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A Game-Theoretic Analysis of Reallocation
Mechanisms for Airport Landing Slots
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Abstract—As airport arrival capacities increasingly constrain
the air transportation system, there is a need for mechanisms by
which airlines can exchange landing slots amongst each other.
We analyze two such mechanisms, scaled airline preferences and
two-for-two trades, from a game-theoretic perspective. This paper
investigates the extent to which strategic behavior on part of
the airlines can impact the performance of each mechanism. In
addition to increasing system efficiency, the reallocation mecha-
nisms should exhibit desirable fairness and incentive properties,
notions that we formally investigate in this paper. We show
that neither mechanism has good incentive properties, and we
develop simple, non-truthful strategies that airlines can use. Our
empirical results show that for the scaled airline preferences
mechanism, the best performing strategy depends greatly on the
extent to which fairness is enforced. For the two-for-two trades
mechanism, a simple threshold strategy can yield significant
cost savings relative to the best-response strategy, and system
efficiency increases when all airlines use the threshold strategy
in equilibrium.

Index Terms—Air traffic management, game theory, mecha-
nism design, optimization, algorithms

I. INTRODUCTION

ONE of the most constrained resources in the air trans-
portation system is airport landing capacity. When the

number of aircraft arriving at an airport at some period of
time is projected to exceed the airport’s landing capacity,
a Ground Delay Program (GDP) is issued by the Federal
Aviation Administration (FAA). The objective of a GDP is
to delay the departures of flights such that they arrive at the
destination airport at a rate that matches its forecast capacity.
These delays are assigned to flights in a first-scheduled-first-
served manner.

However, because different flights have different delay costs,
flights can be assigned to landing slots more efficiently if
flights with high delay costs were prioritized. Unfortunately,
the FAA does not have access to any flight-specific cost
information, as this is private information to the airlines. Yet,
there could be a way in which the FAA and the airlines
work together to allocate delays to flights in a way that
improves system efficiency. To do this, there must be some pre-
determined mechanism which provide a particular structure on
this process. We refer to these mechanisms as reallocation
mechanisms. We assume that slots are initially allocated to
flights using the first-scheduled-first-served rule, and then the
slots are exchanged between the airlines using a reallocation
mechanism.
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In this paper, we investigate reallocation mechanisms from
a game-theoretic perspective, evaluating them not only on
efficiency, but other desirable properties such as incentives and
fairness. As each airline that would participate in a reallocation
mechanism is a selfish agent (i.e. their goal is to maximize
their own utility), their incentives are not necessarily aligned
with the incentives of the FAA. Therefore, one cannot assume
that the airline will perfectly cooperate in these mechanisms.
In this case, a game-theoretic analysis of the mechanism is
necessary to evaluate how much strategic behavior can impact
the system.

We focus on two reallocation mechanisms that have been
previously proposed: scaled airline preferences (SAP) [1], and
two-for-two trades [2]. The SAP mechanism scales the flight’s
delay costs to ensure equity among the airlines. The two-for-
two trades mechanism allows an airline to make trade offers
to reduce the delay of a flight it values more, in return for the
delay increase of a less valuable flight. We first set up a generic
framework for reallocation mechanisms, and then we evaluate
these two mechanisms in this framework. We run simulations
of these mechanisms using historical data, and our results
show that the impact of the mechanisms on both system and
airline efficiency can drastically change when airlines behave
strategically.

A. Current Ground Delay Program Operations

An airport’s capacity, or its airport acceptance rate
(AAR), is the maximum number of aircraft that can safely land
during each hour. When a reduction in future capacity for an
airport is anticipated, the FAA issues a ground delay program
with the following information: the time period in which the
GDP is in effect, and the hourly AARs for this time period.
Usually, the GDP is initialized a couple hours before its start
time. For example, suppose there is a forecast for a snowstorm
in Boston starting at 1pm. At 10am, the FAA issues a GDP
effective at San Francisco International Airport (SFO) for 1–
4pm with AARs of 35, 35, 40. This means that the landing
capacity of the airport is 35 per hour for 1–3pm, and 40 for
3–4pm. Then, the flights that were originally scheduled to land
in SFO between 1pm and 4pm are given new arrival slots to
match the announced capacities. The slots are allocated using
a first-scheduled-first-served rule called ration-by-schedule
(RBS). The RBS rule is currently accepted as a fair allocation
method.

After RBS outputs an intermediate schedule, we consider
any further changes the schedule to be a reallocation mecha-
nism. Although RBS allocates arrival slots to specific flights,
airlines can reassign the slots among the flights that they own
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Fig. 1: The framework for GDP operations.

to optimize over their own costs, a method known as intra-
airline substitution. If, however, an airline decides that it
cannot use one of its slots due to a flight cancellation, the
airline can report this to the FAA. Two mechanisms called
compression and slot-credit substitution are currently in
place to facilitate flight cancellations. Given a flight cancella-
tion, the mechanisms redistribute this slot in a way that gives
preference to flights of the airline who released the slot, which
gives incentive for the airline to report their cancelled flights.
This GDP framework is summarized in Fig. 1.

In practice, a GDP can get modified or cancelled during
its operation once there are updates to weather forecasts.
For simplicity, we assume that GDPs do not get updated.
Additionally, we assume in this work that there is only one
reallocation mechanism, and it is run exactly once. If there
were multiple mechanisms or repeated runs of the same
mechanism, an airline’s strategy can change when taking the
subsequent mechanisms into account. The impact of having
multiple rounds of allocation is a direction for future research.

B. Need for Inter-Airline Reallocation

Assuming that flight cancellations are dealt with using
compression and slot-credit substitution, the only reallocation
mechanism currently in place for non-cancelled flights is intra-
airline substitution. Because flights cannot depart earlier than
their original departure time, reallocating flights within the
same airline is oftentimes infeasible, especially for smaller
airlines. Hence, there is an opportunity to decrease costs
further using a mechanism that allows slots to be exchanged
between airlines.

The main reason that designing such a mechanism is non-
trivial is due to incentives. Flight-specific costs are private
information to the airlines, and there is no reason for airlines
to disclose any such information unless doing so will benefit
them. If the FAA simply asked the airlines for their flights’
delay costs and reallocated slots in a way that minimizes total
delay costs, flights with high delay costs will benefit at the
expense of delay increases for lower cost flights. Then, airlines
have an incentive to misreport the costs of their flights to be
higher than they are.

Other than incentives, there are other properties that an ideal
mechanism should have — these will be listed and discussed in
Section II-B. It may be that enforcing such desirable properties
will come at a cost of a reduction in total efficiency gains.

C. Related Works

A method of scheduling aircraft using airline preferences
was proposed in [1]. This work shows that this method can
achieve significant cost savings for all airlines using empirical
tests on European data. In our work, we modify and simplify
this model into a reallocation mechanism, which we name the
scaled airline preferences (SAP) mechanism.

The two-for-two trades mechanism, initially proposed in [2],
provides an integer programming formulation that the central
decision maker solves for the optimal allocation. Through
experiments using historical data and simple airline strategies,
the authors show that delay costs could be reduced signif-
icantly. The two-for-two mechanism was also incorporated
in a separate model for air traffic flow management with
fairness and collaboration [3]. Reallocation mechanisms in the
presence of vacant slots have also been the focus of prior
research [4], [5], [6], [7].

The impact of allocation mechanisms on the airlines is
a practical concern, and has motivated the study of inter-
airline equity in the context of air traffic management [8],
[1], [9], [10]. The use of a combinatorial auction for airport
landing slot allocation was first proposed in [11]. [12] provides
an overview on the need for auctions in various aspects of
air traffic management. Reallocation mechanisms with side
payments between the airlines have also been investigated [5],
[13].

Other than efficiency and incentive compatibility, there are
other desirable properties in a general mechanism. Individual
rationality is the property that no players will incur a loss
by participating in the mechanism, and budget balanced is the
property that the central decision maker should not lose money
from the mechanism. The impossibility result of [14] demon-
strates that no exchange can be efficient, budget-balanced,
incentive compatible, and individual rational. Incentives in
the context of airport landing slots has been studied [15], in
which it was shown that any reallocation mechanism that is
individual rational and Pareto-efficient can be manipulated in
certain ways.

D. Contributions

In this paper, we formally model a reallocation mechanism
as a game of incomplete information, and we analyze the
SAP and two-for-two trades mechanism in this framework. We
show that neither mechanism has good incentive properties.

For the SAP mechanism, we develop the inflation strategy,
a strategy in which airlines either inflate or deflate the cost
differences between their flights. We empirically show that the
inflation strategy can perform better than the truthful strategy,
but whether to deflate or inflate one’s costs depends on whether
or not fairness is enforced.

For the two-for-two trades mechanism, our results show
that fairness does not have as large of an impact on this
mechanism compared to the SAP mechanism. We develop
the naive and threshold strategies, two simple strategies that
determine which trades an airline should offer. We develop
a branch and bound algorithm to compute the best response
strategy. We show that the threshold strategy can achieve more
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than 70% of the cost savings as the best-response strategy,
and system efficiency can increase when all airlines play the
threshold strategy in equilibrium.

The rest of the paper is structured as follows. In Section II,
we set up the framework for reallocation mechanisms and
present desirable properties. In Section III, we analyze the
SAP mechanism. In Section IV, we analyze the two-for-two
trades mechanism, and we develop an algorithm to calculate
the best response strategy in Section V. In Section VI, we run
computational experiments of the mechanisms on historical
data using various strategic assumptions on the airlines.

II. REALLOCATION MECHANISM FRAMEWORK

A. Formal Model
We define a framework for a reallocation mechanism, which

we model as a game of incomplete information. Given an
initial assignment of flights to arrival times, a reallocation
mechanism takes input from the airlines and outputs a new
assignment. Different mechanisms differ in the possible ac-
tions that airlines can take, and how the mechanism maps
these actions to the final allocation of flights to arrival times.

Let I = {1, 2, . . . , N} be the set of airlines, F the set of
all flights, Fi the set of flights for airline i, and T the set
of all possible arrival times. Each flight f has a scheduled
arrival time, arrf , which is the earliest feasible time that the
flight can land. Let φ0 : F → T be the initial allocation of
flights to arrival times. Time is discretized (e.g. into 15 minute
intervals), and more than one flight can be assigned to the
same time interval. However, we assume that the number of
flights assigned to each time does not change from the initial
allocation. In other words, φ : F → T is a feasible allocation
if |{f : φ(f) = t}| = |{f : φ0(f) = t}| ∀t ∈ T . Let Φ be the
set of all feasible allocations.

Every airline i has a delay cost function, di : Φ → R,
which maps an allocation to the airline’s delay costs from that
allocation. The utility gained by an airline is defined as the
reduction in delay costs. The terms “utility” and “cost savings”
are used interchangeably. We assume that a flight cannot land
before its scheduled arrival time, and this is modelled by
assuming a delay cost of +∞ for such an allocation.

An airline i takes an action within their strategy set Si,
which may be different for different mechanisms. A direct
mechanism is a mechanism in which the action is to simply
reveal their delay cost function di. In this case, Si refers to
the set of all possible delay cost functions that airline i can
reveal. An indirect mechanism may have an action space that
is completely different than the airline’s delay cost function;
for example, in the two-for-two trades mechanism, an action
corresponds to a set of trade offers. We denote by S−i :=
{(s1, . . . , si−1, si+1, . . . , sN ) | sj ∈ Sj , j 6= i} the set of all
possible strategy profiles of all airlines except i.

Lastly, the mechanism is defined by the allocation function
A : S1× · · · ×SN → Φ, which takes all airlines’ strategies as
input, and outputs the resulting allocation. We overload the de-
lay cost function di to also be able to take the strategies of all
players as input, where di(s1, . . . , sN ) = di(A(s1, . . . , sN )).

Formally, a reallocation mechanism is defined as
(I, F, arr, T, φ0, d, S,A) of airlines, flights, scheduled

arrival times for each flight, discretized times, an initial
allocation, delay cost functions for each airline, strategy sets
for each airline, and an allocation function. Each airline
knows its own delay cost function, but not those of other
airlines. All other information is assumed to be known to all
players.

We make the following assumptions regarding the structure
of the delay costs:

1) The delay cost for each airline is a sum of delay costs
for each of its flights, each of which are independent.
Specifically, for an airline i, it incurs a cost di(f, t) when
flight f lands at time t, and the airline’s total delay cost
for an allocation φ is

∑
f∈Fi

di(f, φ(f)). Then, in a
direct mechanism, an airline can simply reveal di(f, t)
for every f and t, rather than di(φ) for every allocation
φ. This assumption implies that an airline’s delay cost
does not depend on the flights of other airlines.

2) In our computational experiments, we assume that delay
costs are linear in delay time. In this case, the delay
cost function of each flight is characterized by just one
number, the cost incurred for each unit of delay time.
We refer to this as the unit delay cost. Specifically, if
the unit delay cost of a flight f is α, then the delay cost
function is:

di(f, t) =

{
+∞ t < arrf

αnf (t) t ≥ arrf ,

where nf (t) is the number of time steps from arrf
to t. We only use this assumption in our experiments
(Section VI).

B. Desirable Properties of a Reallocation Mechanism

The main purpose of a reallocation mechanism is to increase
efficiency (reduce total cost); however, there are other proper-
ties that we also desire in a reallocation mechanism. We focus
on three such properties in this paper: individual rationality,
incentive compatibility, and fairness.

1) Individual Rationality (IR): A reallocation mechanism
is individually rational if no airline becomes worse off from
the mechanism. Formally, a direct mechanism is individually
rational if di(di, s−i) ≤ di(φ0) for all s−i ∈ S−i. That
is, if an airline i takes the action of revealing its true cost
function, di, then its overall delay costs do not increase
after the mechanism. We define an indirect mechanism to be
individually rational if for any delay cost function di, there
exists a strategy si such that di(si, s−i) ≤ di(φ0) for all
s−i ∈ S−i.

This property is clearly desirable since it gives airlines the
guarantee that it can only benefit them. However, enforcing
IR will come at the cost of efficiency. Because flight delay
costs can vary widely between airlines, the allocation which
simply minimizes total cost will be the one which increases
delays for airlines with low delay costs and decreases delays
for airlines with high delay costs. Such an allocation will be
infeasible if IR is enforced.
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2) Incentive Compatibility (IC): A reallocation mechanism
is incentive compatible if the best strategy for each airline is to
act truthfully. No airline should be able to lie or misrepresent
their preferences to “game the system”. A direct mechanism is
dominant strategy incentive compatible (DSIC) if revealing
their true delay costs gives them the highest payoff, regardless
of the actions of other players. Formally, a direct mechanism
is DSIC if di(di, s−i) ≤ di(si, s−i) for any si ∈ Si and s−i ∈
S−i.

For an indirect mechanism, incentive compatibility is not as
well-defined since there may not be a notion of a “truthful”
strategy. However, by the revelation principle, the existence
of a dominant strategy is equivalent to being DSIC. For an
airline i with cost function di, s∗i is a dominant strategy if
di(s

∗
i , s−i) ≤ di(si, s−i) for any si ∈ Si and s−i ∈ S−i. If

every airline has a dominant strategy, the mechanism can be
converted into a direct mechanism that is DSIC. Hence, for
indirect mechanisms, checking for incentive compatibility is
equivalent to checking for a dominant strategy.

3) Fairness: While IR and IC can be rigorously defined
using game theoretic notions, fairness is not universally well-
defined. At a high level, fairness is the notion that every airline
should benefit by an equal amount. Ideally, one can define
“benefit” as the reduction in delay cost that the mechanism
provides to each airline. However, the problem with this is
that the mechanism does not know the airlines’ true delay
cost functions; and if the airlines are asked to self-report them,
then we again run into the problem of incentives. Therefore,
we define fairness in a way that does not have any incentive
issues:

Definition 1. Given an initial allocation φ0 and a final
allocation φ, let ∆i :=

∑
f∈Fi

(φ(f) − φ0(f)) be the net
movement of airline i’s flights. For λ ≥ 0, the allocation φ
is λ-fair if |∆i| ≤ λ for all airlines i. If λ = 0, we say the
allocation is strictly fair.

That is, an allocation is strictly fair if, for every airline, their
flights “move up” as much as their other flights “move down”.
One can think of time as a currency, and a flight reducing
its delay must be “paid for” by other flights increasing their
delay by the same amount. This notion of fairness is easy to
verify, without running into the issue of incentives. By setting
the parameter λ to be strictly greater than 0, we relax the
fairness constraint. In Section VI-B, we study how the value
of λ affects the outcomes of the mechanism.

III. SCALED AIRLINE PREFERENCES (SAP) MECHANISM

In the SAP mechanism, each airline reports the delay cost
function for each of its flights. These cost functions are then
scaled such that each airline has the same average delay cost.
The mechanism outputs an allocation which minimizes the
scaled cost. This idea of scaling delay costs was proposed in
[1], where this approach is used as a primary ground holding
model. Since an airline’s action is to reveal their delay costs,
this mechanism is a direct mechanism.1

1It is possible for an airline to instead reveal scaled delay costs, but since
it is equivalent to revealing true delay costs, we will consider this to be a
direct mechanism.

The goal of the scaling step is to provide equity to all
participating airlines by taking only the relative cost differ-
ences between flights of the same airline into account. If there
was no scaling step, then every airline would misreport their
delay costs to be higher than they are, so that their flights
are prioritized over flights of other airlines. The scaling step
disincentivizes this type of dishonesty; however, our analysis
shows that there are other ways that airlines can manipulate
this mechanism.

The scaling method that we consider is a discretized version
of the one in [1], and it works as follows: For each flight
f ∈ Fi, let Tf = {t ∈ T | t ≥ arrf} be the set of feasible
landing times. Each airline i reveals di(f, t) for all f ∈ Fi and
t ∈ Tf , the delay cost incurred by the airline if flight f lands
at time t. Then, αi is the scaling factor for airline i, which
satisfies:

1

|Fi|
∑
f∈Fi

∑
t∈Tf

αidi(f, t)

S|Tf |
= 1, (1)

where Sn =
∑n

k=1 k denotes the sum of integers up to n. The
scaled delay cost for flight f landing at time t is d̂i(f, t) =
αi · di(f, t).

The intuition for (1) is as follows. Recall that nf (t) is
the number of time steps from time t to arrf . After the
scaling step, the “average” flight satisfies d̂i(f, t) = nf (t) and∑

t∈Tf
d̂i(f, t) = S|Tf |. The term

∑
t∈Tf

d̂i(f, t) is the “area
under the curve” of the delay cost function, as shown in Fig. 2.
Then, for any flight f , we normalize the term

∑
t∈Tf

αidi(f, t)
by the same term for an average flight, which is S|Tf |.

0
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4
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nf(t)

d i
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Fig. 2: The scaled delay cost function of an average flight. The
“area under the curve” of this plot is

∑
t∈Tf

d̂i(f, t) = S|Tf |.

A. Implementation of the Allocation Function

The allocation function A, which chooses the allocation
which minimizes the total scaled delay cost, is implemented
as the following integer program with parameter λ:

min
∑
i∈I

∑
f∈Fi

∑
t∈T

d̂i(f, t)xft (2)
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s.t.
∑
t∈T

xft = 1 ∀f ∈ F (3)∑
f∈F

xft = |{f | φ0(f) = t}| ∀t ∈ T (4)

d̂i(φ0) ≥
∑
f∈Fi

d̂i(f, t)xft ∀i ∈ I (5)

∆i =
∑
f∈Fi

∑
t∈T

(t− φ0(f))xft ∀i ∈ I (6)

|∆i| ≤ λ ∀i ∈ I (7)
xft ∈ {0, 1} ∀f ∈ F, t ∈ T (8)

xft is a binary variable which is 1 if and only if flight
f is allocated to land at time t. The objective function (2)
minimizes the total scaled cost. (3) ensures that all flights
are assigned a landing time, and (4) ensures the resulting
allocation is feasible. (5) enforces individual rationality, and
(6) and (7) enforce λ-fairness.

B. Incentive Compatibility

Although we can enforce individual rationality and fairness
using constraints in the allocation function, the same cannot
be done for incentive compatibility. Unfortunately, there are
counterexamples which show that this mechanism is not
dominant strategy incentive compatible.

Theorem 1. The SAP mechanism is not dominant strategy
incentive compatible.

Proof. Consider an instance where there are three airlines, A,
B, and C, with two flights each. The initial allocation of the
six flights to arrival slots is shown on the left of Fig. 3. The
numbers on the flights represent the true unit delay cost of each
flight. Suppose flight A2’s scheduled arrival time is 6:06, hence
it cannot arrive before then. If all airlines report truthfully, the
SAP mechanism outputs the allocation shown on the right.
Airline C’s cost reduction from the mechanism is 1.1−0.9 =
0.2.

𝐵": 1.2

𝐴":0.5

𝑪𝟏: 𝟏. 𝟏

𝑪𝟐: 𝟎. 𝟗
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𝐵/: 0.8

𝑪𝟏
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𝐴"
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Initial Allocation Final Allocation

6:00

6:02

6:04

6:06

6:08

6:10

Fig. 3: The initial and final allocation if all airlines reported
truthfully.

If airline C misreports its costs to be 1.3 and 0.7 for
flights C1 and C2 respectively, as shown in Fig. 4, the SAP
mechanism will output the allocation shown on the right.
This is because the difference in costs of airline C’s flights
are now larger than the difference in costs of airline B’s
flights. This allocation gives airline C a cost reduction of

𝐵": 1.2

𝐴":0.5

𝑪𝟏: 𝟏. 𝟑

𝑪𝟐: 𝟎. 𝟕

𝐴0:1.5

𝐵0: 0.8

𝑪𝟏

𝐵"

𝐴"

𝐴0

𝐵0

𝑪𝟐

Final Allocation

6:00

6:02

6:04

6:06

6:08

6:10

Initial Allocation

Fig. 4: The initial and final allocation if airline C misreports
its costs, and the other airlines report truthfully.

2(1.1) − 2(0.9) = 0.4, which is a higher cost reduction than
had it reported truthfully. Therefore, the SAP mechanism is
not DSIC.

C. Inflation Strategy

Since SAP is not incentive compatible, we investigate which
other strategies perform better than truth-telling. From the
counterexample in the proof of Theorem 1, we saw that an
airline can manipulate its actions in response to the exact
strategies of other airlines. However, it is not a practical
assumption that an airline will know the strategies of all other
airlines. Therefore, we develop a strategy in which an airline
only uses information regarding their own flights, where the
delay cost differences between flights are either inflated or
deflated.

Definition 2. The inflation strategy with rate r ≥ 0 is to reveal
the modified delay function d̂ri (f, t) := r(d̂i(f, t) − nf (t)) +
nf (t).

The inflation strategy modifies the delay costs such that
the mean delay costs of all flights stays the same, but the
difference between these costs are either inflated or deflated.
A rate of r > 1 inflates the cost differences, whereas a rate of
r < 1 deflates them. For example, suppose there are two flights
with unit delay costs of 1.2 and 0.8. The inflation strategy
with rate r = 2 will alter these unit delay costs to 1.4 and 0.6,
whereas a rate of r = 0.5 will alter these unit delay costs to
1.1 and 0.9. A rate of r = 0 makes it so that all flights have
the exact same delay cost, d̂i(f, t) = nf (t) for all f and t.
This corresponds to a flight having a unit delay cost of 1.

In the simulations in Section VI-C, we show that the
inflation strategy performs better than the truthful strategy for
certain values of the inflation rate. However, the exact rate
which maximizes cost savings both depends on the particular
airline, and the value of λ which is used to enforce fairness.

IV. TWO-FOR-TWO TRADES

The two-for-two trades mechanism allows airlines to de-
crease the delay of a high-valued flight in exchange for a delay
increase of a low-valued flight. Each airline submits trade
offers in the form (fd, td; fu, tu), which can be interpreted
as: We are willing to move down flight fd to time td in return
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for moving up flight fu to time tu.2 fu is the “valuable”
flight which the airline wishes to reduce the delay of in
exchange for the delay increase of flight fd. Airlines give up
two slots in return for two slots, hence the name two-for-two.
Airlines submit as many offers of this form as they like, and
the mechanism chooses an allocation which maximizes the
number of accepted trades.

The action space of each player is the set of trade offers
they can give. For airline i, let Oi = {(fd, td; fu, tu) | fd, fu ∈
Fi, td > φ0(fd), tu < φ0(fu)} be the set of all trades which
airline i can offer. Then, Si = 2Oi is the set of all actions
that airline i can take, where each action is a set of offers.
If an offer (fd, td; fu, tu) is accepted (or executed), flight fd
is assigned slot td, and fu is assigned tu. From an initial
allocation φ0, a set of offers O ⊆

⋃
i Si is feasible if the

acceptance of all offers in O results in a feasible allocation
(i.e. the number of flights landing at each time period does
not change).

We define the utility of an offer to be the reduction
of delay cost if the offer is accepted. Formally, for of-
fer o = (fd, td; fu, tu), we denote by its utility u(o) =
(di(fd, φ0(fd))− di(fd, td)) + (di(fu, φ0(fu))− di(fu, tu)).

Once all airlines submit their offers, the allocation function
A outputs the allocation outputs an allocation that maximizes
the number of accepted trades. Formally, A chooses a feasible
set of offers O∗ ⊆

⋃
i Si of maximum cardinality, and returns

the allocation that results from accepting these offers. If there
are multiple optimal solutions (i.e., multiple feasible offer
sets of maximal cardinality), then we assume that one of
the optimal solutions is picked uniformly at random. This
assumption is revisited in Section V-A.

A. Implementation of the Allocation Function

The allocation function A is implemented as an integer
program. Let s1, . . . , sn be the strategies of all airlines, and
let O =

⋃
i si be the set of all submitted offers. Let D =⋃

(fd,td;fu,tu)∈O{(fd, td)} be set of “downward movements”
of all offers, and let U =

⋃
(fd,td;fu,tu)∈O{(fu, tu)} be set

of “upward movements” of all offers. For every flight f , let
Tf = {t | (f, t) ∈ U ∪D}∪{φ0(f)} be the set of all possible
landing times for f . The following variables are used:

• xf,t ∈ {0, 1} ∀f ∈ F, t ∈ T . xf,t = 1 iff flight f is
assigned to land at time t.

• yo ∈ {0, 1} ∀o ∈ O. yo = 1 iff offer o is accepted.

Then, A is implemented using the following integer pro-
gram, which has been slightly modified from [2]:

max
∑
o∈O

yo (9)

2This is a slight modification from what is described in [2], which interprets
an offer as fd moving up to at least td, and fu moving to at most tu. This
modification does not reduce the capabilities of the mechanism, since an offer
of structure “at least, at most” can be represented as a finite number of offers
of “exact” structure.

s.t.
∑
t∈Tf

xft = 1 ∀f ∈ F (10)

∑
f∈F

xft = |{f | φ0(f) = t}| ∀t ∈ T (11)

xfdtd =
∑

(fd,td;fu,tu)∈O

y(fd,td;fu,tu) ∀(fd, td) ∈ D

(12)

xfutu =
∑

(fd,td;fu,tu)∈O

y(fd,td;fu,tu) ∀(fu, tu) ∈ U

(13)

∆i =
∑
f∈Fi

∑
t∈T

(t− φ0(f))xft ∀i ∈ I (14)

|∆i| ≤ λ ∀i ∈ I (15)
xft ∈ {0, 1} ∀f ∈ F, t ∈ T (16)
yo ∈ {0, 1} ∀o ∈ O (17)

The objective function (9) maximizes the total number of
accepted trades. (10) ensures that all flights are assigned to
a feasible landing time, and (11) enforces that the resulting
allocation is feasible. (12) and (13) ensure a flight lands at a
particular time if and only if an offer corresponding to that
flight and time is accepted. (14) and (15) enforce λ-fairness.

B. Incentive Compatibility

Since two-for-two trades is an indirect mechanism, to assess
incentive compatibility, we check whether it has a dominant
strategy. Unfortunately, we show that there are instances of
this game in which a dominant strategy does not exist.

Theorem 2. There exist instances of the two-for-two trades
game in which a player has no dominant strategy.

Proof. Consider the case when there are two airlines with
three flights each, as shown in Fig. 5. Suppose that flight A1

is very valuable, hence airline A would like A1 to get the
6:00 slot. We consider two trade offers in which airline A can
make in this scenario. Let oA1, A2

= (A2, 6:06; A1, 6:00) and
oA1, A3

= (A3, 6:10; A1, 6:00), as shown in Fig. 5.
Suppose that airline A’s unit delay costs for its flight A1, A2,

and A3 are 100, 99, and 10, respectively. This implies that the
utility of offer oA1,A2

is 1, and the utility of offer oA1,A3
is

90. We show that airline A does not have a dominant strategy;
in this game, the best strategy of airline A depends on airline
B’s strategy.

Because both oA1,A2 and oA1,A3 involve flight A1, the
trades are mutually exclusive. Intuitively, since offer oA1,A3

is 90 times more valuable than offer oA1,A2
, the airline may

be better off by only submitting oA1,A3
— we will derive a

contradiction using this idea.
We consider two cases of offers by airline B shown in Fig. 6.

We proceed by contradiction, and suppose that a dominant
strategy for airline A exists, denoted by s∗A. s∗A is a set of
offers which maximizes airline A’s utility in both case 1 and
2.

1) Case 1: Airline B gives one offer. This offer happens to
be what is necessary for airline A’s offer oA1,A2 to be executed.
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𝐴1	

𝐵1

𝐴2

𝐵2

𝐵3

𝐴3

𝑜𝐴1,𝐴3𝑜𝐴1,𝐴2
6:00

6:02

6:04

6:06

6:08

6:10

Fig. 5: There are two airlines, A and B, each with three flights.
The initial slot allocation is as shown. The arrows on the left
correspond to the offer oA1,A2

, and the arrows on the right
correspond to oA1,A3

.

Case 1 Case 2

𝐴1

𝐵1

𝐴2

𝐵2

𝐵3

𝐴3

𝐴1

𝐵1

𝐴2

𝐵2

𝐵3

𝐴3

6:00

6:02

6:04

6:06

6:08

6:10

Fig. 6: Two cases of airline B’s actions.

We claim that airline A must submit this offer to receive the
highest utility.

Claim: oA1,A2 ∈ s∗A.
From the perspective of airline B, there are two outcomes:

their offer gets executed, or it does not. If the offer is not
accepted, both airlines receive zero utility. Suppose it does
get accepted. Then, flight B1 takes slot 6:02 and B2 takes
6:04. Then, there are three spots left for airline A’s flights:
6:00, 6:06, and 6:08. The optimal way for airline A to assign
flights to these times is to assign A1 to 6:00, A2 to 6:06,
and A3 to 6:08. This allocation will occur if and only if offer
oA1,A2

is executed. Furthermore, this allocation is feasible if
s∗A = {oA1,A2

}. Therefore, it must be that oA1,A2
∈ s∗A.

2) Case 2: In this case, airline B submits two offers. Note
that because each airline only has three flights, at most one
trade will be executed for each airline. Therefore, for airline
B, there are three outcomes: no trades are executed, oB1,B2

is executed, and oB1,B3
is executed. By considering all three

of these cases and using an analogous argument to Case 1,
the best case for airline A is that oA1,A3

gets accepted (and
this is feasible if the airline only submits oA1,A3 ). Therefore,
airline A receives the highest utility when oA1,A3 is accepted,
and hence it must be that oA1,A3

∈ s∗A.
From these two cases, we have shown that both oA1,A2

and oA1,A3
must be in the dominant strategy, s∗A. However,

including both of these offers is not optimal for case 2.
When airline A submits both of these trades in case 2,
there are multiple optimal solutions for the mechanism to
pick from; it can either accept oA1,A2

, oA1,A3
(or possibly

another offer that airline A submits). In such scenarios, we
assume that the mechanism picks any optimal solution with

equal probability. Then, there is a positive probability that
oA1,A2

will be accepted; and in this case, the expected utility
for airline A is strictly less than 90. However, if airline A
submitted only oA1,A3

, their expected reward is exactly 90.
Therefore, an action containing both oA1,A2

and oA1,A3
cannot

be a dominant strategy. By contradiction, no dominant strategy
exists.

It is not the case that for every instance of the two-for-two
trades game that there is no dominant strategy. For example,
if an airline only has one flight, their dominant strategy is to
make no offers, since that is the only action in their strategy
space.

C. Simple Strategies

Since searching for a dominant strategy is futile, we look
for strategies that perform well in practice. We develop two
simple strategies called naive and threshold. Both strategies are
“simple”, in that they only take into consideration information
on the airline’s own flights and their cost functions. They both
only submit offers of positive utility, so that the airlines are still
guaranteed individual rationality. Furthermore, the decision
rules are easy to implement.

Definition 3. The naive strategy for an airline i is to submit
offers {o ∈ Oi | u(o) > 0}.

In this strategy, an airline submits as many offers as it can, as
long as the offers give a positive payoff. Since the airline does
not know the actions of other airlines, intuitively, this strategy
attempts to maximize the airline’s total number of accepted
trades. However, the drawback of this strategy arises from the
fact that the airline’s utility function is not a function of the
number of their trades that are accepted, but of the utility of
each accepted trade. If there is a high discrepancy between the
utilities of their offers that are mutually exclusive, similar to
the situation described in the proof of Theorem 2, it may not
necessarily be better to submit all positively valued offers.

To combat this problem of mutually exclusive offers, instead
of blindly throwing out all offers of positive value, one can
submit the ones whose values exceed a certain threshold.
This threshold is chosen not as an absolute number, but as
a percentile relative to the utilities of other mutually exclusive
offers. For an offer o = (fd, td; fu, tu) of airline i, let
ω(o) ⊆ Oi be the set of offers with positive utility and
are mutually exclusive with o. Offers o and o′ are mutually
exclusive if the offers involve a flight in common.

Definition 4. The threshold strategy with threshold p ∈ [0, 1]
is as follows: For every possible offer o ∈ Oi, submit trade
o if and only if u(o) is above the p-th percentile of {u(o′) :
o′ ∈ ω(o)}.

This strategy depends on a parameter p, and we will see
how the performance of this strategy changes as p is changed.
A high value of p implies that the airline is more selective
about the offers that they provide. p = 0 corresponds to
submitting all positive utility offers, which corresponds to the
naive strategy.
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Note that both the naive and threshold strategies do not have
any performance guarantees. It is easy to construct an example
in which there exists a strategy which provides positive utility,
but both the naive and threshold strategies give zero utility.
(In such an example, the airline may have to offer a trade of
negative utility.) However, the simulations on real world data
in Section VI-D suggest that these strategies perform well on
practical instances.

V. BEST RESPONSE FOR THE TWO-FOR-TWO MECHANISM

While an airline may not necessarily have a dominant
strategy in the two-for-two trades mechanism, given the strate-
gies of other airlines, a “best” strategy always exists. In this
section, we develop an algorithm to calculate this best response
strategy, using a branch and bound algorithm. We note that in
practice, airlines will not know the exact actions of the other
airlines. However, the best response strategy gives a lower
bound on the delay costs the airline will incur from this mecha-
nism. We use this lower bound to benchmark the performance
of the naive and threshold strategies. Additionally, the best
response strategy can give insight into what makes a good
strategy.

A. Definition of Best Response

We slightly alter the definition of best response due to the
existence of multiple optimal solutions. The standard definition
of the best response strategy is defined as the strategy that
gives the lowest delay costs in expectation over all possible
optimal solutions. This definition works in theory, but is
difficult to work with in practice since optimization solvers
only return one solution, and the chosen solution is not
necessarily drawn uniformly at random. Therefore, we define
a best response strategy to be a strategy in which there exists
an optimal solution which emits a delay cost lower than any
other strategy.

Let Ψ(s, s−i) ⊆ Φ be the set of all optimal allocations of
A(s, s−i).

Definition 5. Given the actions of other airlines s−i, sBR ∈
Si is a best response strategy for airline i if there exists an
optimal allocation φ∗ ∈ Ψ(s, s−i) such that for all other
strategies s′ ∈ Si, di(φ∗) ≤ di(φ

′) ∀φ′ ∈ Ψ(s′, s−i). The
best response cost is di(φ∗). sBR is a minimal best response
strategy if it is a best response strategy, and no proper subset
of it is a best response strategy.

In other words, the best response cost is the lowest cost that
the airline would incur assuming that when there are multiple
optimal solutions, the solver always picks the solution that is
the most favorable for this airline. Hence, this definition of
the best response cost gives an lower bound of the standard
definition of the best response cost. Since our main purpose
in calculating the best response is to use it as an lower bound
comparison for other strategies, this definition actually gives
a stricter comparison.

If a strategy sBR is a minimal best response, then it means
that all of its offers were accepted by the mechanism. If there
was an unaccepted offer, we could simply remove it.

We define the best response problem to be the problem
of finding the minimal best response for a particular airline
in a two-for-two game and the other airlines’ strategies. An
instance of a best response problem for airline i is (G, s−i),
where G is the two-for-two game, and s−i is a vector of
strategies of the other airlines.

Since each airline has a finite number of flights and time
is discretized, the strategy space of each airline is also fi-
nite. Therefore, one could find the best response strategy by
enumerating all possible strategies. However, the number of
possible strategies is 2|Oi|, where Oi is the set of feasible
offers for airline i. In a typical practical example, the number
of feasible offers is in the order of thousands, making the
enumeration of strategies intractable. Therefore, we develop
an algorithm to find the best response which uses heuristics
to decide which strategies to check. This algorithm is not
theoretically guaranteed to be faster than the brute-force search
in the worst case. However, we see that the algorithm performs
well on practical instances.

B. Modification of the Allocation Function

Before we describe the algorithm for the best response,
we describe a couple modifications of the allocation function,
A, implemented as an IP formulation as described in Sec-
tion IV-A. These modifications will be the main tools that the
best response algorithm uses. Recall that A takes the offers
from all airlines as input, and outputs the allocation which
maximizes the number of trades.

The best response algorithm modifies the allocation function
by taking advantage of three facts about this IP formulation:

1) It takes on the order of seconds to complete.
2) The objective function can be changed.
3) Constraints concerning the execution of certain offers

can be added.
Our algorithm runs A several times at each iteration, so

it must be able to run quickly. We sometimes change the
objective function of A to be to minimize the delay cost of an
airline, di, rather than to maximize the total number of trades.
Each iteration of the algorithm has a restricted solution space
to search for the optimal solution, which corresponds to adding
constraints regarding the offers to A. Given a set of offers O,
there are three types of constraints that we may add:

1) all(O): All offers in O must be accepted. Corresponds
to the constraint

∑
o∈O yo = |O|.

2) at-least(O): At least one offer in O must be accepted.
Corresponds to the constraint

∑
o∈O yo ≥ 1.

3) not-all(O): At least one offer in O must not be accepted.
Corresponds to the constraint

∑
o∈O yo ≤ |O| − 1.

More than one of the above constraints can be added.
Given an instance of the best response problem, (G, s−i),

denote Â
C

f : 2Oi → 2Oi to be the allocation function
which takes the airline i’s offers as input, runs the two-for-
two mechanism with the objective function of minimizing f
subject to constraints C, and outputs the subset of airline
i’s offers that were accepted. Since the initial allocation,
φ0, and the strategies of other airlines, s−i, are known,
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Â
C

f can be computing by modifying the formulation of the
original allocation function A, using the three facts about the
formulation A as stated previously. If the objective function
is the default one, to maximize the number of trades, we
will denote this by not specifying f ; hence we simply write
Â

C
. C is a set of constraints, where each constraint is in

one of the three forms described above. An example of C
is {all(O), all(O′), not-all(O′′)}, where O,O′, O′′ are sets of
offers.

C. Best Response Algorithm

We develop an algorithm for the best response problem
using a branch and bound approach, which is similar to a
divide and conquer method. The algorithm generates a tree
during its search, in which each node of the tree is allocated a
subset of the solution space to search for the optimal solution.
A subset of the solution space is characterized by a set of
constraints.

A node is processed by running the bounding and branching
stage. If a node’s solution space is deemed to not contain the
optimal solution (the bound stage), then the node is pruned.
Otherwise, the node branches into two children nodes, where
each child node has a further restriction on the solution space
it searches on. Every constraint of a parent node is passed on
to its children nodes, which implies that the solution space
for a child node is a subset of the solution space of its parent
node. We process all nodes in the tree until all leaf nodes are
pruned. A high-level description of how a node is processed
is shown in Fig. 7.

Node with Constraints 𝑪

1) Find lower bound: 𝑂#∗ = 𝑨'()
# 𝑂* .

2) Check if this lower bound is feasible.

There is at least one offer in 𝑂#∗
that is not in the best response.

The best response contains 
𝑂#∗ , along with other offers.

Fig. 7: An illustration of how a node in the branch and bound
tree is processed.

The tree initially has one root node with no constraints, and
the algorithm starts by processing this root node. We maintain
a value B, initialized at +∞, which represents the lowest
delay cost found in a feasible solution found thus far. In other
words, there exists a set of offers O for airline i such that
di(A(O, s−i)) = B.

1) Bounding Stage: A node has a set of constraints C that
must be satisfied. Using these constraints, we calculate an
lower bound and a feasible solution.

Lower Bound: We compute O∗C = Â
C

di
(Oi), which runs

the modified allocation function whose objective function is
to minimize airline i’s costs, while satisfying constraints C.
Airline i’s input is Oi, the set of all possible trades for airline i.
The modified allocation function returns a set of offers O∗C ⊆
Oi, the set of airline i’s offers that were accepted. Then v∗C =∑

o∈O∗
C
v(o) is the lowest delay cost that airline i can ever

achieve with constraints C, which corresponds to the lower
bound for this node. If v∗C ≥ B, we prune this node.

Feasible Solution: We use the set of accepted offers found
in the lower bound, O∗C , and use that as airline i’s input to
the original allocation function, φ = A(O∗C , s−i) (which max-
imizes the total number of accepted offers). If the allocation
decides to accept all offers provided by the airline, O∗C , then
this is a feasible solution that is equal to the lower bound for
this node. In this case, we prune this node. Otherwise, a strict
subset of offers in O∗C were accepted. If airline i’s cost from
this allocation is less than B, then we can update B to be this
value.

This allocation φ is the one that maximizes the total number
of trades; denote the total number of trades accepted by n∗.
We check whether there exists another optimal solution (with
n∗ total accepted trades), where the set of accepted offers of
airline i is exactly O∗C . If one exists, it corresponds to a best
response. To do this, we run Â

D
(O∗C), where D = {all(O∗C)}.

That is, we run the allocation function which maximizes the
total number of accepted trades, but with the constraint that
all offers in O∗C are accepted. Airline i submits only the trades
O∗C , so its delay cost from this allocation is exactly v∗C . If the
total number of trades executed from this allocation is equal to
n∗, then there exists an optimal solution where exactly offers
in O∗C are accepted. By our definition, O∗C is a best response
(subject to constraints C), and we can prune this node.

If we have not pruned this node in this bounding stage, the
node moves on to the branching stage.

2) Branching Stage: We branch the node into two child
nodes. Each child node is further restricted from the parent
node’s constraints, while making sure the two child nodes
span all possible solutions from the parent. From the bounding
stage, we found that O∗C is not a best response. Then, we can
search for the best response by either adding offers to O∗C , or
removing offers from O∗C . We branch on these two cases:

1) The best response is O∗C ∪O′, for some O′ ⊆ Oi \O∗C ,
O′ 6= ∅. In other words, O∗C is included in the best
response, along with at least one other offer. This child’s
constraint can be written as C ∪ {all(O∗C), at-least(Oi \
O∗C)}.

2) There is at least one offer in O∗C that is not included
in the best response. This child node’s constraint can be
written as C ∪ {not-all(O∗C)}.

Note that for every child node, we incorporate its parent’s
constraints. Furthermore, each child node has a constraint that
the solution space will not include O∗C , and both children have
solution spaces that do not overlap. Therefore, at each node,
we eliminate one strategy (namely, O∗C) from being the best
response, which the algorithm never checks again. Thus, this
branch and bound algorithm is guaranteed to terminate in a
finite number of steps.

VI. RESULTS

A. Computational Experiments

We created problem instances using historical data from
ground delay programs that occurred between June and August
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2016 in San Francisco International Airport (SFO) and La-
Guardia Airport (LGA) retrieved from the Air Traffic Control
System Command Center database [16]. These airports were
chosen based on their propensity for GDPs. In the five-year
period 2012-2016, SFO experienced the largest number of
GDPs among any US airport (916 GDPs, with an average
duration of 5.6 hours). While LGA had the third-largest
number of GDPs in this period (590 GDPs, behind SFO and
EWR), it had the longest average duration of any airport
(9.7 hours). The choice of these airports thereby allows us
to consider airports with high propensity to GDPs, while also
considering one airport with a very large number of shorter-
duration and another with a smaller number of long-duration
GDPs. Another desirable attribute, as we will see shortly, is
that the two airports have very different airline mixes.

For each GDP, we retrieved the original flight schedules
from Aviation System Performance Metrics [17] and Bureau of
Transportation Statistics [18]. A summary of these GDPs are
shown in Table I. We discretized time into 15-minute intervals;
therefore all departure and landing times were rounded to the
nearest 15 minutes. Since the announced GDP capacities are
on an hourly basis, we divided this number by 4 obtain the
capacities for every 15 minutes, while rounding appropriately
to whole numbers (e.g. an hourly capacity of 43 turns into
15 minutes capacities of 11, 11, 11, 10). Using these new
capacities, we rescheduled the affected flights using RBS (first-
scheduled-first-served). This new schedule of delayed flights
was used as the initial allocation, φ0, for the reallocation
mechanisms.

The last thing needed to set up a reallocation mechanism are
the airlines’ cost functions, which unfortunately is not possible
to attain for each historical flight. Thus, we made assumptions
about the cost function structure and developed estimates of
flight costs using the aircraft capacities. In particular, we as-
sumed that costs are linear in delay time, and also linear in the
capacity of the aircraft. This implies that airlines which operate
larger aircrafts have larger absolute delay costs. For each flight
from the major airlines, we retrieved aircraft capacity data
from Bureau of Transportation Statistics, and then multiplied
this number with a normally distributed random multiplier
with mean 1 and standard deviation 0.1. We then normalized
these costs so that the average delay cost for all flights between
all airlines for one hour of ground delay is 1.

TABLE I: Summary statistics for the GDPs which were used
for the experiments in this section.

SFO LGA
Number of GDPs 62 36
Average duration (hrs) 5.26 9.79
Average # of delayed flights 60.3 163.3
Average delay of delayed flights (hrs) 0.50 0.55

The airline composition in each airport can be seen in Fig. 8,
and the assumed distribution of flight unit delay costs for each
airline can be seen in Fig. 9. The airports SFO and LGA were
chosen because the type of GDPs and the airline composition
are very different at the two airports.
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Fig. 8: Airline composition for flights flying into SFO and
LGA. The six biggest airlines flying into SFO are: United
(UA), SkyWest (OO), Virgin America (VX), Southwest (WN),
American (AA), and Delta (DL), and the six biggest airlines
flying into LGA are American (AA), Delta (DL), ExpressJet
(EV), Southwest (WN), United (UA), and JetBlue (B6).
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Fig. 9: Distribution of flight unit delay costs for each airline.

B. Effect of Fairness on Total Cost Savings

Recall that an allocation is λ-fair if for every airline, the
absolute values of the net movements of their flights is less
than or equal to λ. We see the effect of changing the value
of λ on total cost savings. In this section, we disregard the
issue of incentive compatibility, and assume that airlines are
truthful. For SAP, the airlines reveal their true delay costs,
and for the two-for-two trades mechanism, each airline uses
the naive strategy.
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Fig. 10: The mean total cost savings and the mean total delta
from the SAP mechanism as λ is varied.

Because a low value of λ restricts the space of allocation
that a mechanism can choose from, we expect that increasing
λ will increase cost savings. We see this general trend for
the SAP mechanism, as seen in Fig. 10. Because the SAP
mechanism minimizes the total scaled cost, increasing λ does
not necessarily imply that the actual cost savings will increase;
and we see that this is not strictly the case for SFO.

1.60

1.65

1.70

1.75

0 1 2 3 4 5
λ

M
ea

n 
To

ta
l C

os
t S

av
in

gs

(a) SFO

3.0

3.1

3.2

3.3

3.4

3.5

0 1 2 3 4 5
λ

M
ea

n 
To

ta
l C

os
t S

av
in

gs

(b) LGA

Fig. 11: The mean total cost savings and the mean total delta
from the two-for-two mechanism as λ is varied.

For the two-for-two mechanism, the relationship between λ
and cost savings is not as clear as in the SAP mechanism,
as seen in Fig. 11. The two-for-two mechanism maximizes
the number of accepted trades, and it does not have any
information on any individual flight costs. When we looked

TABLE II: The decrease in the number of accepted offers
when the two-for-two mechanism was run with strict fairness
enforced (λ = 0), compared to when it was run with no
fairness constraint.

# decrease of % instances
accepted offers SFO LGA

0 93.5 97.2
1 6.5 2.8

at the number of accepted trades, there was almost no change
from when fairness was enforced or not (Table II). Therefore,
from the mechanism’s perspective, λ hardly has any impact in
the resulting allocation.
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Fig. 12: The range of total cost savings of all optimal solution
for different values of λ for a GDP in SFO which occurred
on 06/13/2016,. The “Actual” value is the cost savings from
the solution that the solver chose.

Taking a closer look into the solutions, the reason for this
is because there happens to be multiple optimal solutions in
the two-for-two mechanism. Fig. 12 shows the range of total
cost savings of all optimal solutions for one particular GDP.
We see that there is a large discrepancy in the minimum and
maximum cost savings for an optimal solution, and it is not
the value of λ that determines the cost savings, but rather the
particular solution that the optimization solver happens to pick.
This trend is similar for other GDPs.

We conclude that for the two-for-two mechanism, λ does
not have much of an impact on the total cost savings; but
rather, the cost savings is determined by the particular optimal
solution that the solver happens to choose. The presence of
these multiple optimal solutions suggest that we could increase
efficiency by getting further input from the airlines on tie-
breaking preferences. However, asking for additional input
from the airlines will necessitate further analysis on incentive
compatibility of those inputs.

C. Inflation Strategy for SAP

Next, we simulated the inflation strategy for various values
of the inflation rate for the SAP mechanism. Recall that an
inflation rate of 1 corresponds to the truthful strategy, and a
rate of 0 implies that all flights have the exact same delay cost.
For each of the GDPs in SFO and LGA and each of the six
largest airlines in each airport, we ran one experiment where
that airline used the inflation strategy, and everyone else used
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the truthful strategy. The average cost savings by the airline
using the inflation strategy is shown in Fig. 13.
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Fig. 13: The mean cost savings for the airline using the
inflation strategy, as the rate for the inflation strategy is varied,
for different value of λ which controls the level of fairness.
An inflation rate of 1 corresponds to the truthful strategy.

We see that the best rate depends greatly on the value of
λ that was chosen for fairness. When λ = 0, the cost savings
increase as the inflation rate increases. On the other hand, hen
λ = 10, the best inflation rate to use is 0.1, and the cost
savings sharply decrease as the inflation rate increases.

We give intuition on these results using a simple example.
Suppose there is one airline with two flights, f1, and f2, and
f1 is twice as valuable as f2. Then, the truthful scaled unit
delay cost of f1 and f2 would be 1.33 and 0.67 respectively.
Denote by φ(n1, n2) the allocation where f1 moves up by n1
slots (moving down by |n1| slots if n1 < 0), and f2 moves
up by n2 slots. Suppose strict fairness is enforced (λ = 0).
In this case, if this airline’s flights were to be reallocated,
then the only valid allocation is φ(n,−n), for some n ∈ N,
since the resulting allocation must be fair and individually
rational. The net delay cost reduction by such a movement is
0.66n. However, suppose they misreported by inflating their
costs by a rate of 2, making their unit delay costs 1.66 and
0.34 respectively. Then, the mechanism believes that the cost
reduced by the allocation φ(n,−n) is 1.32n, rather than the
actual 0.66n. The mechanism therefore has a bigger incentive
to make this allocation with a larger value of n. Therefore,
when fairness is strictly enforced, it is better to inflate the cost
differences as much as possible. On the other hand, suppose
λ = 10. Then, since fairness is not heavily enforced, it is
not the case that the only type of movements for the airline
are φ(n,−n). If the airline used the inflation strategy with
a rate of 2, then the allocation φ(n,−4n) is still a valid
allocation. With that allocation, the airline’s delay cost will
actually increase by 1.35n. If the airline reports truthfully, then
φ(n,−2n) is still a valid allocation, which will not change

their total delay costs. However, if the airline actually deflates
their costs, then φ(n,−2n) does not become valid since IR
is enforced. When the airline deflates their costs, only the
favorable allocations for the airline such as φ(n,−n) or even
φ(n,m) with n,m > 0 remain valid. These observations
suggest that whether fairness is enforced or not, it is not
difficult to manipulate the mechanism.

Now, suppose all airlines use the inflation strategy with the
same value of the inflation rate. Then, the SAP mechanism
would output the same allocation as if all airlines used the
truthful strategy. This is because the SAP mechanism reallo-
cates flights based on the relative difference in flight delay
costs. If all airlines use the inflation strategy with the same
inflation rate, then the relative difference in flight delay costs
do not change.

This fact, along with the trends in Fig. 13, suggest that
this mechanism does not have an equilibrium solution when
all airlines use the inflation strategy. Suppose that the trends
in Fig. 13 hold for all airlines. When fairness is enforced, it
is desirable for all airlines to inflate their costs. However, if
everyone inflates their costs, the outcome from the mechanism
is the same as if no airlines inflated their costs. Then, it is
desirable for airlines to inflate their costs even further. In
this scenario, the airlines’ strategies do not converge to an
equilibrium. A similar argument can be made for deflating
their costs when fairness it not enforced. Therefore, even
when airlines are restricted to use the simple inflation strategy,
our results suggest that there is no Nash Equilibrium.3 A
theoretical analysis of this conjecture is a direction for future
research.

D. Threshold Strategy for Two-for-Two Trades

Next, we analyze the threshold strategy for the two-for-
two trades mechanism. Since we saw from Section VI-B that
the level of fairness does not have a large impact on this
mechanism, we simply assume fairness to not be enforced.

1) Best Response Algorithm: We first assessed the perfor-
mance the branch and bound algorithm for the best response
problem. For each of the 62 GDPs, we made one instance
for each of the six biggest airlines in SFO. For each of these
airlines, we ran the best response algorithm given that the
strategies of all other airlines is the naive strategy. For each
instance, we ran the branch and bound algorithm for up to
5,000 iterations, where processing one node of the branch and
bound tree represents one iteration. If the algorithm did not
terminate by then, then we simply recorded the best strategy
found so far, and what percentage of the upper bound it
achieved. We evaluated the performance of the algorithm on
the percentage of the upper bound a feasible solution was able
to achieve (if an instance terminated, then it would achieve
100%), and the number of iterations of the algorithm took.
The results, grouped by airline, are shown in Table III.

From the table, we see that the algorithm performed worse
on larger airlines, since an airline with many flights will
have a larger strategy space. Out of the instances that did

3The existence of a Nash Equilibrium is not guaranteed in this mechanism
because the strategy space for each player is infinite and noncompact.
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TABLE III: Performance of the branch and bound algorithm
for the best response problem for SFO.

% instances % of upper

Airline Average that bound achieved # of iterations
# flights terminated Mean Median Mean Median

UA 56.6 79.0 96.9 100.0 1136.7 8.5
OO 37.5 83.0 97.0 100.0 633.4 4.0
VX 19.6 98.0 99.5 100.0 59.3 1.0
WN 14.5 100.0 99.9 100.0 27.5 1.0
AA 13.7 100.0 100.0 100.0 1.6 1.0
DL 13.4 100.0 100.0 100.0 8.1 1.0

Total 25.9 93.0 98.9 100.0 439.3 1.0

not terminate in 5,000 iterations, the average number of all
possible offers for that airline was around 60,000. However,
most of the time, the algorithm terminated very quickly; it
converged after one iteration for 71.2% of all instances.

One of the key features of a best response strategy is that
it has the possibility of including offers of negative utility.
However, 79% of best response strategies did not include any
offers of negative utility, and 11.5% had exactly one negative
utility offer. This implies that airlines do not lose very much
by only considering offers of positive utility, which is what
the naive and threshold strategies do.

2) Threshold Strategy: Next, we simulated the threshold
strategy and evaluated their performance compared to the best
response strategy. Similar to the inflation strategy, we assumed
that all other airlines used the naive strategy, and we let one
airline use the threshold strategy with varying values of p, from
0 to 0.95. The results are shown in Fig. 14. If the algorithm
to compute the best response did not terminate, then we used
the upper bound of the best response given by the branch and
bound tree instead.
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Fig. 14: The mean cost savings of the threshold strategy as
p varies from 0 to 0.95, as a percentage of the mean cost
reduction of the best response. The naive strategy corresponds
to the threshold strategy with p = 0.

We see from Fig. 14 that every airline in both airports have a
very similar pattern of cost savings as p changes. The savings
increase steadily as p increases, peaking when p is between
0.7 and 0.9, then it decreases past that. For SFO, a threshold
of p = 0.8 achieves 71.6% of the best response cost savings
on average, and for LGA, p = 0.75 achieves 73.1% of the
best response savings. The best response strategy depends
on knowing the exact strategies of other airlines, which is
an impractical assumption. By only taking the airline’s own
flights into consideration, the threshold strategy is able to
recover a significant percentage of the best response cost
savings.

3) Equilibrium: Suppose all airlines used the threshold
strategy. If all airlines used the same value of the threshold
p, the average total cost savings from all airlines is shown by
the solid lines in Fig. 15. However, in reality, airlines would
choose the threshold p that is best for them. The dotted line
shows the average total cost savings when the airlines play in
equilibrium of threshold strategies, where the equilibrium was
approximated using the following iterative algorithm:

1) For every airline i, initialize Si to be the threshold
strategy with p = 0.

2) For every airline i:
a) Let pi ∈ {0, 0.1, . . . , 0.9} be the best response

threshold strategy when all other airlines use strat-
egy S−i.

b) Update Si to be the threshold strategy for airline i
with threshold pi.

3) Repeat 2) until there are no changes to the best response
for all airlines.

We note that not every instance converged to equilibrium after
the algorithm ran for 24 hours — 16 out of 62 instance for SFO
and 22 out of 36 instances for LGA did not converge. For these
instances, we used the state at the end of the algorithm as the
approximate equilibrium solution. We see that the equilibrium
solution has higher total cost savings than when all airlines use
the naive strategy, and significantly higher than if all airlines
used a high threshold. This shows that the strategic behavior
of airlines actually increases the social welfare of the system.

VII. CONCLUSIONS

In this paper, we evaluated mechanisms for landing slot ex-
change, and we found that assuming the airlines to be strategic
can have a large impact on the outcome and performance of
the mechanism.

We showed that the SAP mechanism is not incentive com-
patible, and empirically showed that the best strategy strongly
depends on the extent in which fairness is enforced.

We found that the two-for-two mechanism does not have
a dominant strategy. We empirically showed that the simple
threshold strategy performs almost as well as the best response
strategy. We saw that airlines being strategic and playing in
equilibrium of threshold strategies actually increased the total
cost savings, compared to when airlines submit all positively
valued offers.

A direction for future work is the design of other realloca-
tion mechanisms, including in the presence of side payments
or a virtual currency.
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Fig. 15: The solid line represents mean total cost savings when
all airlines use a threshold strategy with the same value of p.
The dotted line is the total cost savings when airlines play in
an equilibrium of threshold strategies.
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