
OPERATIONS RESEARCH
Vol. 58, No. 6, November–December 2010, pp. 1650–1665
issn 0030-364X �eissn 1526-5463 �10 �5806 �1650

informs ®

doi 10.1287/opre.1100.0869
©2010 INFORMS

Algorithms for Scheduling Runway Operations
Under Constrained Position Shifting

Hamsa Balakrishnan
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, hamsa@mit.edu

Bala G. Chandran
Analytics Operations Engineering Inc., Boston, Massachusetts 02109, bchandran@nltx.com

The efficient operation of airports, and runways in particular, is critical to the throughput of the air transportation system
as a whole. Scheduling arrivals and departures at runways is a complex problem that needs to address diverse and often
competing considerations of efficiency, safety, and equity among airlines. One approach to runway scheduling that arises
from operational and fairness considerations is that of constrained position shifting (CPS), which requires that an aircraft’s
position in the optimized sequence not deviate significantly from its position in the first-come-first-served sequence. This
paper presents a class of scalable dynamic programming algorithms for runway scheduling under constrained position
shifting and other system constraints. The results from a prototype implementation, which is fast enough to be used in real
time, are also presented.

Subject classifications : transportation: runway scheduling under constrained position shifting; dynamic
programming/optimal control: deterministic polynomial-time scheduling algorithms.

Area of review : Transportation.
History : Received September 2008; revisions received January 2009, July 2009, November 2009; accepted

February 2010.

1. Introduction
The air transportation system in the United States is a
tightly constrained system that is operating at (or close to)
capacity at most major airports. In 2005, terminal-area con-
gestion accounted for only 13% of all delays at the 35
busiest airports; that number had risen to 17% in 2008,
and is currently at 21% over the first nine months of 2009
(Federal Aviation Administration 2009). The increasing
delays, coupled with the expected increase in the demand
for air transportation in the future, have motivated several
initiatives, both in the United States and in Europe, for
the enhancement of terminal-area capacities (Arkind 2004,
Boehme 1994). The runway system has been identified as
the primary bottleneck in airport capacity, due to various
operational constraints on runway operations (Idris et al.
1998). Consequently, even small enhancements to runway
throughput can have a significant impact on systemwide
delays.
The terminal area is a dynamic and uncertain environ-

ment, with constant updates to aircraft states being obtained
from surveillance systems and airline reports (Atkins and
Brinton 2002). The dynamic nature of the terminal area
necessitates the development of scheduling algorithms that
are computationally efficient and therefore amenable to
replanning when new events occur, such as when a new
aircraft enters the center boundary or when data updates

are obtained. The challenge lies in simultaneously achiev-
ing safety, efficiency, and equity, which are often competing
objectives, and doing so in a reasonable amount of time
(Böhme 2005, Carr 2004, Anagnostakis et al. 2000). There
is broad consensus on how to independently model safety,
efficiency, and equity: safety is achieved by maintaining
separation between aircraft and by satisfying downstream
metering constraints; efficiency is equivalent to achieving
high throughput and/or low average delay; and equity is
modeled by limiting the deviation from a nominal order
or by minimizing variance in delay. However, few solu-
tion approaches have been able to simultaneously model all
three components and optimally solve the runway schedul-
ing problem in a computationally tractable manner. One
reason for this computational hurdle is that most runway-
scheduling models are, from a theoretical perspective, inher-
ently hard to solve (Beasley et al. 2000). Consequently,
most practical implementations resort to heuristic or approx-
imate approaches that produce “good” solutions in a short
time (Böhme 2005, Anagnostakis et al. 2001). The diffi-
culty in solving these scheduling models arises primarily
because the solution space allows for the optimal sequence
to deviate arbitrarily from the first-come-first-served (FCFS)
sequence.
Dear (1976) recognized that in the short term it is unreal-

istic to allow arbitrary deviations from the FCFS sequence
for two reasons: (i) the system affords controllers limited

1650

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1651

flexibility in reordering aircraft, and (ii) large deviations
from a nominal schedule may be unacceptable to airlines
from a fairness standpoint. This observation led to the con-
strained position shifting (CPS) approach for scheduling
aircraft, which stipulates that an aircraft may be moved
up to a specified maximum number of positions from its
FCFS order. For example, if the maximum position shift
(MPS) allowed was 2, an aircraft that is in the 8th posi-
tion in the FCFS sequence can be placed at the 6th, 7th,
8th, 9th, or 10th position in the new sequence. Several
researchers in both the United States and Europe have used
CPS to model fairness and have worked toward develop-
ing fast solution techniques for scheduling within the CPS
framework (Psaraftis 1980, Dear and Sherif 1991, Neuman
and Erzberger 1991, Trivizas 1998, de Neufville and Odoni
2003, Carr 2004).
Psaraftis (1980) was the first to develop a polynomial-

time algorithm for scheduling under CPS. His algorithm
exploited the fact that the number of different types of air-
craft is typically small (small, large, heavy, etc.) and had
a complexity of O�N 2�n/N + 1�N �, where n is the num-
ber of aircraft and N is the number of distinct aircraft
types. This algorithm relied on all aircraft of the same
type being identical, which did not accommodate time-
window restrictions on aircraft or precedence relationships
among aircraft, thus effectively scheduling all aircraft of
a certain type in FCFS order. Trivizas (1998) proposed a
search-based algorithm with a complexity of O�n2k�, where
n is the number of aircraft and k is the maximum shift
parameter; however, achieving this complexity required a
very sophisticated implementation using up to 2k parallel
processors. Further, his model also failed to account for
time-window restrictions and precedence constraints. The
difficulty of incorporating all operational constraints within
a CPS framework even led to a conjecture by Carr (2004)
that in general, runway scheduling under CPS had expo-
nential complexity.
This paper presents new algorithms for efficient runway

scheduling on a single runway with CPS constraints, while
accounting for various operational considerations (includ-
ing time-window restrictions and precedence constraints,
which had not been modeled by previous approaches). For
reasons discussed in §7.3, the multiple runway case is
beyond the scope of this paper. Our key contribution in
this paper is to cast the scheduling problem on a graph,
referred to as the CPS network and described in §3, whose
size is polynomial in the number of aircraft. The schedul-
ing problems are then solved using dynamic programming
on this network.
The core problem we consider is that of maximizing run-

way throughput (equivalent to minimizing the makespan
or the landing time of the last of a given set of air-
craft) for arrivals-only or departures-only operations. This
scenario is of practical importance because many major
airports, such as Atlanta, Dallas/Fort Worth, Denver, and

New York LaGuardia, use dedicated arrival and depar-
ture runways, especially during periods of heavy demand
(Federal Aviation Administration 2004). Our algorithm to
solve this problem, presented in §4, has a complexity of
O�n�2k + 1��2k+2��, where n is the number of aircraft and
k is the maximum shift parameter. Thus, the complexity of
the algorithm is essentially linear in the number of aircraft
because k is typically a small constant (1, 2, or 3). In §5,
we extend the algorithm to two other objective functions—
namely, minimizing the maximum delay over all aircraft
and minimizing the average delay—and show that these can
also be solved with a complexity that is polynomial in n
and exponential in k, although our algorithm for the latter
problem is unable to account for time-window constraints.
To handle more complex extensions, we introduce the

discrete-time CPS network in §6. This network, whose size
is dependent on the number of time periods being con-
sidered, allows us to develop pseudopolynomial algorithms
to minimize the weighted average of delay given arbitrary
aircraft-dependent cost structures. In §7, we present algo-
rithms for the problem of mixed operations (simultaneous
arrival and departure scheduling on a single runway). One
of the algorithms, which solves a realistic problem of merg-
ing several departure queues and an arrival queue, has a
complexity that is polynomial in the number of aircraft and
exponential in the number of departure queues. Finally, we
describe a prototype implementation of our algorithm for
minimizing makespan in §8.
This paper is of significance because it presents the

first class of algorithms that are able to handle commonly
encountered operational constraints and objectives within
the CPS framework while being computationally scalable.

2. Problem Definition
The runway scheduling problem is to find a sequence
and corresponding arrival/departure times that optimize
some objective of the schedule (for example, minimize
the makespan or minimize a weighted average of aircraft
delay), subject to the following constraints.
1. Fairness: position shift constraints. Because airlines

are major stakeholders in the air transportation system, it
is important that an increase in efficiency is not achieved
at the expense of an equitable allocation of resources. This
could happen if an aircraft that would have had an early
arrival or departure in the FCFS sequence is rescheduled
to operate last, thereby incurring a disproportionate amount
of delay. CPS ensures some degree of fairness because it
does not allow the final sequence to deviate significantly
from the FCFS order. The maximum number of position
shifts allowed is denoted by k, and the resultant scenario is
referred to as a k-CPS scenario. Typically, k for both arrival
and departure scheduling is between 1 and 3 (de Neufville
and Odoni 2003).
2. Minimum spacing requirements. An aircraft oper-

ating on a runway faces the risk of instability if it inter-
acts with the wake-vortex of an aircraft landing or tak-
ing off before it. To prevent this, the Federal Aviation

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1652 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

Administration (FAA) mandates minimum spacing require-
ments under instrument approach conditions (IAC) between
aircraft operations on a runway, which depend on the
on the maximum takeoff weight capacity of the aircraft
(Federal Aviation Administration 2006). Although these
spacing requirements are specified in terms of distance,
they can be converted to time requirements assuming a 5
nmi final approach path (de Neufville and Odoni 2003).
Representative values for these separations for three weight
classes—small, large, and heavy—are listed in Table 1 (for
simplicity, we ignore separation requirements for B757 air-
craft). We denote the minimum time required between lead-
ing aircraft a and trailing aircraft b by �ab.

Note that the wake-vortex separation requirements for
arrivals-only or departures-only operations satisfy the tri-
angle inequality, that is, �ac � �ab + �bc, ∀a�b� c. In addi-
tion, these separation requirements satisfy all higher-order
polygon inequalities (for instance, the quadrilateral inequal-
ity in which �ad � �ab + �bc + �cd, ∀a�b� c�d). As a
result, ensuring that spacing requirements are met between
successive aircraft ensures that the spacing requirements
are met for all pairs of aircraft. This property will be
exploited in subsequent sections when developing algo-
rithms for the arrivals-only or departures-only case. In §6.2,
we describe algorithmic modifications that allow us to solve
the scheduling problem even when the triangle inequality
is violated.
3. Time-window constraints. Limits on the levels of

delay that can be incurred by an aircraft due to down-
stream traffic flow management initiatives or constraints on
possible maneuvers that can be performed by the aircraft
restrict the times at which an aircraft can reach a run-
way (Carr 2004). These constraints could possibly result
in a set of disjoint time intervals in which an aircraft can
arrive/depart. For simplicity of notation, we describe the
case of a continuous-time interval defined by an earliest
and latest time, but our approach is applicable to disjoint
intervals as well.
4. Precedence constraints. Precedence constraints are

pairwise requirements on aircraft that stipulate whether
one aircraft must land before another. Sources of such

Table 1. Minimum separation (in seconds) between
operations on the same runway (Lee 2008).

Trailing

Arrivals Departures

Leading Heavy Large Small Heavy Large Small

Arrivals
Heavy 96 157 196 75 75 75
Large 60 69 131 75 75 75
Small 60 69 82 75 75 75

Departures
Heavy 60 60 60 90 120 120
Large 60 60 60 60 60 60
Small 60 60 60 60 60 60

constraints are the airlines themselves, which have prece-
dence constraints due to banking operations or priority
flights. In addition, arrivals on the same jet route are con-
strained to not overtake each other. Precedence constraints
can also represent the restricted freedom available to taxi-
ing departures that are not allowed to overtake each other
(Carr 2004).

3. The CPS Network
Our key contribution is to cast the scheduling problem on a
directed acyclic graph in which every feasible CPS sequence
is represented by a path in the network; the scheduling prob-
lem is then solved using dynamic programming.
For simplicity, we assume that the aircraft are labeled

�1�2� � � � � n� according to their position in the FCFS
sequence. The network consists of n stages �1� � � � � n�,
where each stage corresponds to an aircraft position in the
final sequence. A node in stage p of the network represents
a subsequence of aircraft of length min�2k + 1� p�. For
example, for n = 6 and k = 1, the nodes in stages 3� � � � �6
represent all possible sequences of length 2k + 1 = 3 end-
ing at that stage. Stage 2 contains a node for every possible
aircraft sequence of length 2 ending at position 2, whereas
stage 1 contains a node for every possible sequence of
length 1 starting at position 1. This network, shown in Fig-
ure 1, is obtained by finding all sequence combinations
of possible aircraft assignments to each position in the
sequence. We refer to the last aircraft in a node’s sequence
as the final aircraft of that node.
We then introduce two nodes—a source and a sink—that

represent the beginning and end of the sequencing process,
respectively. We add arcs from the source to each node in
stage 1 and from each node in stage n to the sink. An
arc �i� j� is drawn from a node in stage p to one in stage
p + 1 if the aircraft subsequence of node j can follow that
of node i, i.e., the first min�2k�p� aircraft of node j’s sub-
sequence are the same as the last min�2k�p� aircraft of
node i’s subsequence. For example, a sequence (1–2–3)
in stage 3 can be followed by the sequences (2–3–4) or
(2–3–5) in stage 4. This results in a network where every
directed path from a node in stage 1 to one in stage n
represents a possible k-CPS sequence. For example, the
path �2� → �2–1� → �2–1–3� → �1–3–4� → �3–4–6� →
�4–6–5� represents the sequence 2–1–3–4–6–5.

Theorem 1. A k-CPS sequence exists if and only if there
exists a corresponding source-sink path in the network.

Proof. By enumerative construction, every k-CPS sequ-
ence is a source-sink path in the network. We now prove
that every source-sink path in the network is a k-CPS
sequence.
First, we observe that every source-sink path will consist

of exactly n nodes (excluding the source and sink) because
each arc in the path moves forward by one stage. Given
a path in the network, the corresponding aircraft sequence

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1653

Figure 1. CPS network for n = 6, k = 1 generated from possible aircraft assignments shown on top.

Position 1 2 3 4 5 6

Possible 1 1 2 3 4 5
aircraft 2 2 3 4 5 6
assignments 3 4 5 6

1–2

1–3

2–1
Sink

1–2–3

1–2–4

1–3–2

2–1–3

2–1–4

1–3–4

1–3–5

1–4–3

2–3–4

2–3–5

2–4–3

3–2–4

3–2–5

2–4–5

2–4–6

2–5–4

3–4–5

3–4–6

3–5–4

4–3–5

4–3–6

4–6–5

4–5–6

5–4–6

3–5–6

3–6–5

1–3–4

2–3–4

1–2–3

1–2–4

1–2–5

1–4–5

2–4–5

3–4–5

2–3–5

2–3–6

2–5–6

3–5–6

4–5–6

3–4–5

3–4–6

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Source

2–3

2–3–4

2

1

Note. Nodes shaded in black do not belong to any source-sink path and hence can be pruned from the network.

is obtained by taking the final aircraft of a node belonging
to stage p and assigning it to position p in the sequence.
Thus, position 1 in the sequence is the final aircraft of the
first node in the path, position 2 in the sequence is the
final aircraft of the second node in the path, and so on.
Because there are n aircraft and the path is of length n,
this procedure will yield a feasible sequence as long as we
assign a unique aircraft to each position, i.e., as long as the
final aircraft of each node in the path is different.
We now prove this result by contradiction. Suppose

there exists a source-sink path in the network containing
two nodes with the same final aircraft. Let one of these
nodes be in stage p1 and the other be in stage p2 where
p1 < p2. Then, the aircraft appears in position p1 and p2

in the sequence represented by the path. The network is
constructed using the fact that any aircraft can appear in
at most 2k + 1 positions, so p2 is within 2k + 1 positions
of p1. However, every subsequence of length 2k+1 or less
is captured in some node along the path, so there exists a
node in the path in whose subsequence the same aircraft
appears in more than one position, which is not allowed
to occur while generating the network. This contradiction
implies that there cannot exist a source-sink path containing
two nodes with the same final aircraft.
Therefore, any source-sink path represents a sequence

of n distinct aircraft, where each aircraft appears in a
position that is one of at most 2k + 1 possible position
assignments for it. �

There are some nodes in the network that cannot be part
of any path from the source to the sink (shown shaded
in Figure 1) and can hence be eliminated to reduce the
network size. The process of pruning the network involves
testing whether each node is reachable from both the source
and the sink (using a forward and reverse graph search)
and eliminating nodes that are not reachable either from
the source or the sink.

3.1. Incorporating Precedence Constraints

We now describe how precedence constraints can be incor-
porated into the network. Let f �a� be the position of air-
craft a in the final (optimal makespan) sequence and f �b�
be the position of aircraft b in the final sequence. For two
aircraft a and b such that a < b, the precedence constraint
can either require that (i) f �a� < f �b� or (ii) f �a� > f �b�.
Case I: The precedence constraint requires that

f �a� < f �b�.

Lemma 1. Suppose there exists a path in the network such
that f �a� > f �b�. Then, the path contains at least one node
such that b appears before a in that node’s subsequence.

Proof. Because each aircraft can shift at most k positions,
f �a� � a + k and f �b� � b − k. Therefore, f �a� − f �b� �
a−b +2k � 2k−1 (because a−b �−1 given that a < b).
Because f �a� and f �b� are within 2k + 1 of each other
and every sequence of length at most 2k + 1 is contained

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1654 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

in some node along the path, the path contains some node
whose sequence has f �a� > f �b� and violates the prece-
dence constraint. �

The above lemma shows that removing nodes that vio-
late precedence constraints is not only necessary but also
sufficient for eliminating all source-sink paths that violate
precedence constraints. This yields the following proce-
dure: in the presence of precedence constraints where a < b
and we require f �a� < f �b�, remove all nodes that violate
the precedence constraints and solve the problem on the
resulting network.
Case II: The precedence constraint requires that

f �a� > f �b�.
Because the earliest position that b can land is b − k,

the earliest time that a can land given that it lands after b
is b − k + 1. Similarly, the latest position that a can land
is a + k, meaning that the latest time that b can land is
a + k − 1. Any node that contains a sequence that violates
these two constraints—i.e., has a in a position that is less
than b−k or has b in a position greater than a+k—should
be removed from the network because they cannot belong
to a feasible path. We refer to the network obtained after
removing such nodes as the position-constrained network.

Lemma 2. Suppose there exists a path in the position-
constrained network such that f �a� < f �b�. Then, the path
contains at least one node such that a appears before b in
that node’s subsequence.

Proof. In the position-constrained network, b − k + 1 �

f �a� � a + k and b − k � f �b� � a + k − 1. Therefore,
f �b�−f �a�� a−b+2k−2� 2k−3 (because a−b �−1
given that a < b). Because f �a� and f �b� are within 2k+1
of each other and every sequence of length at most 2k+1 is
contained in some node along the path, the path contains
some node whose sequence has f �a� < f �b� and violates
the precedence constraint. �

This yields the following procedure: in the presence
of precedence constraints where a < b and we require
f �a� > f �b�, we first remove all nodes where the posi-
tion constraint is violated, giving the position-constrained
network. Then, we remove all nodes that violate the prece-
dence constraints and solve the problem on the resulting
network.

3.2. Asymmetric Shift Constraints

One extension that is easily handled using the described
framework is that of asymmetric shift constraints, i.e., the
number of allowed forward shifts is different from the
number of backward shifts. Let the maximum forward
and backward shift parameters be denoted by k+ and k−,
respectively. In order to model the asymmetric case, we first
create a CPS network with parameter k = max�k+� k−�.
Then, we remove all nodes that violate the position shift
constraints and prune the network as before. For example,
suppose aircraft 4 in the example in §3 has k+ = 1 and

k− = 0. The CPS network is created as before in Figure 1
using k = 1. Then, nodes (1–2–4), (1–3–4), (2–1–4), and
(2–3–4) are eliminated from stage 3 (because aircraft 4
is not allowed to land in position 3), and the network is
pruned as before.

4. Minimizing the Makespan
We now present an algorithm to minimize makespan using
dynamic programming on the described CPS network. Each
arc �i� j� in the network is associated with a distance equal
to the minimum separation between the final aircraft of
node i and that of node j , if they were to take off consec-
utively and in that order. Arcs that lead into the sink and
out of the source have zero distance associated with them.
The notation used in our algorithm is listed in Table 2.

4.1. Dynamic Programming Recursion

Lemma 3. The values of T ∗� · � can be computed by the
following dynamic programming recursion:

T ∗�j� =max
{
e�j�� min

i∈P�j�	 T ∗�i��l�i�
�T ∗�i� + �i�j��

}
� (1)

Proof. T ∗�j� � e�j� because a sequence cannot start
before the earliest arrival time of the final aircraft in the
sequence.
If T ∗�i� > l�i� for some predecessor node i, it implies

that the sequence of node i cannot possibly start within
the allowable time window
e�i�� l�i��, and hence this node
cannot be part of any feasible source-sink path sequence.
Therefore, all nodes with T ∗�i� > l�i� can be ignored while
finding the arrival time of node i.
It is not possible for T ∗�j� to be strictly less than T ∗�i�+

�i�j� for all predecessors i because that would violate the
separation requirement between the final aircraft of i and j .
Therefore, T ∗�j� � T ∗�h� + �h�j� for at least one of the
predecessors h ∈ P�j�	 T ∗�h� � l�h�. Because T ∗�j� �

T ∗�h� + �h�j� for at least one feasible predecessor h, it is
certainly greater than the minimum of T ∗�i� + �i�j� over
all feasible predecessors i.
We have shown so far that T ∗�j� � e�j� and T ∗�j� �

mini∈P�j�	 T ∗�i��l�i��T
∗�i�+�i�j��. To complete the proof, we

Table 2. Notation used in the algorithm for merging
departure queues with an arrival stream.

T �i� Arrival time of the final aircraft of node i.
T ∗�i� Arrival time of the final aircraft of node i in an optimal

solution.
e�i� Earliest possible arrival time of the final aircraft of

node i.
l�i� Latest possible arrival time of the final aircraft of

node i.
�i�j� Minimum separation between the final aircraft of node

i (leading) and node j (trailing).
P�i� Set of nodes that are predecessors of node i, i.e., there

exists an arc from every node in P�i� to node i.
(Note that P�source� = �.)

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1655

have to show that at least one of the above inequalities
holds as an equality so that

T ∗�j� =max
{
e�j�� min

i∈P�j�	 T ∗�i��l�i�

(
T ∗�i� + �i�j�

)}
�

We now prove the rest by contradiction:
Suppose T ∗�j� > e�j� and T ∗�j� > mini∈P�j�	 T ∗�i��l�i� ·

�T ∗�i� + �i�j��. Then, it is possible to reduce the value of
T ∗�j� by some sufficiently small quantity while still main-
taining a feasible solution, which contradicts the optimality
of T ∗�j�.
Therefore, T ∗�j� � e�j� and T ∗�j� � mini∈P�j�	 T ∗�i��l�i� ·

�T ∗�i�+�i�j�� and at least one of the two inequalities holds
as an equality. �

The minimum makespan solution is obtained by apply-
ing the boundary condition T ∗� · � = e� · � for all nodes in
stage 1, and successively computing T ∗� · � for each node
in stage 2 and above by traversing the network from left to
right. The minimum makespan is the lowest value of T ∗� · �
among all nodes in stage n. The optimal sequence corre-
sponding to the minimum makespan solution is obtained
by keeping track of the predecessor of node i in the
sequence as argmini∈P�j�	 T ∗�i��l�i��T

∗�i� + �i�j��, breaking
ties arbitrarily. The pseudocode for the algorithm is given
in Figure 2.
This algorithm can also be used for checking whether or

not a feasible solution exists: initially set T �j� = � for all
nodes in stage n, then solve for the minimum makespan. If
T ∗�j� = � for all nodes j in stage n, then no feasible solu-
tion exists; otherwise, the algorithm has found a solution.

4.2. Complexity

Proposition 1. The complexity of the algorithm for find-
ing the minimum makespan for n aircraft and maximum
position shift of k is O�n�2k + 1��2k+2��.

Proof. The nodes in each stage of the network are gen-
erated by all combinations of length 2k + 1, where each
position in the sequence has at most 2k + 1 possible air-
craft. The number of nodes in each stage is therefore
O��2k + 1��2k+1��; because there are n stages, the total
number of nodes in the network is O�n�2k+1��2k+1��. Each
node can have at most 2k + 1 predecessors because the

Figure 2. Algorithm for computing the minimum
makespan.

procedure FindMakespan:
begin

Set T ∗� · � to e� · � for all nodes in stage 1, and
� for all nodes in stage n;

for each p = 2� � � � � n do
for each node j in stage p do

T ∗�j� =max�e�j��mini∈P�j�	 T ∗�i��l�i��T
∗�i� + �i�j���;

pred�j� = argmini∈P�j�	 T ∗�i��l�i��T
∗�i� + �i�j��;

end

sequence of a node differs from the sequence of its pre-
decessor only in the first and last position. so the number
of arcs is O�n�2k +1��2k+2��. Pruning the network requires
looking at each arc at most twice—once during the forward
pass and once during the backward pass. The dynamic pro-
gramming recursion examines each arc at most once, so
total complexity is equal to the number of arcs in the net-
work, which is O�n�2k + 1��2k+2��. �

In the presence of precedence constraints, each node
would require O�k� work because we would need to check
if precedence is violated between the final aircraft in the
node and each of the other aircraft in the subsequence of
the node. The complexity for preprocessing the entire net-
work would thus be the number of nodes times k, which is
the same as the running time of the pruning and dynamic
programming recursion.
Although the complexity is exponential in k, it is of lit-

tle consequence because k is typically small (at most 3
in practice) (de Neufville and Odoni 2003). Therefore, the
complexity of the algorithm is essentially linear in n.

5. Other Objective Functions

5.1. Minimizing the Maximum Delay
Over All Aircraft

Let D be an upper bound on the maximum delay over all
aircraft (a trivial upper bound on the maximum delay is
obtained by n times the largest value of minimum required
spacing, or the largest value over all aircraft of l� · �−e� · �).
Alternatively, this upper bound can be computed from
the optimal sequence of the minimum makespan solution
(assuming a feasible solution exists). We will now assume
that the earliest times and separations are all integers (or,
equivalently, floating point numbers to some fixed preci-
sion), resulting in D also being an integer. The solution that
minimizes maximum delay can be calculated by iteratively
performing a binary search on the interval �0�1� � � � �D�,
iteratively using the minimum makespan algorithm to check
for feasibility.
The complexity of the algorithm is O�logD� multiplied

by the complexity of the minimum makespan algorithm,
which equals O�n�2k + 1��2k+2� logD�.

5.2. Minimizing the Sum of Delay Over All Aircraft

We now propose an algorithm that computes the minimum
average delay solution within the CPS framework and can
handle all previously mentioned constraints except the ear-
liest/latest time-window constraints.
Working with the same CPS network as for the minimum

makespan scenario, each node i in stage p is associated
with a function �i�p� = t1 + t2 + · · ·+ tp−1 + �n − p + 1�tp,
where tq is the arrival time of the qth aircraft in a sequence
of aircraft along some path from the source to node i (note
that this is different from aircraft q, which is the qth aircraft

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1656 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

in the FCFS sequence). For each node j in stage n, we
wish to minimize �j�n� = t1 + t2 + · · · + tn−1 + tn.
Let �∗� · � be the value of �� · � in an optimal solution,

and t∗
q be the corresponding values of t. In order to compute

the value of �∗
j �n�, we need to find the minimum value

of �j�n� over all paths that lead to node j . In order to solve
for the value of �∗� · � by dynamic programming, we first
establish the following properties.

Proposition 2. In an optimal solution, each aircraft is
separated from its predecessor by exactly the minimum
required separation between the two aircraft.

The proof is by contradiction: if a feasible solution exists
such that the proposition does not hold, it is possible to
achieve a strictly lower value of total delay by moving all
aircraft ahead until the proposition holds. Note that this
property holds only if there are no time-window constraints.

Proposition 3. All paths from the source to a given node
in the CPS network contain the same set of aircraft.

Proof. Given a node i in stage p of the network, let V −�i�
be the set of all nodes (other than i) that belong to all
paths from the source to node i, and let V +�i� be the set
of all nodes (other than node i) that belong to all paths
from node i to the sink. Let A−�i� and A+�i� be the set
of final aircraft of nodes in V −�i� and V +�i�, respectively.
Due to Lemma 1, A−�i� and A+�i� cannot have any aircraft
in common (otherwise, there exists a source-sink path in
which an aircraft repeats, which is not possible). Further,
A−�i� has at least �p − 1� aircraft; otherwise, there exists
a path from the source to i in which an aircraft repeats.
Similarly, A+�i� has at least �n−p� elements. Because the
sum of elements in A−�i� and A+�i� exactly equals n − 1
(all aircraft except the final aircraft of node i), A−�i� and
A+�i� have exactly �p − 1� and �n − p� aircraft, respec-
tively. Because every path from the source to node i corre-
sponds to a path of �p − 1� aircraft, all paths must contain
the same set of aircraft, i.e., the elements of A−�i�. �

Consider a path in the network ending in node j belong-
ing to stage p, in which node i is the penultimate node.
Then, for arc �i� j�,

�j�p� = t1 + t2 + · · · + tp−1 + �n − p + 1�tp

� t1 + t2 + · · · + tp−1 + �n − p + 1��tp−1 + �i�j��

= t1 + t2 + · · · + tp−2 + �n − p + 2�tp−1

+ �n − p + 1��i�j�

= �i�p − 1� + �n − p + 1��i�j��

Due to Proposition 3, all paths to node j contain
the same set of aircraft. Thus, for all nodes i that pre-
cede j , the function �i�p − 1� = t1 + t2 + · · · + tp−2 +
�n − p + 1�tp−1 is calculated over the same set of aircraft.
Further, the �p − 1�th node in all paths ending in node j is

the same (by construction, it is the second-from-final air-
craft of node j). Therefore, given a set of aircraft landing
times, the associated functions �i�p� of all nodes i that pre-
cede j are equal in value; they differ only in the order of
the terms t1� � � � � tp−2.
The dynamic programming recursion can hence be writ-

ten as follows.

�∗
j �s� = min

t1� ��� � tp−1

�i�p − 1� + �n − p + 1��i�j�

= min
i∈P�j�

�∗
i �p − 1� + �n − p + 1��i�j��

Solving for �∗� · � for all nodes in stage n is equivalent
to solving the following shortest-path problem: assign each
arc �i� j� in the CPS network from stage p − 1 to stage p
a “distance” of �n − p + 1��i�j�, and solve for the shortest
source-sink path in the network.
The proof of correctness follows from properties of

shortest paths and is omitted here. The complexity of solv-
ing a shortest path on this network is linear in the num-
ber of arcs and is thus the same as that for minimizing
makespan, which is O�n�2k + 1��2k+2��.

6. Discrete-Time Models
Although the framework proposed in §3 can solve the
versions of the runway-scheduling problem considered so
far, it is not immediately applicable to complex objec-
tives such as the minimization of the sum of arbitrary
aircraft-dependent costs or to situations in which the sep-
aration requirements do not satisfy the triangle inequality
(for example, for mixed arrival-departure operations on a
runway). In this section, we present discrete-time models
for solving these extensions. We assume that all input data
(such as separations, time windows, etc.) are integer multi-
ples of some time period. For instance, an interval of about
five seconds is appropriate in the context of arrival schedul-
ing given that the separations are of the order of a minute,
and it is difficult to control aircraft positions and landing
times to a very high degree of accuracy. We then create a
copy of the CPS network for each time period of interest
and solve the problems using dynamic programming on this
discrete-time CPS network. Because the number of nodes
and arcs in the network now depends on the number of
time periods, the algorithms presented in this section have
pseudopolynomial complexity (polynomial in the number
of time periods).

6.1. Minimizing the Sum of Arbitrary
Aircraft-Dependent Cost Functions

We now describe a pseudopolynomial algorithm for the
CPS scheduling problem with arbitrary cost structures,
assuming that time can be discretized to some appropriately
small interval. For instance, an interval of about five sec-
onds is appropriate in the context of arrival scheduling
given that the separations are of the order of a minute and

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1657

it is difficult to control aircraft positions and landing times
to a very high degree of accuracy. It is assumed that all
inputs to the problem (time windows, separation, etc.) are
integer multiples of the interval. We consider scenarios in
which each aircraft has its own delay cost function, and the
objective is to determine the schedule that minimizes the
sum of these costs.
Let c�a� ta� denote the cost of landing aircraft a at

time ta. We wish to minimize
∑n

a=1 c�a� ta�. Without loss
of generality, we can assume that c� · � is positive (if not,
we can add a constant to all values of c� · � to ensure that
it is positive).

6.1.1. Dynamic Programming Algorithm. Given the
CPS network as defined in earlier sections, let � �i� denote
the set of feasible times that the final aircraft of node i can
land (generated from the time-window constraints). Define
J �i� t� to be the cost of a feasible schedule generated by a
sequence of nodes starting at stage 1 and ending at node i,
given that the final aircraft of node i lands at time t. Let
J ∗�i� t� represent the minimum value of J �i� t� over all fea-
sible schedules ending in node i at time t. We then wish
to minimize J ∗�i� t� over all nodes in the nth stage of the
network and over all feasible time periods t ∈� �i�.
The optimal schedule is generated by the following

dynamic programming recursion, where fin�i� denotes the
final aircraft of node i. If fin�j� lands at time t′′, then

J ∗�j� t′′� = min
i∈P�j��

t′∈� �i�	 �t′′�t′+�i�j��

{
J ∗�i� t′� + c�fin�j�� t′′�

}
� (2)

The following boundary condition applies to all nodes i in
stage 1.

J ∗�i� t� = c�fin�i�� t� ∀ t ∈� �i�� (3)

The next section describes the network representation of
the above recursion.

6.1.2. Network Representation of the DP. The solu-
tion to the recursion is equivalent to a shortest-path problem
on a network that is constructed as follows. We begin by
creating a copy of the original CPS network for each time
interval, henceforth referred to as a layer of the network,

Figure 3. Schematic description of discrete-time net-
work for minimizing the weighted sum of
arrival times.

Source (i, t1)

(j, t2)

Layer t1

Layer t2 Sink

Layer 0

Layer tmax

as shown in Figure 3. Each node in this network is charac-
terized by the pair �i� t�, representing node i in the original
CPS network belonging to layer t, i.e., the “state” corre-
sponding to the final aircraft of node i landing at time t.
Note that node �i� t� exists in the network only for t ∈� �i�.
An arc exists from node �i� t′� to �j� t′′� only if arc �i� j�
exists in the original CPS network and �t′′ − t′� � �i�j�,
the minimum spacing between the final aircraft of nodes i
and j . Finally, the network contains arcs from the source
to every node in stage 1, and an arc from every node in
stage n to the sink. Thus, a source-sink path, source →
�i1� t1� → ·· · → �in� tn� → sink, represents a solution in
which the final aircraft of node i1 arrives at time t1, that
of node i2 arrives at time t2, and so on. We refer to this
network as the discrete-time CPS network.

Lemma 4. A schedule that is feasible (to CPS constraints,
precedence requirements, time-window restrictions, and
separation requirements that satisfy the triangle inequality)
exists if and only if there exists a source-sink path in the
discrete-time modified network.

The proof is omitted here because the more general case
of when the separations may violate the triangle inequality
is proved in §6.2.
As a consequence of the above lemma, the problem can

be solved as a shortest-path problem on the network with
appropriately weighted arcs. Each arc entering node �i� t�
is weighted by the cost c�fin�i�� t� of the final aircraft of
node i arriving at time t; all sink-adjacent arcs are assigned
a cost of zero. The length of the shortest path from the
source to node �i� t� equals J ∗�i� t�, and the length of
the shortest path from the source to the sink, assuming
that such a path exists, is the minimum cost solution. The
absence of a source-sink path proves infeasibility of the
problem.

6.1.3. Bounding the Set of Feasible Arrival Times.
Because the computational efficiency of a shortest-path
algorithm is determined by the number of nodes/arcs in the
network, it is critical to be able to bound the total num-
ber of time intervals and the set of feasible times � �i�
for each node. We now briefly describe an approach to
obtaining good bounds in the absence of tight time-window
constraints. From the makespan-minimization algorithm
presented in §4, we can calculate for each node the earliest
time that the final aircraft of that node can land, which gives
a bound on the set of feasible landing times that is nec-
essarily tighter than e� · � determined by the time-window
constraint. However, obtaining a tighter bound than l� · � on
the latest arrival time is slightly harder.
We first observe that in any optimal solution to the

problem, an aircraft must either land at its earliest time
e� · �, or the separation between an aircraft and its pre-
decessor is upper bounded by the largest required sep-
aration between all pairs of aircraft (denoted by �max).
(Otherwise, because c� · � is positive, a better solution may

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1658 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

be obtained by slightly advancing the aircraft, which con-
tradicts optimality.) Let �i� be the latest time that fin�i�
lands, given that it must land either at e� · � or is separated
by �max from its predecessor. Then, � · � is calculated using
the following recursion.

�j� =max
{
e�j�� max

i∈P�j�
��i� + �max�

}
� (4)

The proof of correctness of this recursion follows from the
fact that �j�� e�j� and �j�� �i�+�max for all i ∈ P�j�,
and one of these inequalities must hold as an equality in
an optimal solution.
The lower and upper bounds obtained above (equivalent

to a shortest- and longest-path calculation on the original
CPS network) are then intersected with the time-window
constraints for each aircraft to obtain � � · �.
6.1.4. Complexity. Let L denote an upper bound on

the number of layers (time intervals) during which an air-
craft may land, which is the maximum cardinality of � �i�
over all nodes i (and is bounded above by l�i� − e�i�).
The number of nodes in the discrete-time network is
O�nL�2k + 1��2k+1��. Each node in this network could have
arcs leading into O�L�2k + 1�� other nodes, because a
node in the original CPS network can lead into up to
2k + 1 nodes, each of which now has up to L copies.
Thus, the number of arcs in the discrete-time network is
O�nL2�2k + 1��2k+2��, which is the complexity of solving
the shortest-path problem on the network. This algorithm
has been shown to be amenable to real-time implementation
in computational experiments conducted by Lee (2008).

6.2. Scenarios in Which the Triangle
Inequality Is Violated

We now describe modifications to the algorithm in order
to handle cases where the triangle inequality is violated
(for instance, this situation occurs when simultaneously
scheduling both arrivals and departures on a single run-
way). The key idea is to expand the state space to keep
track of spacings that may violate triangle inequality.
In the modified network, each node represents a 3-tuple

�i� t� d� corresponding to the final aircraft of node i of the
original CPS network arriving/departing at time t such that
the separation between fin�i� and its predecessor is greater
than or equal to d intervals (this will be made more precise
shortly). Note that the sequence of aircraft in each node
contains at least three aircraft (2k + 1); therefore, the air-
craft immediately preceding fin�i� is not ambiguous (it is
the penultimate aircraft of node i). Nodes in stage 1 rep-
resent the 3-tuple �i� t�0� because they do not have a pre-
decessor aircraft. A schematic description of the modified
network is shown in Figure 4.
A node �i� t� d� exists if:
1. Node i exists in the original CPS network,
2. t ∈� �i�, and
3. dmin

i � d � dmax
i , as computed below.

The parameter dmin
i equals the minimum separation

required between the penultimate and final aircraft of node i
(say, aircraft a and b, respectively). The parameter dmax

i

is defined to be the minimum separation that is required
between a and b in order to ensure that any aircraft that
trails b is sufficiently separated from a as long as the min-
imum separation between b and that aircraft is maintained.
More formally,

dmin
i = �ab

dmax
i =max

{
max

j	 i∈P�j�

{
�a�fin�j� − �b�fin�j�

}
�dmin

i

}
�

Example 1. Given node i in the CPS network with penul-
timate and final aircraft a and b, respectively, let the mini-
mum required separation between a and b be 60 seconds;
then, dmin

i = 60 seconds. Suppose there exists a node j with
final aircraft c such that arc �i� j� exists in the CPS net-
work, and �ac = 135 seconds and �bc = 70 seconds. Then,
the triangle inequality for the triplet of aircraft �a� b� c� is
violated. However, if aircraft a and b were separated by any
interval greater than or equal to 65 seconds, then the min-
imum spacing between a and c is satisfied as long as we
ensure the minimum spacing between b and c. Therefore,
in this case, dmax

i = 65 seconds.

An arc exists between �i� t′�d′� and �j� t′′�d′′� if:
1. Arc �i� j� exists in the original CPS network,
2. �t′′ − t′�� dmin

j ,
3. d′′ =min��t′′ − t′��dmax

j �, and
4. d′ + t′′ − t′ is greater than or equal to the separa-

tion between the penultimate aircraft of i and the final air-
craft of j . (Note that all predecessors of node j have the
same penultimate aircraft because the aircraft subsequence
of node j has at least three aircraft.)
Finally, adding arcs from the source to each node in

stage 1 and from each node in stage n to the sink completes
the network.

Lemma 5. Every source-sink path in the discrete-time
triangle-inequality modified network represents a feasible
schedule (one that satisfies CPS constraints, precedence
requirements, time-window restrictions, and separation
requirements).

Proof. Consider a path defined by a sequence of nodes
�v1� t1�d1�� �v2� t2�d2�� � � � � �vn� tn�dn� and arcs between
successive nodes. By the properties of the CPS network,
the sequence of nodes v1� v2� � � � � vn satisfies CPS and
time-window constraints. Also, by construction of � � · �,
every ti explicitly obeys time-window restrictions. There-
fore, it only remains to be shown that minimum separations
are satisfied in any source-sink path.
The separation between fin�vi� and fin�vi+1� is satisfied

because an arc from node �vi� ti� di� to �vi+1� ti+1�di+1�
exists only if �ti+1 − ti� � dmin

vi+1
= �vi

�vi+1�. We now show

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1659

Figure 4. Discrete-time CPS network when the triangle inequality is violated.

Source

Sink

Layer t ′

Layer t″

(i, t ′, d ′) (i, t ′, dmax)

(i, t ′, dmin)

(j, t ″, dmin)

(j, t ″, d ″)

i

i

(j, t ″, dmax)j

j

that the separation between fin�vi−1� and fin�vi+1� is satis-
fied. By construction,

di + ti+1 − ti � �fin�vi−1��fin�vi+1�
� (5)

Because di =min�ti − ti−1�dmax
vi

� (also by construction), we
get di � ti − ti−1. Substituting this back into Equation (5)
gives ti+1 − ti−1 � �fin�vi−1��fin�vi+1�

, which is feasible. �

Lemma 6. An optimal schedule (one that minimizes the
sum of positive separable costs for each aircraft subject
to CPS constraints, precedence requirements, time-window
restrictions, and separation requirements that may violate
the triangle inequality) is represented by a source-sink path
in the discrete-time triangle-inequality modified network.

Proof. Let an optimal solution to the problem be repre-
sented by the set of pairs ��i1� t1�� �i2� t2�� � � � � �in−1� tn−1��
�in� tn��, where �iq� tq� represents aircraft iq arriv-
ing/departing at time tq . Due to earlier proved properties of
the basic CPS network (in §3), there exists a unique path in
the original CPS network corresponding to this sequence.
Let the sequence of nodes be denoted by v1� v2� � � � � vn

belonging to stage 1 through n, respectively.
Because the given solution is optimal, each aircraft lands

either at the earliest time, or its separation from the previ-
ous aircraft is lower bounded by the minimum separation
between the aircraft pair and upper bounded by the max-
imum separation between all aircraft pairs (otherwise, it
is possible to reduce the solution cost by moving the air-
craft ahead by one time interval). Thus, the given arrival
time tq must belong to the interval � �vq� as computed in
§6.1.3, and there exists at least one copy of node vq in
layer tq . Because �tq − tq−1� � dmin

vq
, each aircraft can be

assigned to a node �vq� tq� dq�, where dq � dmin
vq

and dq =
min��tq − tq−1��dmax

vq
�.

To complete the proof, we use an inductive argument to
show that there exist arcs between these nodes, forming

a source-sink path in the discrete-time triangle-inequality
modified network. Consider three nodes �vq−1� tq−1� dq−1�,
�vq� tq� dq�, and �vq+1� tq+1� dq+1� corresponding to arrival
events �iq−1� tq−1�, �iq� tq�, and �iq+1� tq+1�, respectively.
We show that if an arc exists between �vq−1� tq−1� dq−1�
and �vq� tq� dq�, then the nodes �vq� tq� dq� and �vq+1� tq+1�
dq+1� satisfy the four requirements for an arc to exist
between them.
1. The arc �vq� vq+1� exists in the original CPS net-

work because the nodes were chosen such that they form a
source-sink path.
2. �tq+1 − tq� � dmin

vq+1
holds true because �tq+1 − tq� �

�vq
�vq+1� = dmin

vq+1
.

3. dq+1 =min��tq+1 − tq��dmax
vq+1

� by construction.
4. We need to prove that dq + tq+1 − tq � �iq−1� iq+1

.
Because there exists an arc between �vq−1� tq−1�dq−1� and
�vq� tq� dq�, dq =min��tq − tq−1��dmax

vq
�. There are two pos-

sible cases:
Case 1. dq = �tq − tq−1�. In this case,

dq + tq+1 − tq = tq − tq−1 + tq+1 − tq

= tq+1 − tq−1 (due to solution feasibility)

� �iq−1� iq+1
�

Case 2. dq = dmax
vq

. In this case,

dq +tq+1−tq

=dmax
vq

+tq+1−tq

��iq−1� iq+1
−�iq� iq+1

+tq+1−tq (by definition of dmax)

��iq−1� iq+1
−�iq� iq+1

+�iq� iq+1
(due to solution feasibility)

=�iq−1� iq+1
�

The arc from �v1� t1�d1� to �v2� t2�d2�, i.e., an arc
from stages 1 to 2, satisfies the first three requirements

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1660 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

by construction and therefore exists in the network. By
induction, this implies that all arcs from �vq� tq� dq� and
�vq+1� tq+1�dq+1� for q ∈ �2� � � � � �n−1�� exist. Because all
source-adjacent and sink-adjacent arcs exist by construc-
tion, we have identified a sequence of nodes and arcs form-
ing a source-sink path in the network that represents the
given optimal solution. �

Lemmas 5 and 6 together imply that minimizing the
schedule cost over all paths in the constructed network will
yield an optimal schedule. The problem can be solved as a
shortest-path computation by weighting the arcs of the net-
work as follows: each arc entering node �i� t� d� is assigned
a cost c�i� t�, and arcs to the sink are assigned zero cost.

6.3. Complexity

The discrete-time triangle-inequality modified network has
O�n�2k + 1��2k+1�L�max� nodes, where L is the maximum
cardinality of � �i� over all nodes i (which is bounded by
�l�i�− e�i��, and �max is the maximum violation of the tri-
angle inequality, which is bounded by the largest minimum
separation among all pairs of aircraft. Each node �v� t�d�
can lead into up to �2k+1�L other nodes �v′� t′�d′� because
v has at most 2k + 1 successors, and there are up to L
values of t′. (Note that the number of values of d′ does
not enter the complexity because d′ is defined by the val-
ues of t and t′.) Thus, the complexity of the algorithm is
O�nL2�max�2k + 1��2k+2��. Thus, accommodating the trian-
gle inequality only adds a complexity of �max to an equiv-
alent problem in which the separation requirements obey
the triangle inequality.

Remark 1. If the triangle inequality is obeyed, then dmin
i =

dmax
i = �ab. In this case, the modified network (Figure 4) is

equivalent to the discrete-time CPS network when the trian-
gle inequality is satisfied (Figure 3). The proof of Lemma 5
therefore also proves Lemma 4.

7. Simultaneous Scheduling of
Departures and Arrivals

We now consider the scheduling problem when arrivals and
departures share a common runway. The separation require-
ments between arrival and departure aircraft are shown in
Table 1. The triangle inequality is violated only in the
following cases: (i) heavy arrival, followed by any depar-
ture, followed by large arrival (violated by 22 seconds) and
(ii) heavy arrival, followed by any departure, followed by
small arrival (violated by 61 seconds).
The quadrilateral and all higher polygon inequalities are

valid. One important observation here is that the triangle
inequality is violated only by two arrivals separated by a
departure. The implication is that it is sufficient to ensure
that the triangle inequality is satisfied between pairs of
arrival aircraft in order to ensure that it is satisfied across
the entire sequence, a property that will be exploited in one
of our algorithms.

7.1. Coupled Arrivals and Departure
Position Constraints

The first possible scenario for scheduling mixed operations
on a single runway is that the FCFS sequence consists of
both arrival and departure aircraft, and every aircraft has a
CPS constraint with respect to its FCFS sequence position.
The challenge here is that the triangle inequality is violated
when departures and arrivals interact.
Following the algorithm described in §6.2, the prob-

lem can be solved with a complexity of O�nL2�max

�2k + 1��2k+2��. In this case, �max is 61 seconds (divided
by an appropriate time discretization, if applicable). Fur-
ther, because only six triplets of aircraft out of a possi-
ble 216 can lead to violations of the triangle-inequality,
we expect that only a small fraction of nodes will require
the triangle-inequality modification, leading to significantly
reduced complexity in practice (the exact reduction in com-
plexity depends on the specific instance being solved).

7.2. Optimal Merging of Arrivals and Departures
on a Single Runway with Independent
Position Shift Constraints

In this section, we study a more realistic scenario of arrival-
departure trade-offs on a single runway that is fed by
several departure queues (each following FCFS) and one
arrival stream (with CPS constraints). This is a good rep-
resentation of current airport operations, in which aircraft
queue up for takeoff in staging areas at the departure run-
way threshold. Due to the narrow layout of the taxiways,
aircraft within the same departure queue cannot overtake
each other, but position swaps can occur between aircraft
in different departure queues.
Arrivals are constrained as before by CPS, prece-

dence, and time-window constraints. Because departures
are already in their respective queues, it is not necessary
to consider earliest time restrictions for the departures. In
addition, we do not consider latest time restrictions on
departures either, thereby giving arrivals greater priority
than departures (which can be delayed indefinitely in order
to accommodate arrivals with latest time constraints). The
departure queues are coupled via position constraints (for
example, aircraft a must be between the 10th and 15th air-
craft to depart) as well as precedence constraints (for exam-
ple, aircraft a in the first queue must depart before aircraft
b in the second queue).
The problem can be stated as follows: Given an

arrival sequence of nA aircaft with an associated FCFS
sequence, nD departure aircraft over q queues, each hav-
ing nD

1 � nD
2 � � � � � nD

q aircraft, position constraints for each
departure aircraft, position shift constraints for the arrivals
(with maximum position shift k), precedence constraints
between pairs of arriving aircraft or pairs of departing
aircraft, time-window restrictions on arriving aircraft, and
separation requirements listed in Table 1, find a sched-
ule (sequence of aircraft and associated runway operation

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1661

Table 3. Notation used in the algorithm for merging
departure queues with an arrival stream.

x The vector �x1� x2� � � � � xq� representing the number
of aircraft that have departed from each departure
queue, i.e., x1 from the first queue, x2 from the
second, etc.

x � r State of the departure queues given that the last
departure was from the r th queue.

�i�j� Minimum separation between the final aircraft of
nodes i (leading) and j (trailing).

�rs�x�y� The minimum possible makespan of a sequence of
departures starting from departure state x � r and
ending in departure state y � s.

�i�x � r� The minimum required separation between the final
aircraft of node i and the xr th aircraft of the r th
queue (leading and trailing, respectively).

�x � r �i� The minimum required separation between the xr th
aircraft of the r th queue and the final aircraft of
node i (leading and trailing, respectively).

times) that minimizes the makespan while satisfying all the
listed constraints.
The following section describes a strongly polynomial

algorithm to solve this problem.

7.2.1. Algorithm Description. For simplicity of
description, we introduce a dummy arrival aircraft that is
preceded by all aircraft in the system (we will describe
later how this is enforced). The separation between the
dummy aircraft and any other aircraft is then set to zero,
forcing the makespan of the solution with the dummy
aircraft to equal that of the original problem.
The notation we use to describe our algorithm is listed

in Table 3.
Calculating the makespan of departure subsequences.

We pose the problem of finding the values of �rs�x�y� as a
shortest-path problem on a network shown in Figure 5. The
network has a “state” node for every possible value of x � r ;
an arc exists from state node x � r to x′ � s if xi = x′

i for all

Figure 5. Shortest-path network for computing the makespan of departure subsequences.

Departure queue s

(x1, . . . , xr, . . . , xs, . . . , xq)

(x1, . . . , xr+1, . . . , xs, . . . , xq)

(x1, . . . , xr, . . . , xs+1, . . . , xq)

(nD
1, nD

2 , . . . , nD
q) (nD

1, nD
2 , . . . , nD

q)

(0, . . . , 1, . . . , 0, . . . 0)

Departure queue r

(0, . . . , 0, . . . , 1, . . . 0)

(x1, . . . , xr–1, . . . , xs, . . . , xq)

(x1, . . . , xr, . . . , xs, . . . , xq)

(x1, . . . , xr+1, . . . , xs, . . . , xq)

(x1, . . . , xr, . . . , xs+1, . . . , xq)

(x1, . . . , xr–1, . . . , xs, . . . , xq)

i
= s and x′
s = xs +1, i.e., if state x′ is reached from state x

by one departure from queue s. The arc from x � r to x′ � s
is assigned a “distance” equal to the minimum separation
required when the xr th aircraft of queue r is followed by
the xs’th aircraft of queue s.
Nodes that violate the position constraints or the prece-

dence constraints are then removed from the network.

Example 2. If the fifth aircraft in queue r must be within
the first 10 departures, the constraint is imposed by remov-
ing all nodes x in which x1 +x2 +· · ·+xq > 10 and xr < 5.

Example 3. If the fourth aircraft in the r th queue must
depart before the sixth aircraft in the sth queue, the con-
straint is imposed by removing all nodes x in which xr < 4
and xs � 6. This network is referred to as the departure
position-constrained network.

Proposition 4. The makespan �rs�x�y� is given by the
shortest-path distance from node x � r and ending in state
y � s in the departure-position constrained network.

The proof follows from the fact that all feasible states
and transitions between states of the departure queue
are explicitly enumerated; therefore, every path represents
a feasible sequence of departures. Because the triangle
inequality is not violated and departures have no earli-
est/latest time constraints, the makespan is the sum of min-
imum separations between successive departures.
Calculating the makespan of combined arrivals and

departures. We construct a CPS network for the arrival
sequence that satisfies CPS and precedence constraints for
the arrival stream as described in §3. We then associate
each node i in the network with the function Ji�x�, denot-
ing the arrival time of the final aircraft of node i given that
it is immediately preceded by a departure operation and the
departure queue is in state x at the time of arrival. Finally, a
dummy node is created (with the dummy aircraft as its final
aircraft) that is preceded by all nodes in stage nA of the
arrival CPS network. The dummy node is associated with

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1662 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

the state �nD
1 � nD

2 � � � � � nD
q �, corresponding to all departures

having occurred before the dummy aircraft’s arrival.
Let J ∗

i �x� denote the minimum value of Ji�x� over
all feasible paths ending in node i given that the
departure queues are in state x. We wish to minimize
J ∗

i �nD
1 � nD

2 � � � � � nD
q �, where i is the last (dummy) node in

the CPS network.
Given two nodes i and j such that the final aircraft of

node i lands when the departure queue is in state x and
that of node j lands when the departure queue state is y,
and the final aircraft of nodes i and j are separated in the
runway sequence only by departing aircraft, we denote the
minimum separation required between the final aircraft of
nodes i and j by �ij�x�y�. There are three components to
this separation:
1. the separation between the final aircraft of node i and

the first departure after state x, or �i�x
′ � r�, where x′ � r

is obtained from state x by one additional departure from
queue r ;
2. the separation between the last aircraft to depart (say,

from queue s) given state y and the final aircraft of node j ,
or �y � s�j�;
3. the separations between departures starting at state

x′ � r and ending at state y � s, or �rs�x
′�y�.

The value of �ij�x�y� is calculated by minimizing over
all values of r� s. As noted earlier, the separations in Table 1
are such that the triangle inequality is violated only by
two arrival aircraft separated by a departure aircraft. There-
fore, given �i�j� (the separation between the final aircraft
of nodes i and j), �ij�x�y� can be corrected for triangle
inequality violations and is calculated as follows.

�ij�x�y�

=max

{
�i�j�� min

r�s∈�1�����q�
x′

t=xt ∀t
=r
x′

r =xr +1

�i�x
′ �r�+�rs�x

′�y�+�y�s�j�

}
� (6)

Lemma 7. The values of J ∗� · � are calculated by the fol-
lowing recursion

J ∗
j �y� =max

{
e�j�� min

i∈P�j�
0�x<y	 J ∗

i �x��l�i�

�J ∗
i �x� + �ij�x�y��

}
�

The proof of this recursion is omitted here because it is
very similar to the proof of Lemma 3: J ∗

j �y� must exceed
e�j� (due to time-window constraints) as well as the mini-
mum value of J ∗

i �x�+�ij�x�y� (due to minimum separation
requirements), and one of these inequalities must hold as
an equality due to optimality.
Applying the boundary condition to all nodes in stage 1,

J ∗
i �x� = min

r� s∈�1� ��� � q�
�rs�0�x�� (7)

and unrolling the recursion to compute J ∗� · � for the
last dummy aircraft with the departure queue state x =
�nD

1 � nD
2 � � � � � nD

q � yields the minimum makespan solution.

7.2.2. Complexity.

Lemma 8. The complexity of the proposed algorithm for
optimally merging arrivals and departures on a single run-
way with independent position shift constraints to minimize
the makespan is O���2q5 +nA�2k+1��2k+2���1+nD/q�2q�.

Calculating the values of � and � : The number of
departure queue states is �1 + nD

1 � × �1 + nD
2 � × · · · ×

�1+ nD
q �, which is O��1+ nD/q�q�. The number of depar-

ture queue nodes is therefore O�q�1 + nD/q�q�. Because
each node can lead to up to q nodes, corresponding to
one additional departure from each queue, the number of
arcs is O�q2�1+ nD/q�q�. The complexity of computing
the shortest path from a given node to all other nodes in
a directed acyclic graph equals the number of arcs in the
network (Cormen et al. 1990, p. 536). Therefore, the com-
plexity of computing all values of �ab�x�y� is the num-
ber of arcs multiplied by the number of nodes, which is
O�q3�1+ nD/q�2q�.
In order to determine the values of �ij�x�y� for all pairs

of nodes i and j , it is sufficient to compute it for every pair
of arriving aircraft types corresponding to nodes i and j and
is not necessary for all pairs of nodes. Given the number
of arrival aircraft types �, the work done to compute � is
O��2q2� times the work to calculate �. Thus, the complex-
ity of calculating all values of � is O��2q5�1+ nD/q�2q�.

Calculating the values of J ∗� · �: The number of nodes
in the CPS network is O�nA�2k + 1��2k+1��. Because there
are O��1+ nD/q�q� possible states of the departure queue,
the number of values of J ∗ that need to be computed
is O��2k + 1��2k+1��1 + nD/q�q�. Each computation of J ∗

is performed over O�2k + 1� predecessor nodes and over
O��1+nD/q�q� preceding departure queue states, which is
O��2k+1��1+nD/q�q� times. Thus, the complexity of the
recursion is O�nA�2k + 1��2k+2��1+ nD/q�2q�.
Thus, the complexity of the entire algorithm (required to

calculate both J ∗ and �) is O���2q5 + nA�2k + 1��2k+2�� ·
�1+ nD/q�2q�. �

Although it is possible to extend our algorithm to other
objectives (such as minimizing average delay) using time
discretization, the resulting algorithms are unlikely to be
computationally tractable due to the increased complexity.

7.3. Scheduling Operations on Multiple Runways

The problem of scheduling operations on multiple runways
is more complex, because it depends greatly on the layout
of the airport and the relative orientation and geometry
of the runways. For example, depending on the distance
between the centerlines, operations on parallel runways
may or may not need to be coordinated. In the case of
runways with sufficient separation, runway assignments are
made based on the location of the gates, departure fixes,
taxi routes, or the length of runway required by an air-
craft, etc. Any realistic runway assignment algorithm must
take into account factors like airline gate use agreements,

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1663

departure fix assignments, missed approach paths, and taxi
routes, and is beyond the scope of this paper.
Many space-constrained airports operate in practice as

single-runway airports (depending on maintenance sched-
ules or wind direction). In addition, when the runway cen-
terlines are closely spaced, interarrival separations between
the two runways are effectively equal to the single-runway
separation requirements, reducing the problem of schedul-
ing operations (with runway assignments) to that of single-
runway scheduling (de Neufville and Odoni 2003, Lee
2008). For the intermediate separations between parallel
runways, and for intersecting runways, separation require-
ments vary depending on the airport and the country. It is
therefore difficult to draw any general conclusions; how-
ever, if the separation requirements satisfy the quadrilateral
inequality, the approaches proposed in this paper can be
used for scheduling operations on multiple runways.

8. A Prototype Implementation
This section presents a proof-of-concept implementation,
describes its performance on various realistic scenarios,
and provides some insight into the nature of the minimum
makespan solution.

8.1. Experimental Design

The Denver ARTCC airspace is shown in Figure 6 (left),
with the jet routes that carry arrival traffic. Arrivals at DEN
are routed through one of eight arrival gates into the Den-
ver TRACON airspace (a 42 nmi radius around the airport).
We consider a scenario in which all traffic from the NE
and NW gates land on a single runway, and we wish to
minimize the makespan of the arrival sequence. The num-
ber of aircraft arriving through each of the gates was based
on the historical fraction of traffic through the different
gates (Bureau of Transportation Statistics 2007). We used

Figure 6. [Left] Denver airspace, showing jet routes and arrival gates. [Right] Jet route traversal times and percentage
of traffic for northern arrivals (Neuman and Erzberger 1991).

DEN J136

J170

J157

J114 J010

J060

J024

J154

J020

J017

J171

J015
J161J044

J064

J058

J110

J012

J024

J056 J163

J10

LANDR
LARKS
POWDR
QUAIL
RAMMS
SAYGE
TOMSN

DANDD

Jet route no. Time within ZDV Gates

J136 42.30 TOMSN NW Gates (45% of traffic)
J056 45.45 TOMSN
J170 45.00 RAMMS
J024 47.78 TOMSN
J136 45.00 RAMMS

J114 41.43 LANDR NE Gates (55% of traffic)
J010 45.00 SAYGE
J157 45.00 LANDR
J060 45.00 SATGE

a Poisson arrival process to generate the sequence of times
at which aircraft enter the Denver Air Route Traffic Con-
trol Center (ZDV); this assumption has been validated by
Willemain et al. (2004), who showed that the interarrival
times at airports before the final control actions are exe-
cuted are nearly Poisson. Given the times that aircraft enter
ZDV, it is possible to compute the FCFS order of arrivals
at the runway and the estimated times of arrival (ETAs) at
the airport by using the average time spent by aircraft on
the different jet routes. This data is shown for the northern
arrivals in Figure 6 (right).
For each of the directions of arrival, we divided the

traffic equally among all the corresponding jet routes. As
described in Neuman and Erzberger (1991), it is neces-
sary to maintain FCFS order among aircraft in the same jet
route. Therefore, we used the jet routes to determine the
landing precedence relationships. We set the earliest arrival
time at one minute less than the ETA, because it is often not
economically worthwhile to move the landing time forward
by more than a minute (Neuman and Erzberger 1991). We
set the latest possible arrival time at 60 minutes after the
ETA, implying that we would not put an aircraft on hold
for more than an hour.
Because the extent of the benefit of resequencing air-

craft would depend on the relative fractions of different
sizes of aircraft, we considered two mixes of aircraft types:
one a 40% heavy, 40% large, and 20% small mix, and the
other a 45% heavy, 45% large, and 10% small mix of air-
craft, which are practical because most major airports are
likely to have more heavy and large aircraft operations than
small ones.
The data for a single instance of our experiment was thus

constructed as described in Table 4.
Given an FCFS sequence with precedence and mini-

mum spacing requirements, we applied our algorithm to
minimize the makespan of the sequence and measured

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
1664 Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS

Table 4. Method for construction of a problem instance
in our experiments.

Step 1. Choose values for n ∈ �10�20�30�40� or 50�,
k ∈ �1�2�3�, and r ∈ �24�40�60�.

Step 2. Construct a sequence of n arrival times at the
boundary of ZDV with exponentially distributed
interarrival times with mean 1/r .

Step 3. Assign a jet route to each aircraft based on the
fraction of traffic on each jet route.

Step 4. Construct the precedence relationships among
aircraft within the same jet route.

Step 5. Compute the ETA for each aircraft using transit time
within ZDV, and construct the FCFS sequence.

Step 6. Assign an earliest arrival time of ETA minus
1 minute, and a latest arrival time of ETA plus
60 minutes to each aircraft.

Step 7. Assign an aircraft type to each aircraft based on the
fleet mix (using either 40% Heavy, 40% Large,
and 20% Small, or 45% Heavy, 45% Large, and
10% Small), and use this to determine the required
spacing between the aircraft.

the difference between the FCFS makespan and the CPS
makespan. We performed Monte Carlo simulations for vari-
ous values of n, k, and r , the results of which are presented
in the next section.

8.2. Results

The improvement in makespan of the optimal CPS
sequence over that of the FCFS sequence is shown in
Figure 7. Each data point in the figure is an average of 100
randomly generated instances.
The experiments demonstrate that there is greater ben-

efit to rescheduling when the fleet mix is more homoge-
neous (40% heavy, 40% large, and 20% small). Also, the
benefit to using CPS is greater when the arrival rate is
greater (under lower arrival rates, the gaps in the FCFS
sequence are difficult to fill up because we allow an aircraft

Figure 7. Percentage improvement in makespan using CPS over FCFS when fleet mix is [left] 40% heavy, 40% large,
20% small, and [right] 45% heavy, 45% large, 10% small.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 20 30 40 50

(F
C

FS
-C

PS
)/

FC
FS

Number of aircraft

Mix: 40% Heavy, 40% Large, 20% Small

Rate = 20 aircraft/hr, k = 1
Rate = 20 aircraft/hr, k = 2
Rate = 20 aircraft/hr, k = 3
Rate = 40 aircraft/hr, k = 1
Rate = 40 aircraft/hr, k = 2
Rate = 40 aircraft/hr, k = 3
Rate = 60 aircraft/hr, k = 1
Rate = 60 aircraft/hr, k = 2
Rate = 60 aircraft/hr, k = 3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 20 30 40 50

(F
C

FS
-C

PS
)/

FC
FS

Number of aircraft

Mix: 45% Heavy, 45% Large, 10% Small

to advance up to a minute ahead of the ETA). Finally, the
experiments show that at rates of 40 aircraft per hour, which
are achieved at most major airports during peak demand,
the benefit to rescheduling can be around 5% of the FCFS
makespan (or three minutes saved over a one-hour period,
equivalent to a throughput increase of two to three air-
craft per hour), which is significant in today’s operating
environment.
We next study the effect of minimizing makespan on the

average delay, because it is conceivable that makespan is
minimized at the cost of total system delay, which would
not be a desirable outcome. Figure 8 shows the depen-
dence of gain in average delay over the gain in makespan.
Each data point is one instance of a scenario (10, 20, 30,
40, or 50 aircraft; an arrival rate of 20, 40, or 60 aircraft
per hour; and a fleet mix of 40% heavy, 40% large, and
20% small, or 45% heavy, 45% large, and 10% small).
The x-axis (makespan gain) is the difference between the
makespan of the FCFS sequence and the makespan of the
CPS sequence; the y-axis is the difference in average delay
per aircraft between the FCFS sequence and that of the
optimal makespan CPS sequence. The main observation is
that a decrease in makespan is usually (and perhaps not
surprisingly) accompanied by a decrease in average delay,
which is a desirable by-product of the algorithm.
The run times of our algorithm are shown in Figure 8

(right), each data point being the average over 600 instances
(100 instances each of three different arrival rates and two
fleet mixes). The program was written in C and was run on
a PC with a 2 GHz processor and 2 GB RAM.

9. Conclusion
We have developed a unified framework for runway
scheduling under constrained position shifting and demon-
strated that the problems of enhancing throughput, decreas-
ing delay, and ensuring fairness can be effectively modeled

Balakrishnan and Chandran: Algorithms for Scheduling Runway Operations Under CPS
Operations Research 58(6), pp. 1650–1665, © 2010 INFORMS 1665

Figure 8. [Left] Comparison of gain in seconds of CPS over FCFS for average delay per aircraft vs. makespan in
optimal makespan solution. [Right] Run times (sec.) for different values of n and k.

n k = 1 k = 2 k = 3

10 <0.001 0.001 0.017
20 <0.001 0.004 0.236
30 <0.001 0.006 0.449
40 <0.001 0.009 0.698
50 <0.001 0.012 0.914

and solved in polynomial time (linearly in the number of
aircraft) while accounting for most operational constraints.
We also extended the framework to include more general
cost functions (by using discrete-time models) and to mixed
arrival and departure operations, including the merging of
multiple departure queues. The algorithms can be easily
implemented, and a prototype implementation for arrival
scheduling demonstrates that the run times are sufficiently
small to enable real-time deployment.

Acknowledgments
This research was supported by NSF contract ECCS-
0745237 and NASA contracts NNA06CN24A and
R8771-G1. The authors thank the anonymous reviewers for
their insightful comments.

References
Anagnostakis, I., J.-P. Clarke, D. Böhme, U. Völckers. 2001. Run-

way operations planning and control: Sequencing and scheduling.
J. Aircraft 38(6) 988–996.

Anagnostakis, I., H. R. Idris, J.-P. Clarke, E. Feron, R. J. Hansman,
A. R. Odoni, W. D. Hall. 2000. A conceptual design of a departure
planner decision aid. 3rd USA/Europe ATM R&D Seminar, Naples,
Italy.

Arkind, K. D. 2004. Requirements for a novel terminal area capacity
enhancement concept in 2022. American Institute of Aeronautics
and Astronautics, Guidance, Navigation and Control Conf. Exhibit,
Providence, RI. American Institute of Aeronautics and Astronautics,
Reston, VA.

Atkins, S., C. Brinton. 2002. Concept description and development plan
for the surface management system. J. Air Traffic Control 44(1).

Beasley, J. E., M. Krishnamoorthy, Y. M. Sharaiha, D. Abramson. 2000.
Scheduling aircraft landings—The static case. Transportation Sci.
34(2) 180–197.

Boehme, D. 1994. Improved airport surface traffic management by plan-
ning. H. Winter, H.-G. Nüsser, eds. Advanced Technologies for Air
Traffic Flow Management. Lecture Notes in Control and Information
Science 198. Springer, Berlin, 191–224.

Böhme, D. 2005. Tactical departure management with the Eurocon-
trol/DLR DMAN. 6th USA/Europe ATM R&D Seminar, Baltimore.

Bureau of Transportation Statistics. 2007. Accessed August 2008, http://
www.bts.gov.

Carr, F. R. 2004. Robust decision-support tools for airport surface traffic.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Cormen, T. H., C. E. Leiserson, R. L. Rivest. 1990. Introduction to Algo-
rithms. MIT Press—McGraw-Hill, Cambridge, MA, 536.

de Neufville, R., A. R. Odoni. 2003. Airport Systems: Planning, Design
and Management. McGraw-Hill, New York.

Dear, R. G. 1976. The dynamic scheduling of aircraft in the near termi-
nal area. MIT Flight Transportation Laboratory Report R76-9, Mas-
sachusetts Institute of Technology, Cambridge.

Dear, R. G., Y. S. Sherif. 1991. An algorithm for computer assisted
sequencing and scheduling of terminal area operations. Transporta-
tion Res., Part A, Policy Practice 25(2–3) 129–139.

Federal Aviation Administration. 2004. Airport capacity benchmark
report. http://www.faa.gov/about/office_org/headquarters_offices/ato/
publications/bench.

Federal Aviation Administration. 2006. Air traffic control: Order
7110.65P. Incl. Change 1, effective 8/3/06. Accessed October 2006,
http://www.faa.gov/air_traffic/publications/atpubs/atc/.

Federal Aviation Administration. 2009. Accessed October 2009, http://
aspm.faa.gov/main/opsnet.asp.

Idris, H. R., B. Delcaire, I. Anagnostakis, W. D. Hall, N. Pujet, E. Feron,
R. J. Hansman, J.-P. Clarke, A. R. Odoni. 1998. Identification of flow
constraint and control points in departure operations at airport sys-
tems. American Institute of Aeronautics and Astronautics, Guidance,
Navigation and Control Conf., Boston, AIAA-1998-4291. American
Institute of Aeronautics and Astronautics, Reston, VA.

Lee, H. 2008. Tradeoff evaluation of scheduling algorithms for terminal-
area air traffic control. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA.

Neuman, F., H. Erzberger. 1991. Analysis of delay reducing and fuel sav-
ing sequencing and spacing algorithms for arrival spacing. NASA
technical report A-91203; NAS 1.15:103880; NASA-TM-103880.
Retrieved August 2008, NASA Technical Reports Server (NTRS).

Psaraftis, H. N. 1980. A dynamic programming approach for sequencing
groups of identical jobs. Oper. Res. 28(6) 1347–1359.

Trivizas, D. A. 1998. Optimal scheduling with maximum position shift
(MPS) constraints: A runway scheduling application. J. Navigation
51(2) 250–266.

Willemain, T. R., H. Fan, H. Ma. 2004. Statistical analysis of intervals
between projected airport arrivals. DSES Technical Report 38-04-
510, Rensselaer Polytechnic Institute, Troy, NY.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

