plus delay costs), and
that obeys operational and capacity constraints for all time periods.
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The stochastic problem statement is as follows.

Problem statement (stochastic): Given a set of flights (and associated tails), a scenario tree and
capacity profiles, identify a trajectory tree for each tail that maximizes the system-wide expected
benefit (revenue plus cancellation penalty) minus expected costs (operating costs plus delay costs),
and that obeys operational and capacity constraints for all time periods in all scenarios.

Although the deterministic TFMP is a special case of the stochastic problem in which the scenario tree has
only one scenario with probability 1, we describe it as separate problem for purposes clarity of description.

4 Deterministic Traffic Flow Management

By contrast to prior models of the deterministic TFMP, rerouting in our model is not restricted to an enumerated
set of simple paths from the origin to the destination (Bertsimas and Stock Patterson 2000), restricted to an
acyclic network (Bertsimas et al. 2011), or limited in geographical scope (Mukherjee and Hansen 2009). Instead,
our model allows route choices on a significantly larger network, with no restrictions on the network structure.

4.1 Mathematical program

We now describe our mathematical model in detail, using the following notation.
F Set of flights.
L Set of tails.
`f The tail of flight f .
S Set of sectors.
T Set of time periods in the time horizon.
N Set of nodes in the network.
A Set of arcs in the network. An arc a ∈ A is defined by its start and termination nodes

n1 and n2 as a = (n1, n2), referred to as the head and tail of the arc respectively.
AF (f) Set of arcs that can be used by flight f ∈ F .
AN (n) Set of arcs with head node n ∈ N , also referred to as the “outgoing” arcs from node n.
AS(s) Set of arcs in sector s ∈ S.
sa Sector containing arc a.
R Set of all feasible 4D-trajectories, where a 4D-trajectory specifies the routing in space

and time of a tail, and not that of a single flight. Specifying the trajectory implicitly
specifies the tail. A trajectory need not include all flights for a tail. It could contain only
the 4D-trajectory for an aircraft from its first flight until the first flight cancellation, and
all flights with no trajectory (the first cancelled flight and all subsequent connections)
are considered cancelled.

RL(`) The set of feasible trajectories for tail `.

P (a, t) The number of aircraft on arc a ∈ A at time t ∈ T .
Q(a, t) The number of aircraft that enter arc a ∈ A at time t ∈ T .
J (n, t) The set of segments in the capacity envelope of node n at time t.
ρr The benefit (revenue plus cancellation penalties) minus costs (operating plus delay) of

trajectory r ∈ R.
Cf The benefit (revenue plus cancellation penalties) of flight f ∈ F .

Intersection between a trajectory and sector capacity constraint. Sector capacity constraints limit the
total number of aircraft in a sector, which can be written as∑

a∈AS(s)

P (a, t) ≤ Bs,t ∀s ∈ S, t ∈ T (1)

where Bs,t is the capacity of sector s at time t.
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A trajectory r ∈ R is said to intersect with a sector capacity constraint for sector s at time t if the trajectory
results in an aircraft being present in sector s at time t. A trajectory can intersect with at most one sector
capacity constraint at any time (in the deterministic case). The set of trajectories that intersect with a capacity
constraint representing sector s at time t is denoted by RS(s, t).
Intersection between a trajectory and node capacity constraint. Node capacity constraints limit the
throughput of aircraft through a node. Although the node capacity envelope at a certain time could consist of
multiple segments, we treat each segment as an independent constraint, as the intersection of all segments at
a certain time defines the envelope. Therefore, when we refer to a node constraint, we refer to one segment
j ∈ J (n, t) of the envelope of a node n at time t. The node throughput constraint is linear, and is written as∑

a∈AN (s)

σa,t,jQ(a, t) ≤ Dn,t,j ∀n ∈ N , t ∈ T , j ∈ J (n, t) (2)

where σ and D are constants that define the shape of the segment.
A trajectory r ∈ R is said to intersect with a node capacity constraint for node n at time t if the trajectory

results in an aircraft entering an outgoing arc of node n at time t (i.e., the aircraft passes through node n at
time t). The set of trajectories that intersect with a node capacity constraint representing envelope segment j
of node n at time t is denoted by RN (n, t, j).

To summarize, we have introduced the following additional notation.
Bs,t The capacity of sector s at time t.
Dn,t,j The right-hand-side of the linear constraint representing segment j of the capacity

envelope for node n at time t.
ar,t The arc that an aircraft following trajectory r is on at time t. (This arc is unique since

we are only dealing with the deterministic case with one scenario).
σa,t,j The coefficient of arc a in the linear constraint representing segment j of the capacity

envelope for the head node of arc a at time t
RL(`) The set of trajectories of tail `.
RS(s, t) The set of trajectories that intersect with sector capacity constraint of sector s at time

t.
RN (n, t, j) The set of trajectories that intersect with segment j of the capacity envelope for node

n at time t.

The traditional formulation of the TFMP has capacity and operational constraints, with binary decision
variables that indicate whether a flight has reached a sector by a certain time period. By contrast, our formu-
lation has only capacity constraints, and all the other constraints (minimum and maximum transit times, flight
connectivity, turnaround times, etc.) are absorbed into the definition of the variable. This formulation results in
fewer constraints but an exponentially greater number of variables. The decision variables are defined as follows:

xr =

{
1 if trajectory r is chosen, and
0 otherwise

∀r ∈ R (3)

The Integer Master Problem (IMP) may now be stated as follows.

(IMP)

maximize z =
∑
r∈R

ρr xr (4)

s.t.
∑

r∈RL(`)

xr ≤ 1 ∀` ∈ L (5)

∑
r∈RS(s,t)

xr ≤ Bs,t ∀s ∈ S, t ∈ T (6)

∑
r∈RN (n,t,j)

σar,t,t,j xr ≤ Dn,t,j ∀n ∈ N , t ∈ T , j ∈ J (n, t) (7)

xr ∈ {0, 1} ∀r ∈ R (8)
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Objective (4) maximizes the total benefit minus cost of all trajectories selected. Constraint (5) states that
at most one trajectory may be selected for each tail. Constraints (6) and (7) are the sector and node capacity
constraints respectively.

Example Consider two tails `1 and `2 going Left-to-Right and Right-to-Left respectively, as shown in Figure 6.

Sector s
1

Sector s
2

v

w

u

Tail Trajectory (node, timestamp)

Tail `1 (Left-to-Right) ..., (u, 9:05), (v, 9:15), (w, 9:30), ...
Tail `2 (Right-to-Left) ..., (w, 9:00), (v, 9:15), (u, 9:25), ...

Figure 6: Illustrative example for the mathematical formulation.

Let the capacity of sector s1 be 30 aircraft from 9:00 to 9:15 and 40 aircraft from 9:15 to 9:30, and the
capacity of sector s2 be 10 aircraft from 9:00 to 9:15 and 20 aircraft from 9:15 to 9:30.

Let the node capacity envelope be represented by two segments

Segment j1 : 1.0 (Flow from v to w) + 2.0 (Flow from v to u) ≤ 100 aircraft/hr
Segment j2 : 2.0 (Flow from v to w) + 1.0 (Flow from v to u) ≤ 80 aircraft/hr

Given a discretization of 5 minutes, the right hand sides of the above node capacity constraints must be
divided by 12 to get the equivalent constraint within a 5-minute interval. The resulting mathematical program
is shown in Figure 7.

4.2 Solution approach

Since there are an exponentially large number of possible trajectories, we resort to column generation to solve
the problem. The book by Desaulniers et al. (2005) contains a primer in column generation as well as a sampling
of applications in various areas.

In order to solve the IMP, we first solve the linear programming relaxation of the master problem (henceforth
referred to as LMP), i.e., the linear program obtained by replacing constraint (8) with the following:

xr ≥ 0 ∀r ∈ R (9)

An upper bound of 1 is not needed since the variables are implicitly bounded by constraint (5).
In column generation, we solve a restricted master problem (RMP) with a subset of the variables, and use

the dual values from the solution of the restricted problem to identify new variables to add to the RMP. Each
time we solve the RMP, we also generate an integer solution using a heuristic to estimate the optimality gap.
The process terminates when no more variables can be added or when the optimality gap is sufficiently small.
Once the LP has been solved (which gives us an upper bound on the integer solution of the LMP), we generate

10



x1 x2

ρ1 ρ2 = z Objective

1 ≤ 1 tail `1 At most one trajectory per tail
1 ≤ 1 tail `2

1 ≤ 40 s1, 9:05-9:10
1 ≤ 40 s1, 9:10-9:15

1 ≤ 50 s1, 9:15-9:20
1 ≤ 50 s1, 9:20-9:25
1 ≤ 10 s2, 9:00-9:05 Sector capacity
1 ≤ 10 s2, 9:05-9:10
1 ≤ 10 s2, 9:10-9:15

1 ≤ 20 s2, 9:15-9:20
1 ≤ 20 s2, 9:20-9:25
1 ≤ 20 s2, 9:25-9:30

1 2 ≤ (100/12) v, 9:15, segment j1 Node capacity
2 1 ≤ (80/12) v, 9:15, segment j2

Figure 7: Matrix representation of illustrative mathematical program formulation for a five-minute discretization.

an integer solution to the problem via a heuristic using the columns of the RMP (which gives us a lower bound
on the optimal solution of the IMP). Finally, we solve the integer version of the RMP to generate the final
solution to our problem. This process is illustrated in Figure 8. Since we are solving the IP on a subset of all the
trajectories, this process does not necessarily solve the IMP to optimality however, the optimality gap is known
at termination and our experiments show that the solutions obtained are of very high quality.

0 begin
1 Start RMP with empty variable set and set all duals to zero
3 Solve subproblem to find new variables
4 while new variables exist and time limit is not reached and optimality gap exceeds threshold do
5 Add new variables to RMP
6 Solve LP
7 Generate feasible solution using heuristic
8 end while
9 Solve IP with variable set of last LP

10 end

Figure 8: High-level description of the column generation process.

4.2.1 Solving the restricted master problem:

The restricted master problem is solved using IBM ILOG CPLEX. Our experiments, discussed in greater detail
in Section 6, describe the specific settings we used to tune CPLEX’s performance.

We denote the duals from the RMP as follows.
π` The dual variable for constraint (5) for tail `.
λs,t The dual variable for constraint (6) for sector s at time t.
µn,t,j The dual variable for constraint (7) for segment j of the capacity envelope for node n

at time t.

4.2.2 Solving the subproblem:

Given the duals of a RMP, a subproblem is solved to identify variables with positive reduced cost that can be
added to the RMP (or determine that no such variables exist). Since the subproblems are separable by tail (the
only coupling constraints across tails are the capacity constraints which are accounted for the RMP), we solve a
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pricing subproblem independently for each tail to identify the best trajectory to add for it (or to determine that
no trajectory exists). The subproblem for a tail is equivalent to a longest path problem on a directed acyclic
network, and is solved using dynamic programming.

The following notation will be used in describing the subproblem:
tmin
a,f The minimum transit time (in periods) of flight f on arc a.

tmax
a,f The maximum transit time (in periods) of flight f on arc a.

tturnf1,f2
The minimum turnaround time (in periods) between connecting flights f1 and f2.

Ω(a, τ, f) The operating cost of flight f on arc a with transit time of τ , which can be any arbitrary
function. In our experiments, we model this as a linear function of τ , with the en-route
arcs having the greatest cost, followed by taxi-in/out arcs, followed by ground hold
arcs which have the lowest cost. We assume that the operating cost of a trajectory
is separable across the arcs, i.e., the total operating cost of a flight equals the sum of
operating costs on the arcs.

∆(f, t) The total delay cost of flight f arriving at its destination at time t.

The network on which the subproblem is solved is called the space-time network, or ST-network, and consists
of the following components.
ST-Nodes: These are nodes in the space-time network. There is a node for every feasible node-time-flight
combination for each tail, which is defined by (n, t, f) representing the node n ∈ N , time t ∈ T , and flight
f ∈ F . An ST-Node (n, t, f) exists if and only if one of the Rules 1, 2, or 3 is satisfied.

Rule 1 n is the origin of f and t is the earliest pushback period for f .

Rule 2 n is the destination of f and t is between the earliest and latest arrival times of f .

Rule 3 n is not an origin or destination and t is between the earliest pushback and latest arrival time of
f .

Rule 1 states that there is only one space-time node corresponding to the origin of a flight, and it exists at
the earliest pushback time of the flight. Rules 2 and 3 state that the space-time nodes corresponding to a node
that is not an origin of a flight must be between the earliest and latest arrival of the flight. Collectively, the
three rules imply that any path for a flight through the space-time network must depart the origin at the earliest
departure time and arrive at the destination between the earliest and latest arrival times of the flight.
ST-Arcs: An arc in the ST-network is directed between two ST-Nodes. An arc exists between two space-time
nodes (n1, t1, f1) and (n2, t2, f2) if and only if one of the Rules 4–5 is satisfied.

Rule 4 f1 = f2 and a = (n1, n2) ∈ AF (f1) and tmin
a,f1
≤ (t2 − t1) ≤ tmax

a,f1
.

Rule 5 a = (n1, n2) ∈ A and f1 connects to f2 and n1 is the destination of f1 and n2 is the origin of f2
and t2 − t1 ≥ tturnf1,f2

.

Rule 4 states that if the flights corresponding to the two ST-Nodes are the same (i.e., it is not a connecting
flight), then the arc from n1 to n2 must exist in the flight’s network, and that the difference in times between the
two nodes must be between the min and max transit times of the arc. Rule 5 states that if the two flights are
different, then it is a connecting arc and the difference in time between the two ST-Nodes must be between the
turnaround time and the difference between the latest departure of the connecting flight and the earliest arrival
of the incoming flight. Collectively, the two arcs capture the routing restrictions on the flights and the min and
max transit times on each arc.

The weight or “length” of an ST-Arc for all turnaround arcs is zero. For all other ST-Arcs from node
(n1, t1, f) to (n2, t2, f), the weights are calculated as:

Weight = Cf (Benefit, applies only to arcs to the destination of flight f)
− ∆(f, t2) (Arrival delay cost, applies only to arcs to the destination of flight f)
− Ω(a, (t2 − t1), f) (Operating cost)

−
∑

j∈J (n1,t1)

σa,t1,j µn1,t1,j −
t2−1∑
t=t1

λsa,t (Node dual cost + sector dual cost)
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Finally, we introduce an arc with zero weight from the destination of each flight to a sink. These arcs allow
the creation of partial trajectories where all flights in a tail beyond a certain destination are cancelled. Define
an ST-path as a path from the origin node of the tail to the sink.

Lemma 4.1 An ST-path exists if and only if it represents a trajectory that satisfies the operating constraints
including minimum and maximum transit times, network connectivity, flight connectivity, turnaround time re-
quirements, and the earliest pushback and latest arrival times of each flight.

Proof Proof. The proof follows from construction of the network.
To prove the “forward” direction of the statement, i.e., that an ST-path in the network is a feasible 4D-

trajectory, we observe that Rules 1–3 above impose earliest departure and latest arrival times on the path. Rule
4 restricts the path to belong to AF (.), which captures aircraft capability constraints and network connectivity
requirements. Rule 4 also imposes minimum and maximum transit times on all arcs. Rule 5 captures flight
connectivity for a tail and imposes restrictions on the turnaround time.

The proof of the “reverse” direction, i.e., that any feasible 4D-trajectory is a path in the network, is by
contradiction. Suppose the trajectory of a tail is given by the (node, time, flight) sequence {(ni, ti, fi)} that
is not represented in the ST-network. Then, (a) there must be a node (nj , tj) that is not a node in the ST-
network or (b) there must be an arc from (nj , tj , fj) to (nj+1, tj+1, fj+1) that is not contained in the ST-network.
However, no such node can exist because the network is constructed by exhaustively enumerating all possible
node-flight-time combinations and including all nodes that satisfy the constraints. Similarly, no such arc can
exist since the set of arcs is constructed by exhaustively examining all possible node combinations and only
choosing those that satisfy the constraints. Therefore, the nodes and arcs in the ST-network are actually a
superset of the nodes and arcs that are feasible to a 4D-trajectory.

Lemma 4.2 For a given tail, the weight of an ST-path in the space-time network minus the tail’s dual π` equals
the reduced cost associated with the corresponding 4D-trajectory.

Proof Proof. The reduced cost of the trajectory corresponding to a path is given by

Reduced cost = Sum of benefits across all flights
− Arrival delay cost
− Operating cost
− Duals of constraints (6)
− Duals multiplied by appropriate coefficient of constraints (7)
− Dual of constraint (5)

The ST-path correctly captures the sum of benefits and arrival delay cost since the benefit Cf and cost ∆(f, t)
of each flight f is accounted for in the arcs entering the destination of the flight, so any path passing through
the destination of a flight picks up the benefit and delay cost associated with the flight. The operating costs are
accounted for by associating the appropriate Ω(.) with each arc, and summing along the arcs of the path gives
the total operating cost of the trajectory.

The cost of each arc also includes the sum of sector duals λ associated with the particular sector-time
combination (since the arc-time combination maps to a sector-time combination). The node capacity duals are
associated with each ST-node in the path (i.e., the time at which the flight passes through the node) through
the product of σ and µ for each segment of the capacity envelope.

The weight of the ST-path therefore contains the benefit, delay cost, and dual costs associated with the capac-
ity constraints. The reduced cost of the 4D-trajectory can thus be obtained by subtracting duals corresponding
to the tail constraints (5) from the weight of the ST-path.

Corollary 4.1 A trajectory with strictly positive reduced cost exists if and only if there is a path of length strictly
greater than π` in the space-time network.

Thus, in order to determine whether a trajectory exists in each subproblem, we solve a longest path problem
on the ST-network and identify the 4D-trajectory associated with the longest path. Since the ST-network is a
directed acyclic graph (each arc moves forward in time as all transit times are strictly positive), the longest path
can be obtained by dynamic programming (Sedgewick and Wayne 2011).

Note that in addition to solving for the reduced cost on the path, we also obtain as a byproduct the objective
function coefficient ρ of the path, which is used to construct the new column.
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4.2.3 Lower and upper bounds:

At any given time, the objective value of the LP of the RMP is a lower bound on the optimal LP value. The
reduced costs can be used to calculate an upper bound on the LP, as follows.
An upper bound. We now show that it is possible to calculate an upper bound on the LP value after each
iteration.

Suppose we have a primal problem (P) and the corresponding dual (D)

(P )
max

∑
i

cixi

s.t.
∑
i

ai,jxi ≤ bj ∀j

xi ≥ 0 ∀i

(D)
min

∑
j

bjyj

s.t.
∑
j

ai,jyj ≥ ci ∀i

yj ≥ 0 ∀j
Once we solve a restricted master problem, we have values of x and y that are feasible to the above constraints

and
∑
i

cixi =
∑
j

bjyj (in our case, primal is feasible and bounded, so dual exists and the objective functions of

the primal and dual at optimality are equal).
The reduced costs associated with each variable (in the primal) are denoted by

φi = ci −
∑
j

ai,jyj ,

which can be rewritten as
ci = φi +

∑
j

ai,jyj .

Suppose the value of the optimal LP is z∗ and the optimal values of the variables x∗, then

z∗ =
∑
i

cix
∗
i

=
∑
i

x∗i

(
φi +

∑
j

ai,jyj

)
=

∑
i

x∗iφi +
∑
j

yj
∑
i

ai,jx
∗
i

≤
∑
i

x∗iφi +
∑
j

yjbj .

The value of
∑
j

yjbj is known – it is the value of the current objective function of the RMP. The value of∑
i

x∗iφi can now be bounded as follows: in each sub-problem, we identify the most positive value of reduced cost

among all trajectories for a given tail. Let φmax
` be the largest reduced cost of all trajectories for tail ` (or zero

if the largest reduced cost is non-positive). Since the sum of xi for a tail is bounded by 1 due to constraint (5),∑
i

x∗iφi ≤
∑̀
φmax
` . Thus, after the LP of each RMP has been solved, an upper bound on the optimal LP of the

LMP is calculated as the current value of the objective function plus the sum of positive reduced costs across all
tails.

The bounds on the LP solution are therefore given by:

LP solution to RMP at column generation termination ≤ Optimal LP to Master Problem
≤ LP upper bound

We use the gap between the lower and upper LP bounds to terminate the column generation process when
the gap is below a threshold of 0.01%.

4.2.4 A heuristic:

After each LP is solved, we apply a simple heuristic to assess the optimality gap, and terminate if necessary.
The heuristic is also useful for seeding the IP with a “warm start” feasible solution.
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The heuristic proceeds in two stages given the solution to an LP. In the first stage, each variable is randomly
rounded up or down depending on its value as long as it does not violate any constraints. If the value of the
variable is α ∈ [0, 1], the variable is rounded up with probability α and down with probability (1−α). To ensure
that variables with a value of zero or one in the LP relaxation have some probability of being rounded, the values
of the variables are first truncated to the interval [ε, (1− ε)] so that even variables with a value of 0 or 1 have a
probability of ε of being rounded away from their LP value. If rounding up a variable causes a constraint to be
violated, it is rounded down to zero.

In the second stage, the variables that were not selected in first stage (i.e., that were rounded down) are
sorted by decreasing objective function value and greedily rounded up in the sorted order, as long as it does not
violate any constraints. The procedure terminates when all variables have been examined.

Since the procedure is random in nature, the heuristic is run multiple times to generate a pool of feasible
solutions, and the one with the highest objective value is chosen to seed the IP. We did not attempt to develop
a more sophisticated heuristic as this simple heuristic appears to be very effective at generating high quality
solutions with run times that are orders of magnitude less than solving the LP and IP. Further, most variables
in the LP solution are integers, requiring few variables to be rounded.

We terminate the column generation process if the gap between the heuristic solution and the LP upper
bound is less than 0.1%.

4.2.5 Solving the IP:

Once the RMP has been solved to optimality, we solve the IP version of the RMP, which is obtained by restricting
the variables to be binary. While the solution to this IP could, in theory, be far from the optimal solution the
the IMP, our experiments show that solving the IP of the RMP results in high quality solutions that are within
0.1% of the optimal solution to the IMP.

Since the IP is provided a heuristic solution to start with, CPLEX only needs to generate integer solutions
when the heuristic is not within 0.1% of optimal (i.e., the column generation process terminated because the
time limit was exceeded or the LP gap of 0.01% was hit without finding a feasible solution within 0.1%).

In our experiments, we observe that the IP is typically solved at the root node (i.e., with no branching) since
the LP is tight and the heuristic solution is optimal or close to optimal.

The bounds for the optimal IP solution to the Master Problem are

Heuristic IP ≤ IP solution to RMP
≤ Optimal IP to Master Problem
≤ Optimal LP to Master Problem
≤ LP upper bound

In our experiments, we report on the optimality gaps, calculated as follows:

LP Gap = (LP upper bound− LP solution to RMP)/LP solution to RMP. (10)

IP Gap = (LP upper bound− IP solution to RMP)/IP solution to RMP. (11)

4.2.6 Parallel implementation:

Since the subproblem time is typically greater than the time to solve the RMP or the final IP, and the subproblem
for each tail is independent of other tails, we can parallelize the subproblem computation to significantly reduce
run times. The fact that the subproblem is easy to parallelize makes the algorithm extremely scalable. We note
that while solving a regular IP can also be parallelized (and is done by commercial solvers), using our parallel
implementation makes our algorithms scale predictably with the number of cores. In Section 6.3.2, we discuss
the scaling performance of the algorithm with the number of parallel threads.

5 Stochastic Traffic Flow Management

We now describe our approach to solving the traffic flow management in the presence of capacity uncertainty
represented via scenario trees, as described in Section 3.3.
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The solution to the stochastic case is similar to that of the deterministic case, except that the solution is no
longer a simple path through a space-time network, but is instead a tree in a space-time-scenario network.

The notation used in the stochastic case is described below. In general, we use a “ ′ ” to distinguish between
the stochastic variable/parameter and its deterministic counterpart; for example the decision variable in the
stochastic formulation is denoted by x′ while that in the deterministic formulation is denoted by x.

G The set of scenarios.
pg The unconditional probability that scenario g will materialize, i.e., it is the product of

the conditional probabilities along the path from the root of the scenario tree to g. For
example, in Figure 5, the unconditional probability of scenario S4 is 0.3×0.4×1.0 = 0.12.

TG(g) The set of time periods spanned by scenario g. The start and end times of scenario g
are denoted by tstartg and tendg respectively.

R′ Set of all feasible 4D trajectory trees. Each trajectory tree is tail-specific, and therefore,
specifying it implicitly specifies the tail. A trajectory tree could potentially cancel a
subset of flights under certain scenarios.

P ′(a, t, g) The number of aircraft on arc a ∈ A at time t ∈ T in scenario g ∈ G.
Q′(a, t, g) The number of aircraft that enter arc a ∈ A at time t ∈ T in scenario g ∈ G.
J ′(n, t, g) Set of segments in the capacity envelope of node n at time t in scenario g.
B′s,t,g The capacity of sector s at time t in scenario g.
D′n,t,j,g The right-hand-side of the linear constraint representing segment j of the capacity

envelope for node n at time t during scenario g.
σ′a,t,j,g The coefficient of arc a in the linear constraint representing segment j of the capacity

envelope for the head node of arc a at time t in scenario g.
a′r,t,g The arc that an aircraft following trajectory tree r is on at time t in scenario g.
R′L(`) The set of trajectory trees of tail `.

R′S(s, t, g) The set of trajectory trees that intersect with sector capacity constraint of sector s at
time t in scenario g.

R′N (n, t, j, g) The set of trajectories that intersect with segment j of the capacity envelope for node
n at time t in scenario g.

ρ′r The expected benefit (revenue plus cancellation penalties) minus expected costs (oper-
ating plus delay) of trajectory tree r.

5.1 Mathematical Program

As in the deterministic case, a variable represents whether or not a trajectory tree is selected.

x′r =

{
1 if trajectory tree r is chosen, and
0 otherwise

∀r ∈ R′ (12)

The Stochastic Integer Master Problem (SIMP) may now be stated as follows.

(SIMP)

maximize z =
∑
r∈R′

ρ′r x
′
r (13)

s.t.
∑

r∈R′L(`)

x′r ≤ 1 ∀` ∈ L (14)

∑
r∈R′S(s,t,g)

x′r ≤ B′s,t,g ∀s ∈ S, g ∈ G, t ∈ TG(g), (15)

∑
r∈R′N (n,t,j,g)

σa′r,t,g,t,j,g x
′
r ≤ D′n,t,j,g ∀n ∈ N , g ∈ G, t ∈ TG(g), j ∈ J (n, t, g) (16)

x′r ∈ {0, 1} ∀r ∈ R′ (17)

Note that this formulation is almost identical to the deterministic formulation, except for the additional
scenario index in the constraints. Objective (13) maximizes the total benefit minus cost of all trajectory trees
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selected. Constraint (14) states that at most one trajectory tree may be selected for each tail. Constraints (15)
and (16) are the sector and node capacity constraints respectively.

As in the deterministic case, we solve the linear relaxation of this master problem using column generation.
We refer to the linear programming relaxation of the SIMP as SLMP and the restricted master problem as
SRMP.

5.2 Solving the subproblem

Solving the subproblem is equivalent to solving for a maximum weighted tree in a space-time-scenario network
using dynamic programming. Let the duals from the SRMP be denoted as follows.

π′` The dual variable for constraint (14) for tail `.
λ′s,t,g The dual variable for constraint (15) for sector s at time t during scenario g.
µ′n,t,j,g The dual variable for constraint (16) for segment j of the capacity envelope for node n

at time t during scenario g.

5.2.1 The space-time-scenario network:

The space-time-scenario network (henceforth referred to as the STS-network or simply as the network) is shown
in Figure 9.

The network has two kinds of nodes:

• Type-1 nodes are defined by (n, t, f, g) corresponding to flight f reaching node n at time t during scenario
g. A Type-1 node (n, t, g, f) exists if at least one of the Rules 6, 7, or 8 hold.

Rule 6 n is the origin of f and t is the earliest pushback period for f and tstartg ≤ t ≤ tendg .

Rule 7 n is the destination of f and t is between the earliest and latest arrival times of f and tstartg ≤
t ≤ tendg .

Rule 8 n is not an origin or destination and t is between the earliest pushback and latest arrival time of
f and tstartg ≤ t ≤ tendg .

Rules 6, 7, and 8 are analogous to Rules 1, 2, and 3 in the deterministic case respectively. Collectively, the
three rules restrict the times at which node-time-scenario combinations can exist.

• Type-2 nodes are defined by (a, v, f, g) corresponding to flight f that is on arc a, having spent time v
on the arc at the end of scenario g. These nodes (shown shaded in Figure 9) capture time spent that an
aircraft has spent on an arc at the time of a scenario transition. A Type-2 node (a, v, g, f) exists if the
following Rule 9 holds.

Rule 9 The head of arc a has a Type-1 node in scenario g and v is between 0 and tmax
a,f , the maximum

transit time of flight f on arc a.

Rule 9 states that the arc must originate in the state, and that the time spent on the arc must not exceed
the transit time on the arc; it effectively limits the locations and time that an aircraft can be in at the time
of a scenario transition.

The network has four kinds of arcs that connect each of the two types of nodes to each other.

• Type-1 arcs are from a Type-1 node to another Type-1 node. For example, in Figure 9, the Type-1 arc
represents a movement of flight f from node n1 at time t1 to node n2 at time t2 during scenario g1. Let
a ∈ A denote the arc in the network from n1 to n2. A Type-1 arc from (n1, t1, g1, f1) to (n2, t2, g2, f2)
exists if one of the Rules 10–11 hold.

Rule 10 g1 = g2 and a = (n1, n2) ∈ A and f1 = f2 and a ∈ AF (f) and tmin
a,f ≤ (t2 − t1) ≤ tmax

a,f .

Rule 11 g1 = g2 and a = (n1, n2) ∈ A and f1 6= f2 and f1 connects to f2 and n1 is the destination of
f1 and n2 is the origin of f2 and t2 − t1 ≥ tturnf1,f2

.
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Scenario g2
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Arc type 2

Arc type 4

Arc type 3

Node type 1

Figure 9: The space-time-scenario network for solving the stochastic subproblem.

Rules 10 and 11 collectively state that for a type-1 arc to exist, both end points must be in the same
scenario, the arc must belong to a flight’s network and must obey the transit time requirements and, if
applicable, flight connectivity requirements.

The weight of a Type-1 Arc for all turnaround arcs is zero. For all other arcs from (n1, t1, g, f) to
(n2, t2, g, f), weights are calculated as:

Weight = pg Cf (Benefit, applies only to arcs to the destination of flight f)
− pg ∆(f, t2) (Arrival delay cost, applies only to arcs to the destination of flight f)
− pg Ω(a, (t2 − t1), f) (Operating cost)

−
∑

j∈J (n1,t1,g)

σa,t1,j,g µn1,t1,j,g −
t2−1∑
t=t1

λsa,t,g (Dual cost)

Note that all non-dual costs are multiplied by the probability of the scenario, so that their summation will
be the expected cost.

• Type-2 arcs are from a Type-1 node to a Type-2 node. For example, in Figure 9, the Type-2 arc implies
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that flight f arrived at node n2 at time t2 during scenario g1, and left node n2 along arc a1; at the end of
the scenario, the aircraft had spent v1 periods on the arc. A Type-2 arc from (n, t, g1, f1) to (a, v, g2, f2)
exists if one of the Rules 12–13 hold.

Rule 12 g1 = g2 and n is the head of arc a and f1 = f2 and a ∈ AF (f) and the time spent on the arc
v = tendg − t and 0 ≤ v ≤ tmax

a,f .

Rule 13 g1 = g2 and n is the head of arc a and f1 6= f2 and a ∈ AF (f) and the time spent on the arc
v = tendg − t and 0 ≤ v ≤ (earliest departure of f2 − earliest arrival of f1).

Rules 12 and 13 state the relationship between the time that the aircraft entered the arc t and the time
spent on the arc at the end of the scenario; they also impose min and max transit time constraints as well
as network routing and connectivity constraints on the arcs.

The weight of a Type-2 Arc for all turnaround arcs is zero. For all other arcs from (n, t1, g, f) to (a, v, g, f),
weights are calculated as:

Weight = pg Ω(a, v, f) (Operating cost)

−
∑

j∈J (n,t1,g)

σa,t1,j,g µn,t1,j,g −
tendg∑
t=t1

λsa,t,g (Dual cost)

Note that these arcs are not associated with any benefit or delay costs since those are assessed only for
arcs going into a destination Type-1 node.

• Type-3 arcs are from a Type-2 node to a Type-1 node. For example, in Figure 9, the Type-3 arc implies
that at the end of scenario g2, flight f had spent v1 periods on the arc a1. The aircraft then arrived at
node n3 at time t3 during scenario g3, where g3 is a child of scenario g1 in the scenario tree. A Type-3 arc
from (a, v, g1, f1) to (n, t, g2, f2) exists if one of the Rules 14–15 hold.

Rule 14 g1 is the parent scenario of g2 and n is the tail of arc a and f1 = f2 and a ∈ AF (f) and the
total time spent on the arc (v + t− tendg1 ) is between tmin

a,f and tmax
a,f .

Rule 15 g1 is the parent scenario of g2 and n is the tail of arc a and f1 6= f2 and a ∈ AF (f) and the
total time spent on the arc (v+ t− tendg1 ) is between tturnf1,f2

and (earliest departure of f2 − earliest arrival of
f1).

Rules 14 and 15 state the relationship between the time spent on an arc at the end of a scenario and the
time it reaches the end of the arc in a child scenario, and ensures that this total time is within the min
and max transit time of the arc; it also imposes network restrictions and connectivity requirements.

The weight of a Type-3 Arc for all turnaround arcs is zero. For all other arcs from (a, v, g1, f1) to (n, t, g2, f2),
weights are calculated as:

Weight = pg2 Cf (Benefit, applies only to arcs to the destination of flight f)
− pg2 ∆(f, t2) (Arrival delay cost, applies only to arcs to the destination of flight f)
− pg2 (Ω(a, (v + t2 − tendg1 ), f)− Ω(a, v, f)) (Incremental operating cost)

−
t2−1∑

t=tend
g1

+1

λsa,t,g2 (Dual cost)

Note that there are no node capacity dual costs associated with these arcs since those are assessed only if
the arc is from a Type-1 node.

• Type-4 arcs are from a Type-2 node to another Type-2 node. For example, in Figure 9, the Type-4 arc
implies flight f was on arc a1 at the end of scenario g1 having spent v1 periods on the arc; it then continued
on the same arc for the duration of the scenario g2, and at the end of scenario g2 had spent v2 time periods
on it. (Thus, (v2 − v1) is the duration of scenario g2. A Type-4 arc from (a1, v1, g1, f1) to (a2, v2, g2, f2)
exists if the following Rule 16 holds:

Rule 16 g1 is the parent scenario of g2 and f1 = f2 and a1 = a2 and v2 = (v1 + tendg2 − t
end
g1 ).
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Rule 16 states the relationship between the time spent on an arc at the end of a scenario and the time
spend by the end of a child scenario if the aircraft continues along that arc; it also imposes min and max
transit times on these arcs and accounts for network routing restrictions and flight connectivity constraints.

The weight of a Type-4 Arc for all turnaround arcs is zero. For all other arcs from (a, v1, g1, f) to
(a, v2, g2, f), weights are calculated as

Weight = −pg2 (Ω(a, v2, f)− Ω(a, v1, f)) (Incremental perating cost)

−
tend
g2∑

t=tend
g1

+1

λsa,t,g2 (Dual cost)

Finally, arcs are added from each Type-1 node that is a flight destination to a sink (that would represent a
cancellation of subsequent flights); note that these arcs could be used only for certain scenarios, so the solution
could potentially cancel some flights under some scenarios and not others.

Collectively, the four arcs in Figure 9 would represent the following sequence of events. Flight f arrives at
node n1 at time t1 during scenario g1. It then proceeds to node n2 at time t2 during the same scenario. It then
leaves n2, proceeding along arc a1. At the end of scenario g1, the aircraft had spent v1 time periods on the arc.
At that time, if scenario g2 unfolds, the aircraft stays on the arc until the end of scenario g2, at the end of which
it would have spent v2 time periods on the arc. If scenario g3 unfolds, the aircraft proceeds to node n3, reaching
it at time t3.

The rationale for creating such a network representation is that the Type-2 nodes represent the the points
at which new scenarios materialize, and therefore represent branching locations in the trajectory tree while the
Type-1 nodes represent deterministic decisions that take place within a scenario. Define a space-time-scenario
forest (henceforth referred to as an STS-forest) as a forest (a collection of disjoint trees) in the space-time-scenario
network with the following properties.

Property 5.1 Every Type-1 node that is the origin of the first flight in the tail is a root of a tree in the STS-forest
(i.e., it does not have a parent node).

This property ensures that a decision is made for the origin node of a tail for all scenarios that contain the
earliest departure time of the first flight of the tail. We allow a tree to contain just the root node, in which case
the interpretation for the singleton root is that all flights in the tail are cancelled in the scenario containing this
root.

Property 5.2 Every non-root Type-1 node has a parent if and only if it has a child, except for nodes that
correspond to the destination of a flight, which can have a parent without having a child.

This property ensures continuity of the flight if the node is not a destination; if a flight arrives at a node, it must
depart from it. If the node represents the destination of a flight but does not have children, the interpretation
is that all subsequent connecting flights are cancelled in the scenario that contains the node.

Property 5.3 Every Type-2 node has children if and only if it has a parent.

This property ensures that Type-2 nodes cannot be the root or the leaves of a tree; if they belong to a tree, then
they must have a parent as well as children.

Property 5.4 Each Type-2 node in scenario g that has a parent must have a child in every scenario that is a
child of g in the scenario tree.

This property ensures that there is a decision that is made for every possible realization of scenarios that occur
at the end of g, and that a flight never gets “stranded” at the end of a scenario without guidance on where it
should proceed next.

Define the weight of a forest to be the sum of arc weights of all the arcs in the forest minus the dual π′` for
tail `. The maximum weight STS-forest is defined as an STS-forest with the largest weight of all STS-forests.

Define the weight of a subtree (a connected subset of a tree) to be the sum of arc weights in the tree.
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Lemma 5.1 An STS-forest in the space-time-scenario network exists if and only if it represents a trajectory
tree that satisfies the operating constraints including minimum and maximum transit times, network connectivity,
flight connectivity, turnaround time requirements, and the earliest pushback and latest arrival time constraints
of each flight.

Proof Proof. The proof follows from construction of the network.
To prove the “forward” direction of the statement, i.e., that an STS-forest in the network is a feasible

4D-trajectory tree, we observe that Rules 6–8 above impose earliest departure and latest arrival times on the
path, and also accounts for mapping time periods to scenarios. The arc rules require that all arcs belong to
AF (f), and that the origin of a flight must be preceded by the destination of the previous flight. Thus, all
network connectivity and flight connectivity constraints are accounted for in the network. We only need to
show that a trajectory tree satisfies minimum and maximum transit times. If both end points of an arc are
Type-1 nodes, then the transit times are valid by construction (per Rule 16). We only need to show that the
transit time constraints between two nodes are satisfied even when the path passes through a Type-2 node.
Consider a sequence starting at a Type-1 node, passing through one or more Type-2 nodes and ending at a
Type-1 node, represented by (n1, t1, g1, f), (a, v1, g1, f), (a, v2, g2, f), ..., (n2, t2, gk+1, f). We wish to show that
tmin
a,f ≤ (t2 − t1) ≤ tmax

a,f . Considering the last and penultimate scenarios, the time spent on the arc is given by
the time spent on the arc until the penultimate scenario vk plus the additional time spent in the last scenario
(t2 − tendgk

). Let θ = vk + (t2 − tendgk
) represent the time spent on the arc. Then, by Rule 14, tmin

a,f ≤ θ ≤ tmax
a,f .

Also, θ can be written as follows:

θ = vk + t2 − tendgk

= vk−1 + tendgk
− tendgk−1

+ t2 − tendgk
(Expanding vk using Rule 14)

= vk−2 + tendgk−1
− tendgk−2

+ tendgk
− tendgk−1

+ t2 − tendgk
(Expanding vk−1 using Rule 14)

= ... (Iteratively expanding v and canceling terms)
= v1 − tendg1 + t2
= −t1 + t2 (By Rule 12)

Thus, we have shown that θ = (t2 − t1) and tmin
a,f ≤ θ ≤ tmax

a,f . Therefore, the construction of the STS-network
preserves minimum and maximum transit times.

The proof of the “reverse” direction, i.e., that any feasible 4D-trajectory tree is an STS-forest in the network,
is by contradiction. Suppose there exists a 4D-trajectory tree that does not have an equivalent STS-forest in the
network. Then, there exists a node-time-scenario combination that does not exist in the network or that there
is no arc in the network between two nodes in the 4D-trajectory tree. However, no such node or arc can exist
since the construction of the network exhaustively examines all node-time-scenario combinations to generate the
nodes, and then examines all possible combinations of nodes to create arcs between them. The set of nodes and
arcs in the STS-network is actually a superset of nodes and arcs that are feasible to a trajectory tree.

Lemma 5.2 The weight of an STS-forest in the space-time-scenario network minus the tail’s dual π′` equals the
reduced cost of the corresponding 4D-trajectory tree.

Proof Proof. The reduced cost of a 4D-trajectory corresponding is given by

Reduced cost = Sum of benefits across all flights in the tail
− Arrival delay cost
− Operating cost
− Duals of constraints (15)
− Duals multiplied by appropriate coefficient of constraints (16)
− Dual of constraint (14)

The STS-path correctly captures the expected benefits and arrival delay cost since the expected benefit pg Cf

and cost pg ∆(f, t) of each flight f and scenario g is accounted for in the arcs entering the destination of the
flight of each scenario, so any path passing through the destination of a flight picks up the benefit and delay cost
associated with the flight. The operating costs are accounted for by associating the appropriate pg Ω(.) with
each arc, and summing along the arcs of the forest gives the total expected operating cost of the trajectory tree.

21



The cost of each arc also includes the sum of sector duals λ associated with the particular sector-time-scenario
combination (since the arc-time-scenario combination maps to a sector-time-scenario combination for all four
types of arcs). The node capacity duals are associated with each Type-1 node in the path (and are accounted
for in each Type-1 and 2 arcs) through the product of σ and µ for each segment of the capacity envelope in each
scenario.

The weight of the ST-path contains the benefit, delay cost, and dual costs associated with the capacity
constraints. The reduced cost of the 4D-trajectory tree can thus be obtained by subtracting π′`, the duals
corresponding to the tail constraints (14), from the weight of the ST-path.

Corollary 5.1 A trajectory with positive reduced cost exists if and only if there is an STS-forest of weight strictly
greater than π′` in the space-time network.

5.2.2 Dynamic programming algorithm:

We now describe a dynamic programming algorithm to compute a maximum weight STS-forest. Let J1(n, t, g, f)
be the weight of a subtree rooted at a Type-1 node (n, t, g, f), and J2(a, v, g, f) be the weight of a subtree rooted
at a Type-2 node (a, v, g, f). All nodes in the subtree other than the root satisfy Properties 5.1–5.4 since it is a
subtree of a valid STS-forest; the root satisfies the properties only if it is an origin of the tail. The weight of a
subtree rooted at a node is also referred to as the label of that node.

In order to simplify the description of the DP, we introduce the following notation. We refer to any space-
time-scenario node simply as a node; this could be either a Type-1 or Type-2 node.

G+(u) The set of child scenarios of the scenario containing node u.
V +
1 (u, g) The set of Type-1 nodes adjacent to node u in scenario g, i.e., there is an arc from u to

each node v ∈ V +
1 (u, g). If the scenario is not explicitly specified, V +

1 (u, .) represents
the set of Type-1 nodes within the same scenario as u respectively.

V +
2 (u, g) The set of Type-2 nodes adjacent to node u in scenario g, i.e., there is an arc from u to

each node v ∈ V +
2 (u, g). If the scenario is not explicitly specified, V +

2 (u, .) represents
the set of Type-2 nodes within the same scenario as u respectively.

ωu,v The weight of the arc form u to v.

FDEST(`) The set of STS-nodes that correspond to the destination nodes of flights belonging to
tail `.

TDEST(`) The set of STS-nodes that correspond to the destination nodes of the last flight of tail
`.

The dynamic program performs the following recursions:

J∗2 (u) =
∑

g∈G+(u)

max

{
max

v∈V +
1 (u,g)

{J∗1 (v) + ωu,v} , max
v∈V +

2 (u,g)
{J∗2 (v) + ωu,v}

}
(18)

Equation (18) calculates the maximum weight subtree rooted at a Type-2 node by finding the best adjacent
node in each of the scenario’s children, and summing across these nodes.

J∗1 (u) = max

{
max

v∈V +
1 (u,.)

{J∗1 (v) + ωu,v} , max
v∈V +

2 (u,.)
{J∗2 (v) + ωu,v}

}
∀u /∈ FDEST(`) (19)

Equation (19) states that the maximum-weight subtree rooted at a Type-1 node u is the maximum over all
outgoing adjacent nodes v of the weight of arc (u, v) plus the maximum weight subtree rooted at node v.

J∗1 (u) = max

{
0, max

v∈V +
1 (u,.)

{J∗1 (v) + ωu,v} , max
v∈V +

2 (u,.)
{J∗2 (v) + ωu,v}

}
∀u ∈ FDEST(f) (20)

Equation (20) is similar to the previous equation, except that it allows for the label of a destination of a flight
to be zero; the interpretation of this is that the destination does not have any positive weight subtrees below it,
which implies that all subsequent flights below that node are cancelled.
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J∗1 (u) = 0 ∀u ∈ TDEST(`) (21)

J∗1 (u) = −∞ ∀u /∈ TDEST(`) (22)

Equations (21) and (22) impose the boundary condition is that the weight of the subtree rooted at the destination
of the tail is zero (for all scenarios where this node exists), and the initial weights of all other nodes is a large
negative number.

The pseudocode for the dynamic programming algorithm is illustrated in Figure 10.

Input: A space-time-scenario network
Output: A maximum-weight STS-forest

0 begin
1 Initialize labels of all nodes based on Equations (21) and (22)
2 Set status of all scenarios in scenario tree to 0.
3 while status of root of scenario tree is 0 do
4 Get scenario farthest from the root with status 0
5 Compute labels of the Type-2 nodes in the scenario using Equation (18)
6 for each time period t from scenario end to scenario start do
7 Compute labels of Type-1 nodes in time period t of the scenario using Eqn. (19) and (20)
8 end for
9 Set status of scenario to 1

10 end while
11 Return the weight of forest as sum of labels of the tail’s origin nodes.
12 end

Figure 10: Dynamic programming procedure to calculate the maximum weight STS-forest.

Theorem 5.1 The algorithm described in Figure 10 and Equations (18)–(22) correctly compute the weight of
the maximum weight STS-forest.

Proof Proof. First, we observe that the boundary conditions in Equations (21) and (22) are correct since
the subtree below the destinations are empty, and therefore have zero weight. The correctness of recursion in
Equation (19) is proved by the properties of longest paths on directed acyclic graphs, and is not described here
(see Sedgewick and Wayne (2011) details). Equation 20 follows from the correctness of longest paths in acyclic
networks and the option available at destinations nodes to allow cancellations (i.e., have an empty subtree rooted
at the destination with zero weight).

We now prove the correctness of Equation 18 by contradiction. Suppose the labels of J∗(v) are correct for
all v until a particular iteration and there exists some u such that

J∗2 (u) >
∑

g∈G+(u)

max

{
max

v∈V +
1 (u,g)

{J∗1 (v) + ωu,v} , max
v∈V +

2 (u,g)
{J∗2 (v) + ωu,v}

}
(23)

Given that the weight of the optimal subtree rooted at u has value J∗2 (u), the values of the labels of the children
of u in the tree can be calculated as J∗2 (u)−wu,v for all children v in the optimal subtree. This implies that there
exists some v such that J∗2 (u)− wu,v > J∗1 (v) or J∗2 (u)− wu,v > J∗2 (v) for Equation (23) to be valid. However,
this violates our assumption of the optimality of all labels of v.

Given that the recursions work assuming all iterations up until that point have computed the correct labels,
and that the boundary conditions are accurate, we conclude that the recursions accurately calculate the labels
of all nodes.

5.3 Bounds

Apart from the difference in the subproblem, the rest of the procedure is identical to the deterministic case. The
bounds derived in Section 4.2.3 still hold since we did not make any specific assumptions about the deterministic
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case. The column generation process terminates when the LP gap is within 0.01%, the IP gap is within 0.1%,
or the time-limit is reached, whichever happens first.

The two-stage heuristic described in Section 4.2.4 and the bounds are applicable to the stochastic case since
no assumption was made in the heuristic that was specific to the deterministic formulation.

6 Computational experiments

In this section, we demonstrate the algorithms described so far on a set of examples drawn from operational
data sets. We also illustrate the impact of different levels of time-discretization, as well as the number of parallel
threads used in the computation.

6.1 Description of data

Flight schedule data from Bureau of Transportation Statistics (2014) was used in the computational experiments.
The 10 days with the most traffic in July 2013 were selected. Table 2 presents a brief description of the data.

Date # BTS flts. # OD pairs # Advisories # Impacted apts.

1. 7/12/13 19,391 3,750 18 11

2. 7/19/13 19,381 3,748 39 14

3. 7/26/13 19,375 3,744 12 7

4. 7/08/13 19,361 3,750 24 11

5. 7/15/13 19,354 3,745 10 5

6. 7/22/13 19,352 3,745 18 6

7. 7/11/13 19,349 3,749 21 9

8. 7/29/13 19,341 3,742 12 3

9. 7/18/13 19,329 3,743 13 10

10. 7/25/13 19,313 3,741 15 6

Table 2: Description of test case days, showing the numbers of flights in the BTS and optimization data, distinct
tail numbers, OD pairs, GDP and GS issue and revision advisories, and airports impacted by these TMIs.

6.1.1 Network model:

The model considered consists of 370 airports, as represented in Bureau of Transportation Statistics (2014). The
airspace is divided into 375 sectors using a 15× 25 grid, according to latitude and longitude (Figure 11). Each
sector has four nodes at which aircraft aircraft can enter and exit the aircraft (denoted by E, F, G, and H in
Figure 11, right). Nodes are connected to each other as shown by bi-directional links. Each airport is connected
by bi-directional links to each of the four nodes of the sector that contains the airport.

The nominal routes corresponded to the shortest paths between the origin and destination airports. The
rerouting network was generated so as to include all paths within an ellipse, with the origin and destination
airports as the foci. The eccentricity of the ellipse was varied so as to be larger for short-haul flights, and smaller
for the trans-continental flights. For example, the rerouting network for a SFO-DCA flight had 463 nodes and
2, 582 arcs, while that of a DCA-BOS flight had 40 nodes and 174 arcs.

6.1.2 Flight schedules:

The total number of scheduled flights on each of these days was between 19,300 and 19,400. Flights that had
a latest time of arrival past 0900 hours (Zulu) the next day are not considered in the optimization. Flights
with missing tail numbers are assumed to not connect, and are assigned unique tail numbers. The optimization
problems therefore consider approximately 17,500 flights per day, with approximately 4,200 unique tails.
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Figure 11: Airspace network model, showing the airspace sector boundaries (green), links (blue), and airports
(light blue shaded circles). The shaded sectors denote candidate Flow Control Areas (FCAs) where capacity is
reduced. The figure at the right shows the structure of each sector.

6.1.3 Airport and sector capacities:

The airport capacities under Visual Meteorological Conditions (VMC), Instrument Meteorological Conditions
(IMC) and Marginal Conditions for the top 35 airports (excluding Honolulu, HNL) were obtained from Federal
Aviation Administration (2004). Other airports were constrained only in the event of a Ground Stop or GDP
that impacted that airport based on information from TMIs (Traffic Management Advisories). Data on Traffic
Management Initiatives (TMIs) such as Ground Delay Programs (GDP) and Ground Stops (GS) on these days
was extracted from the FAA’s Advisory Database (Federal Aviation Administration 2014). For example, Figure
12 shows the Airport Arrival Rate (AAR) at Atlanta (ATL) on an example day, with Ground Stops and Ground
Delay Programs highlighted.

The nominal capacity of each sector was determined by solving the optimization problem with no sector
capacity constraints and VMC capacities at all airports; the capacity was set to higher value of 30 aircraft and
the maximum occupancy seen in the optimal solution. The average sector capacity was 31 aircraft, while the
maximum was 65 aircraft. Our airspace sector capacities are larger than the en-route sector capacities seen in
the actual system for two reasons: The sectors are larger than typical en-route sectors and include all flight
levels (while the en-route sectors are divided into low, high and super-high sectors), and they include congested
terminal-areas as well (which are typically subdivided into as many as 8 arrival and departure sectors). Reduced
sector capacity constraints were imposed during Airspace Flow Programs (AFPs) in the corresponding Flow
Control Areas or FCAs (Federal Aviation Administration 2014) by scaling down the capacities in the associated
sectors according to the advisories issued. The maximum departure delay allowed for a flight was assumed to
be 4 hours (Federal Aviation Administration 2012). All data used in the experiments were drawn from publicly
available sources.

6.1.4 Objective function:

The proposed approach can accommodate a wide range of objective functions that vary by unit cost of delay,
by flight, and by airspace sectors or airports. The objective function used in our experiments was modeled as
follows.

Revenue: The revenue for each flight is modeled as a constant plus a linear term in the transit time.

Delay cost: The delay (i.e., difference between the arrival time and the earliest arrival time) cost is modeled as a
super-linear function of the delay. This form of the delay cost function ensures a more equitable distribution
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Figure 12: Arrival capacity profiles for an airport (ATL).

of delay, since it favors assigning moderate amounts of delay to two different flights over assigning a large
amount of delay to one, and a small amount to the other Vossen and Ball (2006).

Operating cost: En-route, taxi, and gate-hold operating costs were modeled as a linear in the time with relative
weights of 1.0, 0.5, and 0.1 respectively.

The weights of the various parameters was set such that the net revenue (revenue minus costs) for a flight
associated with a delay of 4 hours was approximately zero (i.e., all else being equal, the optimization model is
indifferent to delay or cancellation if the delay is around 4 hours).

6.1.5 Stochastic instances:

For a given number of scenarios, we first generated a random tree in which each node other than a leaf has two
children, with the required number of total nodes. The length of each scenario was uniformly distributed from
1 period to the length of the horizon, and then scaled so that the longest path in the tree equalled the horizon
length. The end times of all leaf states were set to equal the end of the time horizon. The capacity profile of
each scenario was scaled from the deterministic capacity by a random factor that was uniformly distributed in
[0.8, 1.2].

While it is unlikely that a realistic scenario will require developing 25-scenario recourse strategies for all
flights in the NAS (since uncertainty is typically more localized geographically and temporally), we examine the
extreme case to test the limits of our algorithm.

6.2 Experimental setup

The experiments were run on a Mac laptop with a 2.3 GHz Intel Core i7 processor with 4 physical cores and 8
virtual cores, and 16GB of RAM. The code was written in C, and interfaced with CPLEX 12.5 via the Callable
Library.
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6.2.1 CPLEX settings:

Since the number of rows in our models typically exceed the number of columns, we employed the primal simplex
method, which was found to perform the best. We also turned on the “PreDual” parameter in CPLEX, which
first converts the problem to its dual before solving it (note that this is different from applying the dual simplex
method). This is recommended by CPLEX for problems where the number of rows exceeds the number of
columns.

When solving the sequence of LPs, CPLEX by default uses the optimal basis of the last run as the starting
basis for a new run. For the stochastic problems, CPLEX was additionally directed to perform a presolve at
the beginning of each run by setting the “advanced start indicator” parameter to 2. For stochastic problems,
the “PreDual” setting was found to not make a significant difference, and was set to its default value (in which
CPLEX automatically determines whether or not to convert to the dual formulation).

6.2.2 Number of instances tested:

Our deterministic algorithm was run on 10 instances, one corresponding to each day in Table 2.
In our stochastic experiments, we tested instances with 5, 10, 15, 20, and 25 scenarios. For each day and

scenario, we generated two different instances with different random seeds, which resulted in different tree
structures and capacity profiles. Thus, our stochastic algorithm was run on 100 instances (10 days and 5 values
of the size of the tree, each with two different capacity profiles).

6.2.3 Termination conditions:

The column generation process was terminated when the LP gap was within 0.01% or the IP gap was within
0.1% or the time limit was reached, whichever occurred first. The time limit for all problems was set to 30
minutes, although this limit was not relevant since all instances were solved within the time limit.

6.2.4 Times reported:

The times reported are wall/clock times (and not CPU times). The reason for reporting wall times is to be
able to compare the impact of parallelization on the process. The process of parallelization requires dynamically
allocating memory stacks, etc. that may not be captured under CPU user time, and therefore CPU time may
underestimate the work done by the process. Since the machine used was dedicated to solving these problems,
100% of the memory and CPU resources were available to the algorithms (therefore, if only one thread were
used, the CPU and wall times should be equivalent).

The following times are reported:

Subproblem time is the wall time spent in solving the subproblems. This includes operations to extract the
dual information from the LP, solve the shortest paths/dynamic programming and create the necessary
data structures to add variables to the LP.

LP time is the time spent solving the linear programs.

IP time is the time spent solving the IP.

Times associated with running the heuristic are not reported here since they are insignificant compared to
the other times. In each case, the time limit for the heuristic was limited to 10% of the time of the LP solution
time; in all our instances tested, the total heuristic time was under 5 seconds.

6.3 Deterministic TFMP results

6.3.1 Effect of time-discretization on run times:

Time discretization has a significant impact on run times. As discussed in earlier sections, having too small a
discretization value is not only computationally more difficult, but may also be unnecessary given uncertainty
in a flight’s ability to conform precisely to a 4D trajectory. Having too large a discretization value results in
loss of fidelity and efficiency if the discretization value is comparable to the sector transit time. We tested time
discretizations of 5 to 10 minutes for all 10 days, the results if which are shown in Figure 13.
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Figure 13: Run times as a function of discretization. Each figure shows the average, min, and max run times across
the 10 days for each value of discretization. (a) Shows the total run time (LP + IP + sub-problem computation,
(b) Shows subproblem run times, (c) Shows LP run times, and (d) Shows IP run time.

The results show that, as expected, the average and variance of run times increase as the length of the time
period decreases. Interestingly, going from a discretization of 5 minutes to 6 minutes results in the average run
time decreasing from 260 seconds to 180 seconds. While we advocate using a 5-minute discretization, the results
show that if a faster solution is required, a modest decrease in discretization can drive significant reductions in
run time.

6.3.2 Effect of parallelization on run times:

One attractive feature of our algorithm is that solving the subproblems can be easily parallelized. In this section,
we attempt to quantify this benefit by examining the run times for different levels of parallelization. We solved
all 10 deterministic instances with 1, 2, 4, 6, and 8 parallel threads (the machine we ran our experiments is
capable of running up to 8 threads in parallel); the results are presented in Figure 14.

We see that increasing the number of threads from 1 to 4 decreases the total run time by about a factor of
3. However, beyond that, going to 6 processors only results in some marginal benefit, and there is almost no
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Figure 14: Run times as a function of number of parallel threads. Each figure shows the average, min, and max
run times across the 10 days for different values of the number of threads. (a) Shows the total run time (LP +
IP + sub-problem computation, (b) Shows subproblem run times, (c) Shows LP run times, and (d) Shows IP run
time.

benefit from moving from 6 to 8 processors. This behavior is because of the overhead required in creating and
managing the parallel threads.

The conclusion we draw from these experiments is that the sub-problem times initially scale almost linearly
with the number of cores, but the benefit drops sharply as the number of threads approach the machine capacity.
Since our experiments were run on a laptop that is not designed for high-performance parallelism, we believe
that running our algorithms on workstations or cloud instances specifically designed for multi-core applications
will yield significantly better run times.

6.3.3 Detailed results with 5-minute time-discretization:

We now describe in detail the results on running the algorithms on the 10 deterministic instances for a 5-minute
discretization and 8 threads. Table 3 summarizes the results, and contains the following columns:

Subproblem iterations is the number of batches of subproblems solved before the column generation process
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terminates (equals the number of master problems solved to generate dual values).

Subproblem and LP time are the clock/elapsed time to solve the subproblem and LP respectively, as de-
scribed in Section 6.2.4.

LP and IP gap are the LP and IP gap at termination, as described in Equations (10) and (11) respectively.

Number of variables, constraints, and non-zeros shows the number of variables, constraints, and non-
zeros in the final RMP.

Number of flights and tails represents the number of flights and tail numbers in the problem.

Ground hold and air delay is the total ground holding and total air delay across all flights. The ground
delay of a flight is calculated as the actual takeoff time minus the earliest takeoff time with no capacity
constraints. The total flight delay is the actual arrival time minus the earliest arrival time of a flight in the
absence of any capacity constraints. The air delay is the total delay minus the ground delay. The delay
minutes and cancellation rate are presented here only to show the relative “difficulty” of solving each day,
and should not be used to make a comparison to actual delays observed on those days.

Number of cancelled and rerouted flights represent the number of flights that are cancelled and rerouted
respectively. A flight is said to be rerouted if the set of arcs in its optimal trajectory is different from the
flight’s shortest path.

Date Sub-prob. Sub-prob., LP gap # Cons./# Vars. # Flights Ground hold # Cancelled
iterations LP times IP gap # Non-zeros # Tails Air delay # Rerouted

(seconds) (%) (minutes)

7/08/2013 22 292.97 0.008 131,856 / 19,287 17,603 33,060 381
50.14 0.008 1,970,546 4,272 8,245 657

7/11/2013 17 238.42 0.007 132,177 / 19,529 17,592 28,140 704
16.28 0.094 1,923,413 4,453 7,655 492

7/12/2013 16 217.69 0.002 131,865 / 18,111 17,607 25,415 278
22.30 0.002 1,765,003 4,275 9,885 517

7/15/2013 16 204.30 0.011 131,743 / 14,815 17,598 16,670 46
22.17 0.011 1,535,680 4,159 3,520 377

7/18/2013 16 235.47 0.004 131,735 / 13,934 17,571 12,770 32
17.97 0.084 1,435,384 4,151 3,195 346

7/19/2013 12 184.39 0.008 131,903 / 14,225 17,599 23,825 815
8.79 0.008 1,417,841 4,168 7,620 470

7/22/2013 18 242.73 0.005 132,206 / 17,364 17,595 20,975 287
18.97 0.069 1,755,866 4,310 4,525 456

7/25/2013 19 250.20 0.008 131,851 / 15,247 17,556 17,535 355
11.52 0.008 1,585,386 4,123 55,35 422

7/26/2013 17 240.38 0.001 131,713 / 18,031 17,593 23,245 183
23.88 0.001 1,880,184 4,092 5,950 513

7/29/2013 16 221.39 0.002 131,769 / 14,496 17,586 18,960 649
21.65 0.002 1,495,767 4,185 5,875 461

Table 3: Summary of results for the deterministic ATFM problem with 8 threads and 300 second discretization.

The results show that the run-times of the solution process show very little variability from day to day.
In particular, the subproblem time per iteration (total sub-problem time divided by number of iterations) is
remarkably consistent at ∼14–16 seconds per iteration. This is a very desirable quality in any solution process
since it appears that the run-times are somewhat independent of the severity of the capacity constraints or of
the total delay or cancellation rate, making the performance of the algorithm predictable. The fact that the
LPs typically have significantly greater rows than columns and the non-zero density is about 100 non-zeros per
column explains why the CPLEX parameters described in Section 6.2.1 work well for the problem.

As mentioned earlier, these computational experiments assumed the nominal runway capacity envelopes from
Federal Aviation Administration (2004) during periods with no Traffic Management Initiatives with explicit
airport arrival rates. Recent work by Pyrgiotis et al. (2013) suggests that these nominal capacity estimates may
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be quite optimistic. In order to quantify the operational benefits of Air Traffic Flow Management, future work
would incorporate refined estimates of runway capacity, as well as other delay cost functions (Bloem and Huang
2011).

6.4 Stochastic TFMP results

We ran our stochastic TFMP algorithm on 100 instances (10 days with 5 different number of states, each with
two random instances), the results of which are shown in Table 4. A time-discretization of 10 min was used since
the memory requirements of a 5-min discretization was beyond the capabilities of our machine when the number
of scenarios was large. All instances with 5 states were solved to within 4 minutes. An optimal solution was
found within 15 min even when there were 25 scenarios in the forecast. We note that such extreme problems
in which recourse strategies are required for all flights in the NAS for 20-25 scenarios are unlikely to arise in
practice; we present the results for completeness and to demonstrate the scaling properties of our algorithm.

The sub-problem time appears to scale somewhat linearly with the number of scenarios; this bodes well
for solving problems with a larger number of scenarios if necessary. The number of sub-problem iterations is
approximately the same for all five scenario sizes, implying that the increase in run time is due to the size of
each subproblem, as expected.

7 Conclusions

This paper presented a new approach to solving large-scale air traffic management problems, in both deter-
ministic and stochastic settings. The possible control actions considered included ground and airborne delays
(through speed changes), rerouting over a large network, and cancellations. Airport and airspace sector capacity
constraints were considered, along with flight connectivity constraints. Using nation-scale examples drawn from
US domestic flight data, we demonstrated a scalable, parallel implementation of our algorithm on instances with
about 17,500 flights/day, 370 airports and 375 airspace sectors. Our results show that the proposed approach is
capable of solving deterministic nation-scale examples (for a 1-day time window and a 5-min time-discretization)
to optimality in about 5 min. We also illustrated how larger values of time-discretization yield even faster run
times with our approach. Stochastic cases of the nation-scale ATFM problem with probabilistic scenario-tree
forecasts were solved at a 10-min time-discretization. For cases of up to 25 scenarios, optimal solutions were
determined within 20 min.

Our computational experiments, based on the largest instances of the air traffic flow management problem
solved to date, show that the proposed approach is fast enough for real-time implementation. The easily par-
allelizable nature of the approach, in addition to having computational benefits, has the potential to enable
distributed, yet collaborative, decision-making among the different airlines.
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