Control of a non-stationary tandem queue model of the airport surface
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Abstract— Tandem queues have been used to model con-
gestion in a wide variety of systems such as communication
networks, manufacturing systems, supply chains and traffic
flows. This paper considers the optimal control of tandem
queues in order to mitigate surface congestion at large airports.

The taxi-out process is modeled by two queues in tandem: the
first one represents aircraft in a congested ramp or apron area,
and the second one reflects aircraft waiting in the departure
runway queue. The evolution of the mean queue lengths are
described using ordinary differential equations. The resulting
model is used to determine the optimal gate release rate for
departure flights, in order to control the lengths of queues on
the airport surface. Simulations of the optimal control policy
show a reduction in queue lengths, resulting in lower taxi-out
times.

I. INTRODUCTION

The lack of sufficient capacity at major airports worldwide
has resulted in congestion, especially with the growth in air
traffic demand over the past several years. This congestion,
in turn, has resulted in increased taxi times, flight delays,
fuel burn, and emissions. Increasing airport capacity typically
requires substantial investments in infrastructure (such as
new runways), and may not even be feasible due to tight
operating budgets and limited availability of land. These
factors have motivated the development of airport congestion
control algorithms that better utilize available capacity.

An approach that has been demonstrated to mitigate con-
gestion is to hold the departures at their gates by controlling
the pushback rate during periods of congestion [1]. The
pushback rate refers to number of aircraft that are allowed to
start the taxi-out process from their gates per unit time. The
control of pushback rate has been determined either using
heuristics [2], or using dynamic programming [3]. Several
previous studies have developed queuing models of the air-
port surface along with corresponding control algorithms [3],
[4]. However, these approaches have generally assumed that
the formation of queues is restricted to the runways, and that
queues do not form in other locations on the airport surface,
such as the ramp area. Moreover, time-varying demand and
service rates have not been explicitly considered in prior
work.

While some airports (for example, Boston Logan Inter-
national Airport (BOS)) primarily experience queues only
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at the runways [3], others present an exception to this
assumption. At these airports, additional queuing can occur
in the ramp or apron area, namely, the region near the
terminal buildings. One such prominent example is Charlotte
Douglas International airport (CLT), a large hub airport that
handles more than 1,400 aircraft operations each day [5].
The average taxi-out time (i.e., the time taken for an aircraft
to travel from the gate to the runway) during peak hours can
be as high as 30 minutes, even though the unimpeded taxi-
out time (i.e., during periods of low traffic) is only around
12 minutes.

Fig. 1. Airport layout for Charlotte Douglas International airport (CLT).
The flights taxiing-in and those taxiing-out are represented by gray and
black triangles, respectively. The ramp queue and runway queue are shown
in yellow and cyan, respectively.

Fig. 1 shows the physical layout of CLT, along with a
snapshot of aircraft locations. The figure shows the formation
of queues near the runway as well as on the ramp. As a
result of the ramp queue, flights spend around 10 minutes
on an average in the ramp area, which is nearly half of the
mean taxi-out time. These queues are formed because the
throughput of the runway and the spot (the exits from the
ramp area into the active movement area) are both restricted
due to operational constraints.

Ramp queue I

Fig. 2.

Runway queue

Tandem queue model for the taxi-out process.

Observations of complex airports such as CLT suggest that
such congestion in the ramp and runway is best represented
using two separate queues in tandem, as shown in Fig. 2. In
particular, this paper assumes that there are two different



servers: a spot server that serves the ramp queue, and a
runway server that serves the runway queues. Customers
(aircraft) first enter the ramp queue and wait for service by
the spot server, after which they enter the runway queue
(potentially with some delay) and wait until they are served
by the runway server. Such a tandem queue model would be
capable of reflecting congestion at multiple regions, which
is a critical need for airports like CLT.

Tandem queues, also known as queues in series, have
been used to model a wide variety of systems, including
communication networks, manufacturing systems, supply
chains and urban traffic flows [6], [7]. Two aspects have been
considered: the control of service rates in tandem queues [8],
[6], and the control of arrival rates [9]. The latter problem has
received relatively less attention [10], with the focus remain-
ing on regulating arrivals into the second queue [11]. These
works have assumed that the service rates and arrival rates
are stationary. In general, previous research on such queuing
models has been based on steady-state analysis, and few
methods exist for non-stationary queues [12]. However, real
world airports experience time-varying departure demand as
well as service rates, due to factors such as the number
of aircraft arriving from other airports, airline scheduling
practices, weather phenomena, wind and visibility patterns,
air traffic controller workloads, etc. There is therefore a
need to develop control strategies that can account for non-
stationary queues, especially for airports such as CLT that
exhibit queues at multiple locations. This paper fills this
gap in the literature by developing a non-stationary tandem
queue model of the airport surface, and then determining
an appropriate control policy (for the pushback rate) that
regulates the queue lengths on the surface. Specifically,
the pointwise stationary fluid flow approximation (PSFFA)
model [13] is used to construct a tandem queue model of
the airport surface. The PSFFA model yields a differential
equation that governs the dynamics of the mean queue
length, making it computationally efficient compared to other
methods.

II. MODEL OF NON-STATIONARY TANDEM QUEUES

The pointwise stationary fluid flow approximation
(PSFFA) model [13] is used to obtain the mean queue length
of a non-stationary tandem queue. The model is a continuum
approximation to the discrete queuing problem. The model is
derived by combining results from the steady state queuing
theory with the flow conservation principle. In this section,
the model for a single queue is presented first, followed by
a model for queues in tandem.

A. Single queue model

Let z(t) represent the average number of customers in
the queue. Let f;(¢) and f,(¢) represent the in-flow and
out-flow from the queue at time t. All the quantities are
ensemble averages at a particular time instant. From the flow
conservation principle, we have:

B(t) = —fo(t) + filt). (1)

Let A(t) and u(t) denote the average arrival rate and service
rate, respectively, at time ¢. Assuming that there are no
restrictions on the queue length, we have f;(t) = A(¢). For
the out-flow, we can write f,(t) = u(t)p(t), where p(t) is
the average utilization of the server. The queue dynamics
therefore takes the form:

#(t) = —p(t)p(t) + A(D). @)

The average utilization, p(t), is approximated by a function,
G(z(t)). This function G (z(t)) needs to satisfy the following
properties: (a) G(0) = 0 and G(o0) = 1; (b) G(x) is strictly
concave and non-negative Vz € [0, c0), in order to represent
congestion. The dynamics for z(¢) can then be rewritten in
terms of G(x) as:

#(t) = —p(t)G(x) + A(t), 2(0) = xo. 3)

The expression for G(z) is obtained by matching the steady-
state number of customers in the system. If the arrival
process is assumed to be Poisson, the Pollaczek-Khinchine
formula ((4)) provides an expression for the mean number
of customers (z;) at steady state [14], namely,
2 2
p~(1+C5)
Ts=p+ ——7". “4)
2(1-p)
Here, C,, is the coefficient of variation of the service time
distribution. Expressing p in terms of x4, we get:
xs+1—y/22+2C2z,+1
p= . . 5)
1-C2
Using the fact that G(z) is an approximation for p, we
obtain G(x) as follows,

r+1— /22 +2C2x+1
)

1-C2
For example, since C, = 1 for a M/M/1 queue, we can
show that G(z) = x/(1 + x) (using L'Hospital’s rule).

G@) = p =

B. Tandem queue model

Consider two servers with mean service rates g and po
to be in tandem. Let x; and zo represent the mean number
of customers in each of the two queues. Let A\; and Ao
represent the arrival rates into the two queues. The arrival
rate at the second server is approximated to be Poisson. This
assumption is reasonable (and will be validated in Section I'V-
B), since the coefficients of variation of the service time
distributions of both servers are high. Combining the dynam-
ics of a single queue ((3)) along with the flow conservation
principle, we get:

A2(t) = pa ()G (7). (7

The dynamics for the mean length of tandem queue is as
follows:

Z1(t) —p1 ()G (1) + A (2) (8)
ia(t) = —p2()G2(w2) + pi(t)Gr(21) 9

The functions G;(z) are further approximated by
Ciz/(1 + C;x), in order to obtain a simpler expression for



the dynamics. Note that when C; = 1, it corresponds to a
M/M/1 queue. The parameter C; is determined through the
following minimization:

(10)

Hgin/o (Gi(z) — Ciz/(1 4 Ciz))dx.

A comparison between the approximation for G(x) and
its actual value is shown in Fig. 3. The value of C, chosen
for the comparison is based on the runway service time
distribution which will be mentioned in Section IV-B. The
overlap between the two curves in the figure shows that
Cz/(1+ Cxz) is indeed a good approximation for G(z).
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Fig. 3. Comparison between the approximation for G(z) and the actual
value (Cy = 0.67,zm = 15,C = 1.23)

Using the above approximation for G(x), the dynamics
for the tandem queue is given by

() = (O s + A an
Ba(t) = i) s + () s (1)
z1(0) = z1,0, 22(0) = z2,0 (13)

C. Tandem queues with delays

Consider that the customers arriving at a tandem queue are
from a particular source. Let u(t) correspond to the departure
rate at the source. Let t; denote the travel time from the
source to the first queue. Similarly, let ¢2 denote the travel
time from the first server to the second queue. Considering
the travel time in the system, the arrival rates are given by,

A(t) =
A2 (1)

u(t — tl)

pa(t —t2)

(14)
Cl.’lﬁl(t — tz)
1 + Clzl(t — t2) '

15)

Using the above expressions, we obtain modified govern-
ing equations for the queuing dynamics,

ity =y clxl)(t) Fult—t) (16)
(17)

Since the dynamics has delay in its state variables, we
require the following initial conditions to find the state of
the queue at any time ¢ > 0,

u(t) = g(t),t €[~t1,0) (18)
zi(t) = B(t),t € [~t2,0] (19)
2(0) = w20 (20)

Here, ¢(t) and ¢(t) are initial profiles of u and z;.

III. CONTROL OF TANDEM QUEUES

The control problem is motivated by the problem of airport
surface congestion control. The aim of the control algorithm
is to release flights at an optimal rate at the departure gate
so that smaller queues are formed on the airport surface,
resulting in reduced taxi-out times.

Consider the delayed tandem queue system described in
Section II-C. Let d(t) denote the demand rate at the source.
The demand rate is the number of customers who are ready
to leave the source per unit time. The control variable is the
release rate at the source, which is denoted by u(t). The
number of customers who are held back by the controller is
denoted by h(t). The dynamics for h(t) is given by

o fw — )t b =0
"= {(d(t) —u(n)  h(D)>0

Here, (d(t)—u(t))* = max ((d(t)—u(t)), o). The objective
is to control the release rate u(t) to minimize the queue
length while achieving maximum throughput.

21

A. Problem formulation

The problem is formulated as an optimal control problem.
The state variables are the number of customers in two
queues (x1(t), z2(t)) and the number of customers held at
the source (h(t)). The problem formulation is as follows,

T
min/ (m% + a2+ h?/4+ (d— u)z)dt (22)
u 0
Subject to: (23)
iy = fi(wa(0),ult ~ ).t) 4
iy = fo (@1 (t = ta), 22 (1), ) 25)
b= 3 (d(t), u(t) 26)
0<my,22,h, 0<u <y, 27)
u(t) = g(t),t € [=11,0) (28)
21(t) = d(1),t € [—t2,0] (29)
22(0) = 230, h(0) = hy (30)

In the above equations, f1, f2, f3 represent the dynamics
of the state variables and are given by (16)-(17) and (21).
The quadratic cost function penalizes the queue length, the
number of customers held at the source and the instantaneous
deviation from the planned departure rate. The holding term
in the cost function ensures maximum utilization of the
server. The deviation from the planned departure rate is
included in the cost function to obtain a smooth solution.



B. Solution methodology

The solution to the optimal control problem is obtained
by discretizing the state and control variables in time. The
equations governing the dynamics are discretized using first
order Euler method. Higher order discretization schemes like
the Runge-Kutta method could also be used. The discretized
control problem is then transformed into a non-linear pro-
gramming problem (NLP). The detailed procedure is similar
to that shown in [15]. The resulting NLP is solved using a
standard MATLAB® solver.

IV. TAXI-OUT PROCESS MODEL
A. Description of the data

The tandem queue model for the taxi-out process is con-
structed using the data for Charlotte Douglas International
airport (CLT) as an example. Data for the analysis was
extracted from multiple datasets. The flight tracks were
obtained from airport surface surveillance data (ASDE-X)
[16]. These tracks were used to determine the time at which
the aircraft reached the spot or runway. This information was
used to compute the service time distributions of the spot and
runway servers. The flight schedule that includes the actual
pushback time for the departure flights and the landing time
for the arrival flights was obtained from OAG data [17].

B. Representation of surface queues

The taxi-out process is modeled as two queues in tandem,
as shown earlier in Fig 2. The first one represents the
congestion at the ramp, and the second one represents the
congestion near the runway. Note that a single queue is
considered for the ramp even though flights might exit
the ramp at different spots. Similarly, a single queue is
considered for representing multiple departure runways (two,
in the case of CLT).

A flight is defined as being in the ramp queue if it is
yet to reach the spot, and its travel time has exceeded the
unimpeded gate to spot time. Similarly, a flight is said to be
in the runway queue if it is yet to takeoff and its travel
time from the spot has exceeded the unimpeded spot to
runway time. A comparison of the runway queue lengths
obtained using the above definition, with the queue observed
using the physical locations of flights, is shown in Fig. 4.
The figure shows a good match between the queue lengths
obtained using the two methods. This shows that the above
definition of queue length obtained from using unimpeded
time is equivalent to the physical queue length seen at an
airport.

As mentioned earlier, a key feature of airport operations
are that the service times of the spot and runway servers are
stochastic and time-varying. The time variability is primarily
due to fluctuations in the number of landings and flights
taxiing-in at the airport. Other factors such as weather and
aircraft type could also influence the service time. However,
these factors were found not to play an important role for
the periods considered. The mean service time for the spot
server as a function of number of flights taxiing-in on the
ramp is shown in Fig. 5(a). The mean service time shows an
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Fig. 4. Comparison of the total queue length obtained from the definition
of the runway queue, and the physical queue observed at the airport for a
typical day.

increasing trend with increase in number of flights taxiing-
in. Similarly, the mean service time at the departure runway
server increases with an increase in the number of landings,
as seen in Fig. 5(b). The distributions of the service times
for the two servers is shown in Fig. 6. The service time
distribution is conditioned on the taxi-in traffic for the spot
server, and the number of landings for the runway server. A
large variability in the service times can also be seen from
these plots. The coefficient of variation is around 0.86 for
the ramp queue, and 0.67 for the runway queue.
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Fig. 6. Service time distributions of the spot and runway servers, when
the number of aircraft taxiing-in and the number of landings are zero,
respectively.

C. Simulations

The queuing system is simulated in MATLAB® to vali-
date the assumption that the service time distributions depend
only on the taxi-in traffic. The inputs to the simulator are
the actual push back times, landing schedules, and number
of flights taxiing-in on the ramp. In the simulation, flights
are added into the system at the actual pushback times (%,),
and each aircraft reaches the ramp queue at ¢, + ¢, gs.



Here, t,, 45 is the unimpeded gate-to-spot time, averaged over
all gate-spot combinations. Each aircraft waits in the ramp
queue for a time W,,, depending on the current state of
the ramp queue. The service times of the spot are sampled
from an empirical distribution conditioned on the taxi-in
traffic. Once the aircraft is served by the spot server, it
enters the runway queue at t, + ty g5 + Wyp + ty s, Where
ty,sr is the unimpeded spot-to-runway time, averaged over
all spot-runway combinations. The aircraft then waits in the
runway queue for a time W,,,, depending on the state of the
runway queue, before being served. The taxi-out time (Z,,;)
is therefore the sum of the unimpeded times and the wait
time at the queues, that is:
tout = tu,gs + W'r'p + tu,sr + Wrw- (31)
A comparison of the mean number of flights in the queue
from the simulation, with actual data, is shown in Fig. 7. The
simulation is repeated 1,000 times to obtain the mean queue
length. The figure shows that the mean queue length from
the simulation matches well with the actual queue length,
validating our assumption on the service time distributions.

D. Tandem queue model of the taxi-out process

The tandem queue model developed in Section II-C is ap-
plied to the taxi-out process. In this case, £ and x, represent
the queue length at the ramp and runway, respectively, u(t)
corresponds to the pushback rate at the gate, and the time
delays in the dynamics correspond to the unimpeded travel
times (t1 = ty gs, t2 = tu,sr). The queue length at any time
instant is obtained by integrating (16)-(17) forward in time.
The model is validated by comparing the results with the
actual data and simulation. The comparisons of the number
of flights in the ramp and runway queues are shown in Fig. 7.
The figure shows that the number of flights in the two queues
obtained from the proposed tandem queue model matches
both the actual data and the simulations well.

The wait time for each flight depends on the number of
flights ahead of it when it enters the queue as well as the
mean service rate. The average taxi-out time obtained from
the tandem queue model is compared with the actual data
and simulation in Fig. 8. A good agreement can be seen
between the average taxi-out times obtained from the model,
simulations, and the actual data.

Table I shows the error statistics for the travel times
obtained from the queue model when compared with the
actual data. These statistics are based on a total of 10,454
departure flights. The mean error for taxi-out time is 1.15
min. This value is small when compared to the average
taxi-out time during peak traffic periods, which can be
as high as 30 min. Taxi-out time obtained using standard
machine learning techniques [18] have similar error statistics.
However, the main advantage of using the queuing model
is that it provides a simple equation governing the queue
dynamics in terms of the pushback rate, which can be used
to control the queue length.
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Fig. 7. Comparison of the number of aircraft in the queue (averaged over

a 5 min window) obtained using the tandem queue model, actual data and
simulations for a typical day.
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Fig. 8. Comparison of the taxi-out times (averaged over a 30-min window)
obtained from the tandem queue model, actual data and simulations for a
typical day.

V. PUSHBACK RATE CONTROL

During periods of congestion at an airport, it is better for
the aircraft to wait at the departure gate with their engines off,
than to wait in a queue with their engines on. The strategy
is therefore to control the pushback rate, in order to achieve
smaller queue lengths on the airport surface. The problem
formulation and solution methodology to control a tandem
queue were discussed in Section III. In this section, a solution
is obtained to control the ramp and runway queues. Here, the
demand rate (d(t)) refers to the number of flights that are
ready to pushback from their departure gate per unit time,
while the number of holds (h(t)) refers to the number of
aircraft that are ready to pushback, but are held at the gate
by the controller at time .



ERROR STATISTICS FOR THE TAXI-OUT TIME BASED ON 10,454 FLIGHTS.

TABLE I

Statistic (min) | Gate to spot Spot to runway | Taxi-out
Mean error -0.04 1.16 1.15
Mean |error] 3.15 3.48 5.15
RMSE 4.5 4.3 6.8

The entire day is divided into 5-min long time-windows,
and the pushback rate is determined for each time-window.
An additional constraint that ensures a constant value of
pushback rate over each time window is imposed in the
NLP. The actual pushback rate from the data is considered as
the demand rate (d(¢)). The number of landings and number
of flights taxiing-in on the ramp are assumed to be known
ahead in time, and are used to determine the service rates
(u1(t), p2(t)) of the spot and runway servers.

A. Optimal pushback rate

The optimal pushback rate profile is computed for a typical
day, and benefits of the policy are discussed. Fig. 9 shows
the optimal pushback rate along with the demand rate, over
the course of the day. The resulting queue lengths and the
number of gate holds are shown in Fig. 10. Initially, as the
queue builds up, the pushback rate is equal to the demand
rate for small queue lengths. When the queue size is large,
the pushback rate is smaller than the demand rate and flights
are held back at the gate. This policy ensures that the taxi-out
flights do not have to go through a larger queue. Note that the
pushback rate has a wider peak to accommodate the spill in
the demand. This results in sustained runway utilization with
smaller queue lengths. One can also notice that the runway
queue length is typically larger than the ramp queue length.
This is due to the fact the runway server has a higher mean
service time when compared to the spot server. The number
of holds is seen to be considerably large. This is due to the
fact that the cost function gives the holding cost a smaller
weight relative to the queuing cost.
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Fig. 9. Variation of the optimal pushback rate (aircraft/min) for a given
demand profile on a typical day.

Simulations are performed with the optimal pushback rate
to test the efficacy of the policy in a stochastic environment.
The simulation environment used here is same as the one
mentioned earlier in Section IV-C. A comparison of the
ramp and runway queue lengths between the controlled and
uncontrolled cases is shown in Fig. 11. The queue lengths
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Fig. 10. The number of aircraft in the ramp queue (x1), runway queue
(z2), and gate holds (h) with the optimal push back policy.

obtained with the optimal pushback policy are found to be
significantly smaller than the queue lengths without any gate-
holds. Fig. 12 shows a comparison of the the taxi-out times
between the two cases. A significant reduction in the taxi-out
times can be seen, which is a result of smaller queue lengths.
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Fig. 11. Comparison of the number of flights in the ramp and runway
queues with, and without, the optimal pushback policy.
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Fig. 12. A comparison between the mean taxi-out time (30-min average)
obtained using the pushback control policy, and when aircraft pushback
without any gate-holds.

B. Receding horizon control

The control algorithm described earlier has two major
drawbacks: (a) It assumes that the demand rate and service
rate are known for long periods in advance, when in reality,
this information might be available only 30 min into the
future; and (b) The algorithm does not utilize the information
about the current state of the airport. To overcome these
drawbacks, a receding horizon control approach is applied.

The approach uses the same formulation as used earlier.
At the beginning of every time-window (5-min), the control
policy is determined for the next 30 min, utilizing the current



state of the airport as the initial condition. However, only
the first 5 min of the control policy is implemented by the
controller. The process is repeated every 5 min.

The proposed approach is tested using simulation. The
results from 40 simulation runs are used to obtain the mean
queue length. Fig. 13 shows the mean number of flights
in the ramp and runway queue obtained using the receding
horizon control policy. The queue length obtained from the
new policy yields smaller queue length when compared to
the case with no pushback control. This is also reflected in
the taxi-out time, which is shown in Fig. 14. Moreover, one
can see that the receding horizon method performs slightly
better than the earlier method. The improvement can be
attributed to the fact that the state of the airport is being
used to compute the pushback rate. The performance of the
control policy also depends on the time horizon. A longer
time horizon is expected to yield a better performance, but
with additional computational cost.
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Fig. 13. Comparison of the number of flights in the queue obtained using
the receding horizon control policy.
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Fig. 14. Comparison of the averaged taxi-out time obtained using the
receding horizon control policy

VI. DISCUSSION AND FUTURE WORK

This paper proposed an optimal control methodology to
control a non-stationary tandem queue. As an illustrative
example, the control methodology was applied to determine
the optimal pushback rate for the taxi-out process in an
airport. Simulations with the optimal control policy indicated
a significant reduction in the queue sizes at the airport,
resulting in lower taxi-out times.

The model can be extended to control a network of non-
stationary queues, since the dynamics of each queue is
governed by a simple differential equation. In addition to
pushback rate control, the fraction of flights routed to each

runway can be controlled in order to have more balanced
runway operations and a better utilization of airport capacity.
This can be achieved by modeling the runway as two
queues instead of one. Another promising extension is the
incorporation of the the taxi-in process into the model, which
would be particularly useful to understand the effects of
active runway crossings. Such a model would enable an
integrated control of airport surface operations.
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