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Nash Equilibrium Existence:

two-player zero-sum games

[von Neumann ’28:]

In finite two-player zero-sum games (R, C = —R),.xn:
min max x' Cy = max min x’ Cy
XEAM ye Al YEAT xeA™

Corollary: A Nash equilibrium exists in finite two-
player zero-sum games

[original proof used fixed point arguments]

Min-max Equilibrium Computation

[Danzig '47]

<>

Adler '13]

Linear Programming

Brooks-Reny’21]
'von Stengel’22]

No-regret Learning




Nash Equilibrium Existence:
general games

[John Nash ’50]: A Nash equilibrium exists in every finite game.
Deep influence in Economics, enabling other existence results.
Proof non-constructive (uses Brouwer’s fixed point theorem)
No simpler proof has been discovered

[Daskalakis-Goldberg-Papadimitriou’06]: no simpler proof exists

i.e. Nash
Equilibrium >

Fixed Point
Computation

Computation




The non-constructive step?

what is the
nature of non-
constructiveness
in the heart of
AN Nash’s theorem?
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Refresher: Nash, von Neumann & Brouwer
Sperner’s Lemma

Brouwer via Sperner

Sperner’s Proof
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Sperner’s Lemma (2-d)
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Sperner’s Lemma (2-d)
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[Sperner 1928]: Color the boundary using three colors in a legal way.



Sperner’s Lemma (2-d)

no yellow

no blue —

no red

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner’s Lemma (2-d)

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.
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' Sperner = Brouwer




Sperner = Brouwer (High-Level)

Given continuous f: [0,1]2 — [0,1]?

1. For all €, existence of approximate fixed point |f(x)-x| < &, can
be shown via Sperner’s lemma.

2. Then use compactness.

For 1: Triangulate [0,1]?;
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Given continuous f: [0,1]2 — [0,1]?

1. For all g, existence of approximate fixed point |f(x)-x| < €, can
be shown via Sperner’s lemma.

2. Then use compactness.

For 1: Triangulate [0,1]%;
then color points according @=—% =3
to the direction of f (x)-x;
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Sperner = Brouwer (High-Level)

Given continuous f: [0,1]2 — [0,1]?

1. For all €, existence of approximate fixed point |f(x)-x| < &, can
be shown via Sperner’s lemma.

2. Then use compactness.

For 1: Triangulate [0,1];
then color points according : ==
to the directionof f(x)-x; -7 " -""7 .
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Sperner = Brouwer (High-Level)

Given continuous f: [0,1]2 — [0,1]?

1. For all €, existence of approximate fixed point |f(x)-x| < &, can
be shown via Sperner’s lemma.

2. Then use compactness.

For 1: Triangulate [0,1];
then color points according : )
to the directionof f(x)-x; 17— "7
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2D-Brouwer on the Square

say d is the /5, norm

Suppose f:[0,1]> —[0,1]%, continuous

—L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, Jd(e) > 0, s.t.
d(z,w) < d(e) = d(f(2), f(w)) < ¢



http://en.wikipedia.org/wiki/Heine-Cantor_theorem

2D-Brouwer on the Square

say d is the /., norm

Suppose f:[0,1]> —[0,1]%, continuous

—L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, Jd(e) > 0, s.t.
d(z,w) < d(e) = d(f(2), f(w)) < ¢

1
choose some ¢ and
triangulate so that the
diameter of cells is
6 < d(e€)
yd
0
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2D-Brouwer on the Square

say d is the /., norm

Suppose f:[0,1]> —[0,1]%, continuous

—L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, Jd(e) > 0, s.t.
d(z,w) < d(e) = d(f(2), f(w)) < ¢

color the nodes of the
triangulation according

to the direction of 1 ®
fle) - choose some ¢ and

triangulate so that the
diameter of cells is

6 < d(€)



http://en.wikipedia.org/wiki/Heine-Cantor_theorem

2D-Brouwer on the Square

say d is the /., norm

Suppose f:[0,1]> —[0,1]%, continuous

—L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, Jd(e) > 0, s.t.
d(z,w) < d(e) = d(f(z), f(w)) < €

.\. choose some ¢ and

triangulate so that the
diameter of cells is

6 < d(e€)

color the nodes of the
triangulation according
to the direction of 1

flz) -z

find a trichromatic
triangle, guaranteed by
Sperner

(tie-break at the
boundary angles, so that
the resulting coloring
respects the boundary g
conditions required by

, 0 1
Sperner’s lemma)
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2D-Brouwer on the Square

say d is the /., norm

Suppose f:[0,1]> —[0,1]%, continuous

—L must be uniformly continuous (by the Heine-Cantor theorem)

$ Ve >0, 36(e) > 0, s.t.

%][ d(z,w) < 8(e) = d(f(2), f(w)) < e
.\:

Claim: If Z' is the yellow corner of a
trichromatic triangle, then

F(27) — 27 oo < €4+ 0.



http://en.wikipedia.org/wiki/Heine-Cantor_theorem

Proof of Claim

Claim: If z¥ is the yellow corner of a trichromatic triangle, then \f(zY) — ZY\OO <€e+9

Proof: Let 2", z®, 2B be the yellow/red/blue corners of a trichromatic triangle. .

By the definition of the coloring, observe that the product of

e
Hence:

< [(f(z ) (ZB))a:| + (2" —27)4|
<d(f(z"), f(z7)) +d(z", 2")
< e+ 0.

Similarly, we can show:

(f(z") =27 )yl < e+




2D-Brouwer on the Square

say d is the /., norm

Suppose f:[0,1]> —[0,1]%, continuous

—L must be uniformly continuous (by the Heine-Cantor theorem)

$ Ve >0, 36(e) > 0, s.t.

%][ d(z,w) < 8(e) = d(f(2), f(w)) < e
.\:

Claim: If Z' is the yellow corner of a
trichromatic triangle, then

F(27) — 27 oo < €4+ 0.

Choosing  § = min(d(e), ¢)

F(2Y) — 27 oo < 2e.



http://en.wikipedia.org/wiki/Heine-Cantor_theorem

2D-Brouwer on the Square

Finishing the proof of Brouwer’s Theorem (Compactness):
- pick a sequence of epsilons: ¢; = 27" i =1,2,...

- define a sequence of triangulations of diameter: 6, = min(d(¢;),¢;),2 = 1,2, ...

- pick a trichromatic triangle in each triangulation, and call its yellow corner Z,LY, 1=1,2,...

- by compactness, this sequence has a converging subsequence w;, 7 = 1,2, ... with limit point w"
Claim: f(w") = w".

Proof: Define the functiong(z) = d(f(x),z). Clearly, gis continuous since d(-,-) is
continuous and so is f. It follows from continuity that

g(w;) — g(w*), as i — +o0.
But 0 < g(w;) <2 “".Hence, g(w;) — 0. It follows that g(w*) = 0.

Therefore, d(f(w™),w™) =0 = f(w™) =w". -
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The non-constructive step?

what is the
nature of non-
constructiveness
in the heart of
Nash’s theorem?

- THEN 4
d M\RACLE
OCCURS ..

So far: ( Sperner’s Theorem)= Brouwer’s Theorem = Nash’s Theorem



Proof of Sperner’s Lemma

no yellow

no blue —

no red

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Proof of Sperner’s Lemma

For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

We also introduce an
artificial tri-
chromatic triangle.

Next we define a
directed walk starting
from the artificial tri-
chromatic triangle.

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Proof of Sperner’s Lemma

Transition Rule:  |f 7 - yellow door cross it with
on your left hand.

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Claim: The walk

cannot exit the

square, nor can it lo

into itself. %
N

Hence, it must stop

somewhere inside.
This can only happen
at tri-chromatic
triangle...

Starting from other
triangles we do the

same going forward

or backward. o

’
O

Proof of Sperner’s Lemma

N

N

For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

We also introduce an
artificial tri-
chromatic triangle.

Next we define a
directed walk starting
from the artificial tri-
chromatic triangle.

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Structure of Proof:
A directed parity argument

Vertices of Graph = Triangles
all vertices have in-degree, out-degree <1

Artificial
Trichromatic

O

degree 1 vertices: trichromatic triangles
degree 2 vertices: no blue, non-trichromatic
degree O vertices: all other triangles

Proof: 1 at least one trichromatic (artificial one) = 1 another trichromatic
Also: degree 1 vertices are in pairs but one is fake = 3 odd number of trichromatic!



So..what is the non-constructive step in
Nash’s proof?

what is the
nature of non-
constructiveness
in the heart of
Nash’s theorem?

— MIRACL
: occugsi_,.‘

We have shown: Sperner’s Theorem = Brouwer’s Theorem = Nash’s Theorem



The Non-Constructive Step

An easy parity lemma:

A directed graph with an unbalanced node (a node with indegree #
outdegree) must have another.

—@®

But, wait, why is this non-constructive?

Given a directed graph and an unbalanced node, isn’t it trivial
to find another unbalanced node?

In some cases, the graph can be exponentially large in its succinct description...

Example: next slide!



Computational Problem: SPERNER

INPUT: ‘\:
(i) n: specifies the size of a grid

(grid never written down!) N

58

(ii) Imagine boundary has standard coloring shown above,
while colors of internal vertices are given by a circuit:

input: the -
. X — ®
coordinates
of a point
. y — o
(n bits each)

~——

OUTPUT: A tri-chromatic triangle

exists because boundary coloring satisfies Sperner lemma constraints
but doing walk through grid to find one may take exponential time in n



