
6.S890:
Topics in Multiagent
Learning

Lecture 17 – Prof. Farina
Scalability-enhancing techniques

Fall 2023

Some practical solutions

• Utility computation can be very expensive (huge matrix-vector
product) -> Use a sparse unbiased estimator
• … Also maybe your problem admits a small latent space that can help

you
• Maybe the information you can receive, or the actions you can play,

are too many -> Abstract, that is, bucket them and treat them the
same
• Maybe your strategy is not very good -> Improve it locally as you play,

for the situation you’re specifically encountering!

Sampling
Utility computation is too expensive!

Recall: How do we use no-external-regret
algorithms in two-player zero-sum normal-form or
extensive-form games?

max
!∈#

min
$∈%

𝑥&𝐴𝑦

𝑋, 𝑌 = Simplex for normal-form games

𝑋, 𝑌 = sequence-form polytope for
extensive-form games

Q: What utilities do we supply to the learners?

Answer: we let the learners play against each other

(Gradients of the players’
utility functions)

𝑢!
(#) 𝑢!

(%&#) 𝑢!
(%)

𝑢'
(%)𝑢'

(%&#)𝑢'
(#)

𝑢%
(') ≔ 𝐴𝑦(') 𝑢)

(') ≔ −𝐴*𝑥(')

Idea: Monte-Carlo CFR

• Remember: CFR works by orchestrating a tree of local regret
minimizers (one per decision point)
• At each time t, each regret minimizers outputs a local behavioral strategy
• Then, when a utility 𝑢(') is received as feedback by CFR, 𝑢(') is used to

construct counterfactual utilities by considering the expected utility in each
subtree

• At its core, Monte-Carlo CFR uses the observation that if the utility is
very sparse, then the expected utilities in each subtree will almost
always be 0
• Therefore, no update of the strategy is necessary for those subtrees, and no

regret is cumulated

Idea: Monte-Carlo CFR

The idea of MCCFR is to replace any incoming utility 𝑢(") by a
sparse unbiased estimator "𝑢("), that is, a sparse vector "𝑢(")

whose expectation is 𝑢(").

Unbiased estimators of 𝐴𝑦

• Warmup in normal-form games
• Extensive-form games:
• Opponent sampling
• Outcome sampling

Theoretical Guarantees

• We can bound the degradation in regret incurred by the sampling
• Regret with sampling:
• '𝑅(*) = max

+
∑⟨/𝑢 ' , 𝑥 − 𝑥(')⟩

• Regret without sampling
• 𝑅(*) = max

+
∑⟨𝑢 ' , 𝑥 − 𝑥(')⟩

Theorem: No matter the sequence of utility vectors 𝑢((), the difference

between 𝑅(&) and +𝑅(&) is bounded as +𝑅(&) ≤ 𝑅 & + 𝑀 + /𝑀 2𝑇	log *
+
	

with probability at least 1 − 𝛿 for all 𝛿 ∈ 0,1 .

Bounds on the diameter of the
utilities:

𝑀 = max
!,!!

⟨𝑢 # , 𝑥 − 𝑥$⟩	
8𝑀 = max

!,!!
⟨ 9𝑢(#), 𝑥 − 𝑥$⟩	

Exploiting the structure of the
payoff matrix
… Maybe you have a small latent space?

Sparsification

• Many games have a strong combinatorial
structure

• This structure can inform opportunity for
speedups

• Idea of sparsification: exploit a low-rank
utility matrix

Example

• For example, it can be shown that in a game like poker, the payoff
matrix can be written as a sum of Kronecker products
• In other words, the payoff matrix has a low-rank block structure

• Intuition: it’s a sum of two block matrices
• First matrix controls the payoffs when a fold happens
• Second matrix controls the payoffs when a showdown happens
• The blocks correspond to the hands of the players

Bottom line: payoff matrix is 𝐴 = %𝐴 + 𝑈𝑀$%𝑉& 	

Small latent
space

Recall: LP Formulation

,max 0min 𝑥(𝐴𝑦
s. t. 𝑦 ∈ 𝑄)

s. t. 𝑥 ∈ 𝑄#

max
*∈,!

min
-∈,"

𝑥(𝐴𝑦
1

max ,
min 𝑥(𝐴𝑦

s. t. 𝐹)𝑦 = 𝑓)
𝑦 ≥ 0

s. t. 𝐹#𝑥 = 𝑓#
𝑥 ≥ 0

2

max @
max 𝑓)𝑣

s. t. 𝐹)(𝑣 ≤ 𝐴(𝑥
𝑣 ∈ ℝ

s. t. 𝐹#𝑥 = 𝑓#
𝑥 ≥ 0

3 Dualize!

max 𝑓)𝑣

s. t.

𝐹#𝑥 = 𝑓#
𝐹)(𝑣 ≤ 𝐴(𝑥
𝑥 ≥ 0
𝑣 ∈ ℝ

𝑄# = 0𝐹#𝑥 = 𝑓#
𝑥 ≥ 0 	 𝑄) = 0𝐹)𝑦 = 𝑓)

𝑦 ≥ 0

4Single linear
program!

First application: Sparsification of LP

max 𝑓:𝑣

s. t.

𝐹*𝑥 = 𝑓*
𝐹:&𝑣 ≤ 𝐴&𝑥
𝑥 ≥ 0
𝑣 ∈ ℝ

Original LP

Sparsified LP

max 𝑓:𝑣

s. t.

𝐹*𝑥 = 𝑓*
𝐹:&𝑣 ≤ E𝐴&𝑥 + 𝑉𝑤
𝑀&𝑤 − 𝑈&𝑥 = 0

𝑥 ≥ 0
𝑣,𝑤 ∈ ℝ

Payoff matrix is 𝐴 = %𝐴 + 𝑈𝑀$%𝑉& 	

Some data from poker

[Farina and Sandholm, “Fast Payoff Matrix Sparsification Techniques for Structured Extensive-Form Games”, AAAI’22]

Sparsification Roughly 2 orders
of magnitude

reduction

Poker endgames
can be solved in

seconds

Second application: LearningOpportunity for speedup using low-
rank decomposition of A?

Second application

• Performs really well on the GPU too

Information and Action
Abstraction
The game is too big! Make is smaller

The basic idea

Nash equilibriumNash equilibrium

Original game

Abstracted game

Abstraction algorithm

Equilibrium-finding
algorithm

Reverse model

Foreshadowed by Shi & Littman 01 and Billings et al. IJCAI-03[Gilpin & Sandholm EC-06, J. of the ACM 2007…]

Two approaches

Lossless Abstraction Lossy Abstraction

Exploits structural properties of the game
to compress the action space without

changing the equilibria

Compresses the game forcefully
to a point where it can be solved

Lossless Abstraction
Lossless abstraction was mostly pioneered in an attempt to tackle poker

• Observation: We can make games smaller by filtering the
information a player receives
• Instead of observing a specific signal exactly, a player instead

observes a filtered set of signals
• E.g. receiving signal {A♠,A♣,A♥,A♦} instead of A♥

• Fundamentally, lossless abstraction works by isolating
isomorphisms between different scenarios
• For example, your strategy should be blind to the specific suit of the cards,

and only depends on whether the suits match or differ

GameShrink algorithm

• Bottom-up pass: Run dynamic programming to discover isomorphism
in the game
• Top-down pass: Then, starting from top of the tree, perform the

transformation where applicable

• Implementation details complex, but it is able to operate the passes
implicitly with respect to the game tree, by constructing a succinct
representation called a signal tree

[Gilpin and Sandholm, JACM’07]

Solved Rhode Island Hold’em poker

• AI challenge problem [Shi & Littman 01]
• 3.1 billion nodes (!) in game tree

• Without abstraction, LP has 91,224,226 rows and columns => unsolvable
• GameShrink runs in one second
• After that, LP has 1,237,238 rows and columns (50,428,638 non-zeros)
• Solved the LP

• CPLEX barrier method took 8 days & 25 GB RAM
• Exact Nash equilibrium
• Historical significance: Largest incomplete-info game solved

by then by over 4 orders of magnitude

Slide credits: Tuomas Sandholm

Solved Rhode Island Hold’em poker

• AI challenge problem [Shi & Littman 01]
• 3.1 billion nodes (!) in game tree

• Without abstraction, LP has 91,224,226 rows and columns => unsolvable
• GameShrink runs in one second
• After that, LP has 1,237,238 rows and columns (50,428,638 non-zeros)
• Solved the LP

• CPLEX barrier method took 8 days & 25 GB RAM
• Exact Nash equilibrium
• Historical significance: Largest incomplete-info game solved

by then by over 4 orders of magnitude

Bottom line: lossless abstraction reduced the
size by 2 orders of magnitude without losing

any strategic property

Slide credits: Tuomas Sandholm

Texas Hold’em Poker

Nature deals 2 cards to each player

Nature deals 3 shared cards

Nature deals 1 shared card

Nature deals 1 shared card

Round of betting

Round of betting

Round of betting

Round of betting

2-player Limit has ~1018 nodes

2-player No-Limit has ~10165
nodes

Lossless abstraction is (way) too
big to solve

=> abstract more
=> we need lossy abstraction

Slide credits: Tuomas Sandholm

Attempts

• Different approaches to good lossy information abstractions:

2006:
• GameShrink can be made to abstract more by not requiring a

perfect matching => lossy
• For speed of the matching, Gilpin & Sandholm [AAAI-06]

used a faster matching heuristic
• Unfortunately the greedy nature of the heuristic results in

lopsided (unbalanced) abstractions

Attempts

• Different approaches to good lossy abstractions:

2007-2008:
• Prior abstraction algorithms use winning probability as

similarity metric
• Problem: Hands like flush draws where although the

probability of winning is small, the payoff could be high
• Solution: people started investigating “potential-aware”

abstraction

Attempts

• Different approaches to good lossy abstractions:

2009:
• People embraced the idea of imperfect-recall abstractions
• Abstract by forgetting about past observations

~2018-onward:
• Information abstraction is taken care implicitly by neural

network architecture
• It is the network that “decides” what information (rank,

value, etc.) to retain

What about action abstraction?
• Typically done manually
• Prior action abstraction algorithms for extensive games (even for just

poker) have had no guarantees on solution quality [Hawkin et al.
AAAI-11, 12]
• For stochastic games there is an action abstraction algorithm with

bounds (based on discrete optimization) [Sandholm & Singh EC-12]

Slide credits: Tuomas Sandholm

Problem: Action Translation

• Suppose in our abstraction we have discretized bet $ amounts for our
opponents to only be A or B.
• But now in the game we see some different amount x. How should

we play?

$A B

x

Action translation

f(x) ≡ probability we map x to A

Desiderata about f
1. f(A) = 1, f(B) = 0
2. Monotonicity
3. Scale invariance
4. Small change in x doesn’t lead

to large change in f
5. Small change in A or B doesn’t

lead to large change in f

[Ganzfried & Sandholm IJCAI-13]

$A B

x “Pseudo-harmonic mapping”

• f(x) = [(B-x)(1+A)] / [(B-A)(1+x)]

• Derived from Nash equilibrium of a
simplified no-limit poker game

• Satisfies the desiderata

• Much less exploitable than prior
mappings in simplified domains

• Performs well in practice in no-
limit Texas Hold’em

Slide credits: Tuomas Sandholm

Decision-time planning (aka search)

The general idea

• In large games, we will never be able to compute exact equilibria
• In fact, we are lucky if we get somewhat close to equilibrium

(“blueprint”)

• Big idea: decision-time planning (e.g., Monte Carlo Tree Search)
• Key technique for solving

go
• We refine, on the fly, the

blueprint strategy in the subtree
in which we are playing,
just before playing the next move

Perfect-information games

• Subgames can be solved with information from the subgame only
• This is not true in imperfect-information games

Sicilian Defense Queen’s Gambit

Slide credits: Tuomas Sandholm

Imperfect-information games
Example game: “Coin toss”

Se
ll

Se
ll

P1P1

P2

-1 1

C

Heads Tails

Play

Play

Head
s Tails

P = 0.5 P = 0.5

Player 2’s information set

Player 1’s information set
Player 1’s information set

1

Forfeit

P2

1 -1

Head
s Tails

1

Forfeit

Slide credits: Tuomas Sandholm

P1P1

P2

C

Heads Tails

Play

Play

Head
s Tails

P = 0.5 P = 0.5

Forfeit

P2

Head
s Tails

Forfeit

Subgame

-1 11 1 -11

Se
ll

Se
ll

Suppose P1 plays and it is P2’s turn

Slide credits: Tuomas Sandholm

P1P1

P2

C

Heads Tails

Play

Play

Head
s Tails

P = 0.5 P = 0.5

Forfeit

P2

Head
s Tails

Forfeit

-1 11 1 -11

Se
ll

Se
ll

2 -2

First scenario: Heads sells for 2, Tails for -2

Subgame

Slide credits: Tuomas Sandholm

P1P1

P2

C

Heads Tails

Play

Play

Head
s Tails

P = 0.5 P = 0.5

Forfeit

P2

Head
s Tails

Forfeit

-1 11 1 -11

Se
ll

Se
ll

-2 2

But if the Sell payoffs are switched, then the
optimal strategy in the subgame changes:

Subgame

Slide credits: Tuomas Sandholm

P1P1

P2

C

Heads Tails

Play

Play

Head
s Tails

P = 0.5 P = 0.5

Forfeit

P2

Head
s Tails

Forfeit

-1 11 1 -11

Se
ll

Se
ll

-2 2

But if the Sell payoffs are switched, then the
optimal strategy in the subgame changes:

Subgame

Conclusion: the optimal strategy in the
subgame depends on outcomes and

strategies for situations that are not in
the subgame, unlike perfect-information

games.
Two completely different parts of the
game tree can affect the strategies of

each other.

Unsafe subgame solving
[Ganzfried & Sandholm AAAMAS 2015]

• No theoretical guarantees
• Does well in practice for some domains

-0.5

Se
ll

Se
ll

P1P1

C

Heads Tails

Play

Play

P = 0.5 P = 0.5

P = 0.75

P = 0.5

P = 0.25
Forfeit

P2

Head
s Tails

1 -11

P = 0.5

P = 0.25

P =
0.2

5

P =
0.5

0.5

P = 0.25
Forfeit

P2

Head
s Tails

-1 11

P = 0.25P = 0.5

P = 0.0
Forfeit

P2

Head
s Tails

1 -11

P = 1.0

P = 0.0P = 0.0
Forfeit

P2

Head
s Tails

-1 11

P = 0.0

P = 1.0

C 𝑃 =
0.50.5 + 0.75𝑃 =

0.7
5

0.5
+ 0
.75

Gadget Game

Blueprint Strategy
(not an exact equilibrium)

Libratus is P2

Slide credits: Tuomas Sandholm

Re-solve refinement
[Burch et al. AAAI 2014]

• P1 can choose between entering the subgame or taking the EV (according to the blueprint) of the subgame
• Makes sure opponent’s EV for entering the subgame is no higher than in the blueprint strategy

=> Strategy provably no worse than blueprint strategy
• But may miss obvious opportunities for improvement (e.g., not forfeiting)

-0.5

Se
ll

Se
ll

P1P1

C

Heads Tails

Play

Play

P = 0.5 P = 0.5

P = 0.25
Forfeit

P2

Head
s Tails

1 -11

P = 0.5

P = 0.25

0.5

P = 0.25
Forfeit

P2

Head
s Tails

-1 11

P = 0.25P = 0.5

Alt Alt

P1P1

C

Heads Tails

Enter

Enter

P = 0.5 P = 0.5

P = 0.25
Forfeit

P2

Head
s Tails

1 -11

P = 0.5

P = 0.25P = 0.25
Forfeit

P2

Head
s Tails

1

P = 0.25P = 0.5

0 0.5

EV = 0.5

EV = 0

Blueprint Strategy Gadget Game

-1 1

Libratus
is P2

Slide credits: Tuomas Sandholm

Other decision-time planning techniques

• Much more involved techniques exist
• Decision-time planning in poker makes a big difference

Exploitability
No decision-time planning 1465 mbb / hand
Nested Re-solve Refinement 150.2 mbb / hand
Nested Unsafe Refinement 148.3 mbb / hand
Nested Maxmargin Refinement 122.0 mbb / hand
Nested Reach-Maxmargin Refinement 119.1 mbb / hand

Libratus
• Libratus combined all these techniques against four of

the best heads-up no-limit Texas Hold’em specialist pros

• 120,000 hands over 20 days in January 2017
• $200,000 divided among the pros based on performance
• Conservative experiment design

Slide credits: Tuomas Sandholm

Slide credits: Tuomas Sandholm

Slide credits: Tuomas Sandholm

Slide credits: Tuomas Sandholm

Systems structuring
• Bridges supercomputer

• ~$17 million (including running it for its lifetime)
• Architected by Hewlett Packard Enterprise (HPE) &

Pittsburgh Supercomputing Center
• Heterogeneous architecture
• We used the part that has 800 HPE Apollo 2000 servers,

each with 28 cores and 128GB RAM
• We officially used ~24 million core hours for Libratus (Jan

2016-Jan 2017)
• But we used only 14 of the 28 cores on each node because

that was fastest
• We were the biggest user of Bridges in that timeframe (used

about half)

• Blueprint runs typically used 1 + 195 nodes
• Typically ~1-8 weeks per run

• Each endgame solver used 50 nodes
• Typically 30-60 seconds per run

• Each self-improver run used 196-600 nodes
• Typically for 8-30 hours per run

• C++, Open-MP for parallelism within
each server, MPI for distributed
computing

• 2.6 PB disk storage
Multiple strategies
Snapshots (balance in snapshotting)
Connections by Intel Omni-Path
Intel Lustre file system

Slide credits: Tuomas Sandholm

Final result
• Libratus beat the top humans in this game by a lot
• 147 mbb/hand
• Statistical significance 99.98%, i.e., 0.0002
• Each human lost to Libratus

Remaining Challenges on DTP

• The amount of imperfect information
in poker is relatively low
• Only in the order of 1000s possible hands

(two cards per player from a deck of 52)
• What about games with massive

amounts of imperfect information?
• Zhang and Sandholm, "Subgame solving

without common knowledge", NeurIPS
2021
• Liu, Fu, Fu, Yang, "Opponent-Limited

Online Search for Imperfect Information
Games", ICML 2023

Recap of Imperfect-
Information Extensive-Form

Games

The Important Messages

• Very flexible formalism for imperfect-information settings
• Many positive results
• Convex structure (sequence-form)
• Linear programming can be applied
• Learning is possible

• Imperfect-information presents additional challenges
• Combinatorial structure significantly more complicated than normal-form

games
• Exponentially many deterministic strategies as a function of edges in the tree

• No clear notion of “subgame” or “endgame” -> no Markovian structure!
Requires specialized care before RL-type techniques can be applied safely

