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Abstract–The efficient scheduling of departure runways is an
important part of surface operations planning, with the goal of
increasing the throughput of airports. Departure scheduling is
a complex problem that needs to address the needs of diverse
stakeholders including the airport operators, air traffic control
and the airlines. The challenge lies in optimizing different ob-
jective functions such as maximizing departure throughput, min-
imizing average delay, and ensuring fairness among the airlines,
while simultaneously enforcing wake-vortex separation minima,
safely accommodating active runway crossings by arrival air-
craft, and complying with downstream flow constraints imposed
by the terminal airspace, in a dynamic and uncertain environ-
ment. This paper presents a new class of techniques based on
dynamic programming that can determine, in real-time, efficient
departure schedules that satisfy the various upstream and down-
stream constraints imposed on the departure runway system,
thereby providing a valuable asset to departure management.

1 Introduction
The safe and efficient planning of terminal-area oper-

ations, particularly airport surface operations, is essential
for meeting the expected increase in demand in the Next
Generation Air Transportation System (NGATS) with-
out incurring unacceptably large delays. This has mo-
tivated several initiatives, both in the United States and
in Europe, for the enhancement of terminal-area capac-
ities (TACEC [1], TARMAC [2]). An important aspect
of terminal-area operations is the scheduling of departure
operations, which is termed departure management.

The runway system has been identified as the pri-
mary bottleneck in the departure process, primarily be-
cause of the different constraints imposed on runway
operations [3]. These constraints include wake-vortex
separation requirements that fundamentally constrain the
capacity of a runway, the scheduled demand at peak
hours which lead to congestion on the surface and large
taxi times, controller workload constraints, active run-
way crossings, and flow restrictions in the airspace down-
stream of the runway. These downstream flow restric-
tions are used by air traffic controllers to merge differ-
ent streams of aircraft through metering at departure fixes,
and also by traffic management initiatives such as Ground

Delay Programs (GDPs) at destination airports. Down-
stream constraints must be considered while scheduling
departures since they represent the critical interface be-
tween the airspace and the airportal systems. Such con-
straints gain further importance in super-density multi-
airport terminal-areas, where operations at airports that
share departure fixes are coupled through downstream
constraints on the departure runways [4].

The terminal-area is a dynamic and uncertain environ-
ment, with constant updates to aircraft states being ob-
tained from surveillance systems and airline reports [5].
The dynamic nature of the terminal-area necessitates the
development of scheduling algorithms that are computa-
tionally efficient, and therefore amenable to replanning
when new events occur or new data updates are obtained.
The challenge of departure scheduling lies in simultane-
ously achieving safety, efficiency, and equity, which are
often competing objectives [6, 7, 8], and doing so in a rea-
sonable amount of time. While there is broad consensus
on what constitutes safety (wake-vortex avoidance, down-
stream metering constraints), efficiency (high throughput,
low average delay), and equity (limited deviation from the
nominal order), as well as decades of research, no solution
approach has been able to adequately model and optimally
solve the departure planning problem in a computationally
tractable manner. One reason for this computational hur-
dle is that most runway scheduling models are, from a the-
oretical perspective, inherently hard to solve [9]. Conse-
quently, most practical implementations resort to heuristic
or approximate approaches that produce “good” solutions
in a short time [6, 10, 11]. The difficulty in solving these
scheduling models arises primarily because the solution
space allows for the optimal sequence to deviate arbitrar-
ily from the nominal sequence.

However, Dear [12] recognized that, in the short term, it
is often unrealistic to allow large deviations from the nom-
inal sequence for two reasons: (i) the system may afford
controllers limited flexibility in reordering aircraft, and
(ii) large deviations from a nominal or “priority” sched-
ule may be unacceptable to airlines from a fairness stand-
point. This observation led to the Constrained Position
Shifting (CPS) framework for scheduling aircraft, which
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stipulates that an aircraft may be moved up to a speci-
fied maximum number of positions from its FCFS order.
For example, if the maximum position shift allowed were
2, an aircraft that is in the 8th position in the FCFS or-
der can be placed at the 6th, 7th, 8th, 9th, or 10th position
in the new order. Several researchers in both the United
States and Europe have since used CPS to model fairness,
and worked toward developing fast solution techniques
for scheduling within the CPS framework [13, 14, 7].
While some variants of CPS were shown to be solvable
in polynomial time [15, 16], they were unable to handle
all the operational constraints that arise in practice [17].
More importantly, these methods lack a unifying theory
that allows their results to generalize to other interesting
scheduling problems under CPS, even resulting in a con-
jecture that in general, scheduling under CPS may have
exponential complexity [7].

This paper presents an overview of new breakthroughs
in techniques for solving departure scheduling problems
within the CPS framework, while accounting for various
operational constraints. We propose efficient (polynomial
time) algorithms for several variants of the problem in-
cluding balancing departure runway operations and de-
parture scheduling in the presence of active runway cross-
ings. We then extend these ideas to develop algorithms
that generate schedules that are robust to system uncer-
tainties, and can quantify the tradeoff between efficiency
and robustness. We describe a prototype implementation
which demonstrates that these algorithms are fast enough
to be used for real-time departure management.

2 Problem definition
The objective of departure scheduling is to help con-

trollers determine effective departure sequences and the
optimal take-off times. The optimal or efficient depar-
ture schedule is one that optimizes one of several possi-
ble objectives, the most important of which are the run-
way throughput and the average delay incurred by depart-
ing aircraft. Other objectives include ensuring equity in
the departure sequence, and incorporating airline prefer-
ences. Departure runway operations need to be optimized
while accommodating the various constraints imposed on
the system, such as spacing and sequencing requirements,
simultaneous runway operations, and downstream flow
constraints such as traffic management initiatives.

2.1 Minimum spacing requirements
An aircraft faces the risk of instability if it interacts

with the wake-vortex of the aircraft taking off in front
of it. To prevent this, the The Federal Aviation Admin-
istration (FAA) mandates minimum spacing requirements
between departing aircraft, which depends on the size of

the leading and trailing aircraft. We define the minimum
time-separation matrix by∆, where the elementδab is the
minimum required time between takeoffs, if the leading
aircraft belongs to classa, and the trailing aircraft belongs
to classb.

The FAA divides aircraft into three weight classes
(Heavy, Large and Small) based on the maximum takeoff
weight capacity [18]. The Boeing 757 is treated similar
to a Heavy for wake avoidance. Unlike arrivals, where
wake vortex separation is the responsibility of the air traf-
fic control only during IFR operations, increased sepa-
ration is mandated for departure scheduling during both
VFR and IFR operations. These separation requirements
can be used to determine the minimum time required be-
tween consecutive departures [14]. The matrix of mini-
mum time separations (for departures on a single runway)
is given in Table 1.

Trailing Aircraft

Leading Aircraft Heavy/B757 Large/Small
Heavy/B757 90 120
Large/Small 60 60

Table 1: Minimum separation (in seconds) between de-
partures [14].

The departure runway schedule must also be capable of
satisfying downstream separation requirements, such as
Miles-in-Trail (MIT) or Minutes-in-Trail (MINIT) con-
straints at the departure fixes. For example, a particu-
lar departure fix may require a spacing of 20 nm, which
would impose separation requirements between two (non-
consecutive) departures which are assigned to that fix.

Separation constraints can be further classified assuc-
cessiveandcompleteconstraints [9]. Successive separa-
tions constraints are those which are imposed between
consecutive operations at the runway. In contrast, com-
plete constraints are constraints between non-consecutive
operations at the runway. Typically, downstream metering
constraints are imposed on aircraft assigned to the same
departure fix, or same destination, which may not corre-
spond to consecutive runway operations.

We note that the wake vortex separation requirements,
shown in Table 1, satisfy thetriangle inequality, that is

δik ≤ δi j + δ jk, ∀i, ∀k 6= i, ∀ j 6= i,k. (1)

In contrast, the separation constraints imposed by
downstream requirements need not necessarily satisfy the
triangle inequality. For example, typical MIT spacings re-
quire inter-departure separations of 5 nm, while a traffic
management initiative at one of the departure fixes might
enforce a 20 nm spacing. This would imply that there
could be two departure operations between consecutive
aircraft assigned to that fix, that is, the triangle inequality
would not be satisfied. If all separation constraints satisfy
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the triangle inequality, then complete constraints would
be equivalent to successive constraints.

2.2 Time-window constraints
There are also constraints on the possible departure

times of a particular aircraft in the schedule. Constraints
of this form could arise because of acceptable levels of de-
lay for an aircraft on the airport surface, but also because
of downstream traffic flow management. Time-window
constraints can be used to represent constraints such as
the Departure Sequencing Program (DSP), Expected De-
parture Clearance Times (EDCTs) which are used as part
of Ground Delay Programs (GDPs) at destination airports,
Approval Request (APREQ) procedures [7]. These time-
windows could be quite restrictive, about 3 min for a
DSP [7] and about 10 min for EDCTs [19]. These con-
straints impose an earliest and a latest time of departure
for the aircraft. The proposed approach can also handle
situations in which an aircraft’s scheduled departure time
could be in one of a number of disjoint time intervals.

2.3 Fairness: position shift constraints
Since the airlines are a major stakeholder in the air

transportation system, it is important that an increase in
efficiency is not achieved at the expense of an equitable
allocation of resources. This could happen if an air-
craft that would have had an early departure in the first-
come-first serve (FCFS) sequence is rescheduled to depart
last, thereby incurring a disproportionate amount of de-
lay. CPS ensures some degree of fairness since it does not
allow the final schedule to deviate significantly from the
FCFS schedule. The maximum number of position shifts
allowed under CPS is denotedk, and the resultant sce-
nario is referred to as ak-CPS scenario. There is clearly a
tradeoff between the value ofk and the level of fairness –
typical values ofk for both arrival and departure schedul-
ing are between 1 and 3 [14, 20].

Carr [7] states that for departure scheduling, it is often
necessary to consider asymmetric CPS, where the number
of forward shifts allowed is different from the number of
backward shifts allowed. This is to accommodate mixed
operations (departures and arrivals) on a runway, when
the departures maybe allowed a larger number of back-
ward shifts than forward ones. He notes that most prior
research on CPS algorithms have focussed on the sym-
metric case [12, 13, 16]; the techniques described in this
paper are applicable to both symmetric and asymmetric
position shift constraints.

2.4 Precedence constraints
Finally, we consider precedence constraints on the de-

parture sequence. A source of such constraints is the air-

lines themselves, who have precedence constraints due to
banking operations, or priority flights. Precedence con-
straints can also represent the restricted freedom available
to taxiing aircraft which are not allowed to overtake each
other [7]. Precedence relations can be represented by a
matrix M = {mi j } such that elementmi j = 1 if aircraft i
mustland before aircraftj, andmi j = 0 otherwise.

3 Basic CPS framework
In this paper, we build on the basic technique that

we proposed in our prior research [17], where we ad-
dressed the following problem: Givenn aircraft indexed
1, · · · ,n, earliest and latest departure timese(i) and ℓ(i)
for each aircrafti, separation matrix∆, precedence ma-
trix M, and the maximum number of position shiftsk,
compute thek-CPS sequence and corresponding depar-
ture times,ti that minimize the makespan of the sequence
(the departure time of the last aircraft in the sequence).
Since we schedule aircraft in batches as their estimates of
their earliest pushback times become available, minimiz-
ing the makespan is equivalent to maximizing the runway
throughput. For simplicity, we assume that the aircraft
are labeled(1,2, · · · ,n), according to their position in the
FCFS sequence. We demonstrated that everyk-CPS se-
quence can be represented as a path in a directed graph
whose size is polynomially bounded inn andk. We now
briefly describe the structure of this network and its prop-
erties.

The network consists ofn stages{1, · · · ,n}, where each
stage corresponds to an aircraft position in the final se-
quence. A node in stagep of the network represents a
subsequence of aircraft of length min{2k+1, p} wherek
is the maximum position shift1 For example, forn= 6 and
k = 1, the nodes in stages 3, · · · ,6 represent all possible
sequences of length 2k+1= 3 ending at that stage. Stage
2 contains a node for every possible aircraft sequence of
length 2 ending at position 2, while stage 1 contains a
node for every possible sequence of length 1 starting at
position 1. For convenience, we refer to the last aircraft in
a node’s sequence as thefinal aircraft of that node.

The network forn = 6 andk = 1 is shown in Figure 1.
For each node in stagep, we draw directed arcs to all
the nodes in stagep+ 1 that can follow it. For exam-
ple, a sequence (1–2–3) in stage 3 can be followed by
the sequences (2–3–4) or (2–3–5) in stage 4. This results
in a network where every directed path from a node in

1This network can easily be extended to asymmetric CPS as follows:
Let f be the maximum number of forward position shifts allowed, and b
the maximum number of backward shifts. Then, a node in stagep of the
network would represent a subsequence of aircraft of lengthmin{ f +b+
1, p}. The rest of the network generation procedure would be similar to
the symmetric case. This logic can also be extended to scenarios where
the CPS constraint depends on the particular aircraft.
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Figure 1: Network forn = 6, k = 1.

stage 1 to one in stagen represents a possiblek-CPS se-
quence. For example, the path (2)→ (2–1)→ (2–1–3)→
(1–3–4)→ (3–4–6)→ (4–6–5) represents the sequence 2–
1–3–4–6–5. Nodes that violate precedence relationships
and those that cannot belong to a path froms to t (such as
node (1–2–4) in stage 4 in the figure) are removed from
the network to generate a “pruned” network. In practice
this pruned network is significantly smaller than the orig-
inal network. The following properties (derived in [17])
are satisfied by the network, forming the basis of our CPS
solution framework:
(i) Every possiblek-CPS subsequence of length 2k+ 1

or less is contained in some node of the network.
(ii) Every feasible sequence (one that satisfies maximum

position shift constraints and precedence constraints)
can be represented by a path in the network from a
node in stage 1 to a node in stagen.

(iii) Every path in the network from a node in stage 1 to a
node in stagen represents a feasiblek-CPS sequence.

3.1 Dynamic programming recursion
Given two nodesi and j, the arc connecting them (if

it exists) is denoted by(i, j). Let e(i) denote the earli-
est time that the sequence of nodei can begin, which is
the earliest departure time of the final aircraft of nodei.
Each arc(i, j) in the network is associated with a “dis-
tance”δi j , which is the minimum separation between the
final aircraft of nodei and that of nodej, if they were to
takeoff consecutively and in that order. This separation is
determined by the weight classes of the two final aircraft.
Arcs that lead into the sink and out of the source have zero
distance associated with them. We define:
ℓ1(i) Departure time of the last aircraft of nodei.
ℓ2(i) Departure time of the second-from-last aircraft of

nodei.
e1(i) Earliest possible departure time of the last aircraft

of nodei.

e2(i) Earliest possible departure time of the second-
from-last aircraft of nodei.

δ21(i) Minimum separation between the second-from-
last and the last aircraft of nodei.

P(i) Set of nodes that are predecessors of nodei.

We wish to findℓ1(t), the earliest time that the entire se-
quence can be completed, which is equal to the makespan.
The values ofℓ1(·) can be computed by the following dy-
namic programming recursion.

ℓ2(i) = min
j∈P(i)

ℓ1( j); ℓ1(i) = max{ℓ2(i)+ δ21(i),e1(i)} (2)

The recursion is solved using the boundary condition
ℓ1(·) = e(·) for all nodes in stage 1.

3.1.1 Complexity

The complexity of the algorithm for finding the mini-
mum makespan forn aircraft and maximum position shift
of k is O(n(2k+1)(2k+2)) [17]. While it is exponential in
k, it is of little consequence, sincek is typically small (at
most 3 in practice) [14]. The linear growth inn is use-
ful since increasing the number of aircraft does not pose
much of a computational burden.

3.1.2 Monte Carlo simulations

We wish to estimate the benefit from CPS over the
FCFS sequence. Consider the following example.

Example 1 (Basic departure scheduling:)
We are given 6 aircraft, with no precedence constraints

and a nominal FCFS order such that they all have the
same earliest departure time (t = 0sec) and latest depar-
ture time (t = 600sec). Let their corresponding weight
classes be H, S, H, S, L, and L, and the CPS parame-
ter k = 1. The makespan of the FCFS schedule would
be 420sec, with the departure times being at 0, 120, 180,
300, 360 and 420 sec respectively. However, the opti-
mal departure sequence would be 2–1–3–4–5–6, with a
makespan of 390sec, an improvement in throughput of
30sec, or 7%.
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We compute the average improvement in the through-
put (makespan) of CPS over that of FCFS, for differ-
ent rates of departure operations, using 1000-trial Monte
Carlo simulations. We consider sequences of aircraft gen-
erated using Poisson processes at different rates, corre-
sponding to different levels of demand for the departure
runway. The type of aircraft is determined from among
S, L and H using the specified mix. We then enforce
the minimum wake-vortex separations between the de-
partures in the FCFS schedule, if necessary. The time-
windows for departures are assumed to be 10-min long,
and there are no precedence constraints. The capacity of
a single runway used for departures for a traffic mix of
20% Small, 40% Large and 40% Heavy is estimated to be
45 aircraft/hour assuming FCFS sequencing, as is done
traditionally [14]. For a fleet mix of 20% Small, 30%
Large and 50% Heavy, the capacity is estimated to be 43
aircraft/hour. The results for different numbers of max-
imum position shifts,k = 1, 2, 3 are shown in Figure 2.
For an operating departure rate of 43-45 aircraft/hour, 3-
CPS yields an increase in the throughput of about 3%per
runway, when compared to FCFS. In congested terminal-
areas, throughput increases of even a few aircraft an hour
are desirable, because of the associated delay benefits.
For example, for departure sequences generated at 45 air-
craft/hour, the average delay savings compared to FCFS
are about 15%, 23% and 25% fork = 1, 2 and 3 respec-
tively. We note that while the objective here was to max-
imize the throughput, there are also benefits in terms of
reduction of average delay. Similar results have been ob-
served for arrival scheduling [17].
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Figure 2: Average throughput improvement over FCFS
for basic departure scheduling with 10-min departure
time-windows.

We also use the Monte Carlo simulations to gauge if
the technique is amenable to real-time applications, where
the computation of schedules for a batch of aircraft (with

a 30-min or 1-hour horizon, say) must be completed in
less than a few minutes. Table 2 shows the average com-
putation times (on a Mac with a 2.33 GHz Intel Core 2
Duo CPU and 2 GB of RAM) for 2- and 3-CPS for the
simulations described above. 1-CPS takes less than 0.01
sec for all cases considered. We find that for as many
as 70 aircraft, the computation takes about 10 sec for 3-
CPS, making the technique suitable for real-time schedul-
ing. We also note that, as expected, the computation time
scales linearly with the number of aircraftn (10 aircraft
add about 0.01 seconds to the 2-CPS runtime, and about
2 seconds to the 3-CPS runtime).

Num. aircraft 30 40 50 60 70

2-CPS 0.01 0.02 0.02 0.03 0.04
3-CPS 3.12 4.64 6.55 8.37 10.19

Table 2: Average computation time (in seconds) for 2-
CPS and 3-CPS for basic departure scheduling.

4 Departure scheduling under CPS
Departure scheduling presents several variations of the

basic CPS problem that we can solve by appropriately
modifying the basic CPS network and DP recursion,
such as: the objective of minimizing average delay or a
weighted sum of throughput and average delay, multiple-
runway scheduling, scheduling with complete (as op-
posed to successive) spacing constraints, robust schedul-
ing, and scheduling simultaneous runway operations (ac-
tive runway crossings).

4.1 Minimizing average delay
While we have so far considered the objective of max-

imizing the throughput of the runway, it may also be de-
sirable to minimize the average delay incurred by aircraft.
This can be achieved using a modification of the basic
CPS network described in Section 3, with a moderate in-
crease in computational complexity.

To generate the network for minimizing average de-
lay, we begin with the basic CPS network. Each node at
stagep of the original network corresponds to a cluster of
n− p+1 nodes, such that the connectivity of the original
network is maintained. The nodes in a cluster in stagep
are associated with the functiont1 + t2 + · · ·+ tp−1 + jtp,
wherej = 1, · · · ,n− p+1. This is shown for the sequence
2–1–3–4–6–5 in Figure 3. Corresponding to every prede-
cessor of a node in the original network, there are now
two predecessors. We would like to minimize the func-
tion t1 + t2 + · · ·+ tn over all nodes in stagen, whereti is
the departure time of theith aircraft in the final (optimal)
sequence.
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Figure 3: Representation of a path in the average delay network for n = 6 andk = 1.

Consider a node (denotedc1) in stagen of the average-
delay network, part of a cluster corresponding to a node
c in the original network. We denote one of its predeces-
sors in the original networkb, and the two corresponding
predecessors in the average-delay networkb1 andb2. We
wish to minimize the function

f (c1) = t1 + t2+ · · ·+ tn.
Then, it is evident that eithertn = tn−1 + δbc or tn =

e1(c). Looking at the structure of the average-delay net-
work and the definition of nodes in a cluster, the former
condition means thatf (c1) = f (b1) + δbc and the latter
means thatf (c1) = f (b2)+e1(c). In other words,

f (c1) = min
b∈P(c)

(max{ f (b1)+ δbc, f (b2)+e1(c)}) .

This can be written recursively for all the previous
stages. The recursion is solved by imposing the bound-
ary condition thatt(·) = e(·) for all nodes in stage 1.

The upper bound on the number of nodes in the
average-delay network isn times the number of nodes in
the original network. The number of arcs is at most twice
the number of nodes. Using this network, we can compute
the complexity of a dynamic programming algorithm that
minimizes the average delay incurred by all the aircraft.

4.1.1 Complexity

The complexity of scheduling runway operations with
time-window constraints,k-CPS, and minimum separa-
tion requirements, with the objective of minimizing the
average delay of the aircraft isO(n2(2k+1)(2k+2)).

It can be shown quite easily that the average-delay net-
work can be slightly modified to minimize a weighted
sum of average delay and throughput (as attempted in
[11] using a heuristic) with no further change in com-
plexity, by defining the functionf (c1) = t1 + t2 + · · ·+
[

1+
wthroughput

wdelay

]

tn, and proceeding as before.

4.2 Robust departure scheduling
The objective of achieving an efficient departure sched-

ule is further complicated by the presence of uncertainty.
The sources of uncertainty include the variability in the
pushback times as well as the times that aircraft take
to taxi from their gates to the runway departure queue.

In order to increase the predictability of the departure
process, there has been much research into modeling
and quantifying the uncertainties in airport surface op-
erations [7, 21, 22]. The presence of uncertainty in the
system motivates the development of robust schedules for
runway operations. The notion of robustness is one that
can be defined in several ways. In the context of departure
scheduling, the uncertainty in the system could result in
the aircraft violating important safety constraints such as
wake separation minima, thereby necessitating reschedul-
ing on the part of the controllers; therefore, we consider a
runway sequence robust if there is a high probability that
a controller does not have to intervene once the schedule
has been determined.

In prior work [23], we presented a technique to deter-
mine robust departure schedules that can potentially im-
prove runway productivity, while still satisfying the var-
ious constraints that we have described above. We also
showed that the CPS framework can be used to develop
robust schedules in a computationally efficient manner,
with complexity that scales linearly with the number of
aircraft, and as the cube of the largest difference between
the latest and earliest arrival time over all aircraft. In con-
trast to the methods described in the previous sections, the
output of the robust variant is not a single schedule, but a
tradeoff between the probability of controller intervention
(reliability) and the time to complete runway operations
for the given set of aircraft (makespan of the sequence).
Using extensions of the networks developed for the deter-
ministic scenarios, the robust variant of CPS gives system
designers the ability to select the appropriate threshold
which determines the tradeoff between robustness and ef-
ficiency. In addition to scheduling, the robust CPS frame-
work can be used to decide broader policy issues such as
the benefit (in terms of throughput and safety) of intro-
ducing on-board or ground-based systems to decrease the
uncertainty in the system.

4.3 Complete separation requirements
Complete separation requirements are spacing con-

straints that need to be satisfied between departure opera-
tions, irrespective of whether or not they are consecutive
operations. As we saw in Section 2.1, if all separation re-
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quirements satisfy the triangle inequality, we need to only
consider consecutive operations, as in the case of succes-
sive separation requirements. However, if the triangle in-
equaity is violated, then for each aircraft we need to keep
track of more than just the last predecessor in order to en-
sure that separation is maintained. We denote the number
of predecessors we need to keep track of until separation
is guaranteed asλ , and the scenario as aλ -look-ahead
policy. If the triangle inequality is satisfied,λ = 1. We
can defineℓ1(i), ℓ2(i), e1(i), e2(i), δ21(i) andP(i) for any
node i as we have done for Equation 2. Then, our ob-
jective is to minimizeℓ(i) for each nodei in stagen. If
the triangle inequality is satisfied, then we need a 1-look-
ahead policy, and the recursion is given by Equation 2.
This is implicitly the recursion that we proposed in our
prior work [17].

We consider a discrete-time network, as described by
the authors in [23]. The required output accuracy is de-
notedε, andL denotes the largest difference between the
earliest and latest arrival times over all aircraft, that is,
L = maxi{ℓ(i)− e(i)}. Then, as in the case of robust
scheduling described above, the schedule that minimizes
the completion time of the sequence can be determined
with complexity that scales linearly with the number of
aircraft, and as a power of(L/ε).

4.3.1 Complexity

The number of nodes in the network is
O

(

n(2k+1)max{2k+1,λ+1}
)

. The number of arcs is
the number of nodes multiplied by 2k + 1. The work
done per arc isO((L/ε)(λ+1)). Therefore, the computa-
tional complexity of requiring aλ -look-ahead policy is

O
(

n(2k+1)max{2k+2,λ+2}(L/ε)(λ+1)
)

.

We note thatλ is also typically small – for the case
of metering at departure fixes with 20 nm MIT restric-
tions instead of the usual 5 nm MIT requirement, the time-
based spacing is 218 sec, based on a ground-speed of 330
knots at the departure fix [24]. This implies that there can
be up to 3 other departures in between two metered air-
craft, thereby requiring a 4-look-ahead policy.

4.4 Multiple runways
We now consider the problem of scheduling and se-

quencing departures on multiple parallel runways. Even
when there are multiple parallel runways being used si-
multaneously for takeoffs at an airport, operations on the
runways are not necessarily independent of each other.
Under current regulations, if the runway centerlines are
less than 2500 ft apart, the separation requirements are
the same as the inter-departure separation for the single
runway case (Table 1). We note that the FAA has iden-
tified closely spaced parallel runway (CSPR) departures

as a promising weather-dependent solution for reducing
wake separation. The principle behind CSPR departures
is that if the crosswind is such that the wake will not travel
upwind of a Heavy aircraft into the adjacent runway, the
imposed wait on the adjacent runway could be eliminated.
CSPR solutions attempt to take advantage of the accu-
racy of short-horizon forecasts of crosswinds [25], and
will therefore require the ability to plan and replan paral-
lel runway departure sequences tactically based on wind
predictions.

There are two variants of the multiple runway schedul-
ing problem, depending on whether or not we wish to as-
sign runways to the departing flights, in addition to deter-
mining the optimal departure sequence and takeoff times
for operations on each runway.

4.4.1 Preassigned runways

We begin with scenarios in which runways are pre-
assigned considering factors such as gate location and
flight destination. Clearly, if the FCFS order and CPS
constraints are defined separately for each runway, the
two runways can be scheduled completely independent
of each other. However, if the FCFS order involves op-
erations on both runways (this could happen because of
the airport layout: if aircraft share (compete for) the same
taxiway segments or intersections to reach their respec-
tive runways, the FCFS order, CPS and precedence con-
straints would have to be be defined on both runways), the
schedules will be coupled. The parallel runway sequenc-
ing problem is then a special case of complete spacing re-
quirements in which the triangle inequality is violated (if
the runways are independent, there are no separation re-
quirements between departures on different runways). For
two runways, if operations on each runway satisfy the tri-

angle inequality, we require a
(

2⌈ δmax
δmin

⌉−1
)

-look-ahead

policy, whereδmax andδmin are the maximum and mini-
mum separation requirements (λ = 3 for Table 1).

4.4.2 Runway balancing

Runway assignments are not always uniquely deter-
mined by departure fix or gate assignments – in such
scenarios, departure management would involve not only
scheduling the takeoff times and the departure sequence,
but also the optimal runway assignments. Keeping the
runways balanced, that is, maintaining load on both par-
allel runways is essential for efficient runway utilization.
As we have seen, the inter-arrival spacing could con-
strained, even in the case of parallel runways. In or-
der to schedule multiple runways and balance the load
among the runways to maximize throughput, we construct
a network with multiple copies of each node in the orig-
inal network to account for all possible runway assign-
ments. For example, if we had a node corresponding
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to the subsequence(a,b,c,d,e) and we want to consider
2 runways, we replace it by 25 nodes(a1,b1,c1,d1,e1),
(a1,b1,c1,d1,e2), (a1,b1,c1,d2,e1), (a1,b1,c1,d2,e2),
. . ., (a2,b2,c2,d2,e2), where the subscript indicates the
runway assigned to each aircraft. Thus, for each node
in the original network, we would havers nodes, where
r is the number of runways ands is length of each node
sub-sequence. For each arc, we would havers+1 copies,
so the complexity would bers+1 times the complexity of
scheduling with preassigned runways.

4.5 Scheduling active runway crossings
The typical layout of taxiways at airports imply that

some aircraft (arrivals) need to cross a runway that is be-
ing used to reach their assigned gates. Such crossings,
known as active runway crossings, require the coordina-
tion of runway schedules and taxi schedules. In the cur-
rent system, for reasons of safety, active runway crossings
are the responsibility of the local controller who is co-
ordinating operations on the departure runway, and can
lead to a significant increase in the controller workload
as well as taxi delays [26, 7]. It is desirable to identify
gaps in the departure sequence to allow aircraft to cross
active runways, and local controllers try to utilize the rela-
tively large wake-vortex separation requirement following
a Heavy aircraft to schedule runway crossings. Due to the
negligible space for overtaking on the taxiways, runway
crossing queues are always processed FCFS.

At current traffic levels, there are sufficient gaps in the
departure schedules at most airports to allow for active
runway crossings without disrupting the departure sched-
ule. However, studies have shown that as the traffic lev-
els increase and runways operate close to their capac-
ity, scheduling departure schedules independent of run-
way crossings could result in a substantial increase in
runway crossing queue times and the resulting taxi de-
lays [27]. This motivates the development of schedul-
ing algorithms that accommodate active runway crossings
into the runway schedule, by possibly altering the spac-
ing in the departure schedule. This would also help keep
runway crossing queue times to within acceptable levels
(under 3 min by current standards [28]). Such algorithms
would need to handle time-window constraints for both
departures and runway crossings, and process the depar-
ture queue under CPS constraints in coordination with the
runway crossing queues in which an aircraft would be pro-
cessed FCFS relative to the other aircraft in the same run-
way crossing queue.

In many airports, there is more than one spot at which
aircraft can cross a runway. Controllers can there-
fore simultaneously process multiple runway crossing
queues. An additional feature of runway crossings is
theacceleration-delay penaltythat is incurred by the first

crossing aircraft that accelerates from a standstill to the
taxi speed. If there are several crossing aircraft in the
same queue that accelerate simultaneously, the rest of the
queue does not incur the same penalty [7]. Observations at
Boston Logan airport indicate that due to the acceleration-
delay penalty, the runway crossing time of the first aircraft
is about 1.7 times that of the aircraft that follow it [29, 7].
In addition, aircraft are kept at least 10 sec in trail while
crossing active runways. A schematic of the runway lay-
out, showing the departure queues and runway crossing
queues, along with the crossing times, is depicted in Fig-
ure 4.

Figure 4: Schematic of a departure runway with two ac-
tive runway crossing queues.

The dynamic programming approach described in Sec-
tion 3 can be extended to scheduling departures with a
single active runway crossing queue of lengthn1 by du-
plicating the basic CPS networkn1 +1 times (thus creat-
ing n1 +1 levelsgoing from 0 throughn) and adding arcs
in between the levels depending on the number of aircraft
that need to have crossed the runway by that stage in the
sequence. As before, for any node,T(i) is the earliest time
that the sequence corresponding to nodei can possibly be-
gin, in a sequence starting at nodes and ending in nodei.
However, in this case, if nodei is in levelq, thenT(i) is
the earliest time that the sequence corresponding to node
i can possibly begin,given that qaircraft have crossed the
runway. The nodes in the last stage of the last level have
arcs leading to the sinkt. The corresponding network for
the instance ofn = 6, k = 1, n1 = 2 is shown in Figure 5.

Similarly, when there are multiple (say,c) runway
crossings each of length at mostn1, we need to create
O(nc

1) copies of the basic CPS network; and for a node
i corresponding to the “level”q1q2 · · ·qc, T(i) is the ear-
liest time that the sequence corresponding to nodei can
possibly begin, given thatq1 aircraft from the first runway
crossing queue,q2 aircraft from the first runway crossing
queue have crossed the runway, and so on.
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4.5.1 Complexity

The complexity of maximizing the runway throughput
with a single FCFS runway crossing queue of lengthn1,
time-window constraints, CPS parameterk (for the depar-
ture sequence), and minimum separation requirements is
O(nn3

1(2k+1)(2k+2)), where the departure sequence con-
tainsn aircraft. Analogously, the complexity of maximiz-
ing the throughput of departure runway operations with
c different active runway crossing queues of maximum
lengthn1 is O(cnn2c+1

1 (2k+1)(2k+2)).
Since the number of active runway crossings in a single

runway is generally small (≤ 5), and taxiway geometries
necessitate small buffers (that is, smalln1), the problem
remains tractable for practical scenarios.

Example 2 (Scheduling with runway crossings:)
We consider an extension of previous example, with

n = 6, k = 1, and weight classes H, S, H, S, L, and L. Let
there be a single runway crossing queue with two aircraft
(denoted A and B) that arrive at the runway at 160sec and
200sec respectively. The requirement that the wait time
for crossing a runway be under 3min implies that A must
cross between 160 and 340 sec and B must cross between
200 and 380 sec. If both aircraft cross at the same time, A
takes 68sec to cross while B takes 40sec to cross; on the
other hand, if they cross at different times (that is, there is
at least one departure in between the crossings), they take
68sec each. The runway occupancy times for departures
are 55sec each [27].

We have seen earlier that the optimal schedule without
runway crossings is

Aircraft 2 1 3 4 5 6
Time (s) 0 60 150 270 330 390

We note that for an aircraft to cross the runway, there
must be a gap in the departure sequence of 55+ 68 =
123sec. The largest gap in the above schedule is 120sec,
which is insufficient for a crossing. Therefore, it is clear
that one would have to extend the gaps to accommodate
X1, which cannot wait until the departures have completed
at 390sec. If a naive (almost FCFS) approach were used,
we would obtain the schedule

Aircraft 2 1 3 A 4 5 6 B
Time (s) 0 60 150 205 273 333 393 448

which implies that it would take 516sec for the whole se-
quence to clear the runway.

However, using the CPS framework described above,
we can compute the optimal schedule to be

Aircraft 2 1 3 A B 4 5 6
Time (s) 0 60 150 205 243 283 343 403

which implies that the schedule would be completed in
458sec.

5 Conclusion
We have developed a unified framework for runway

scheduling under CPS constraints, and demonstrated that
most conceivable problems in departure management in-
cluding enhancing throughput, decreasing delay, ensuring
fairness, satisfying downstream metering constraints, run-
way balancing, robust scheduling, and accommodating
active runway crossings can be effectively modeled and
solved in polynomial time; our approaches often scale lin-
early (and sometimes quadratically) in the number of air-
craft. The algorithms are easily implemented, and a proto-
type implementation demonstrates that the run-times are
sufficiently small to enable real-time deployment.
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