
6.S890:
Topics in Multiagent
Learning

Lecture 14 – Prof. Farina
Learning in Extensive-Form Games

Fall 2023

Game Solving

Approach 1: Linear Programming
(two-player zero-sum)

Approach 2: Learning

Last time

Today

Recall: No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

Objective: sublinear (external) regret

𝑅($) ≔ max
%&∈(

*
"*+

$

⟨𝑢("), -𝑥 − 𝑥(")⟩	

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for
extensive-form games

Recall: Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

-2.0

+1.4

-0.7

StrategyUtility vector

Recall: Learning Algorithms

Regret matching (RM): Probability of each action
proportional to ReLU of regret on the action

Multiplicative Weights Update (MWU): Prob. of each
action proportional to exp of regret on the action

Follow-The-Regularized-Leader (FTRL):

𝑥(") ∝ 𝑟 " $

𝑥(") ∝ exp(𝜂 ⋅ 𝑟 ")

𝑥(") = argmax
%∈'

⟨𝑟("), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	

Recall (HW1): MWU is
FTRL with negative
entropy

Recall: Connections with Equilibria

• Recall: when all players play external-regret-minimizing strategies,
then:
• In two-player zero-sum games, their average strategies converge to the set of

Nash equilibrium (gives an alternative approach to previous lecture)
• In general, the average product distribution of play converges to the set of

coarse-correlated equilibria

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

How to sidestep
exponential size?

Main idea:

𝑅(") ≔ max
$%∈'	

'
)*+

"

𝑢) , *𝑥 − 𝑥)

Every point in the polytope is a convex combination of its
finitely many vertices V ≔ 𝑣+, … , 𝑣, . So, operate a
change of variable: learn the convex combination, not the
points 𝑥())

𝑅(") ≔ max
-.∈/(0)	

'
)*+

" ⋮
⟨𝑢) , 𝑣⟩

⋮
, 3𝜆 − 𝜆())

Perf. of vertex

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

What is the local
feedback?

Main idea:

Run a local no-regret algorithm at each
decision point to update your strategy.

”Process” the utility vector 𝑢()) (which is
for the whole sequence-form strategy)
and chop it up into local feedback for
each decision point.

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

What regularizers are
easy to deal with?

Main idea:

The sequence-form polytope is a convex set. So, we can
apply the FTRL algorithm in its general form, and that
guarantees no-regret

𝑥(") = argmax
%∈(

⟨𝑈("), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	

Kernelized MWU

𝜆(6) ≔ 6
|9!|

𝟏	 ∈ ℝ9!

For 𝑡 = 1, 2, …
Play mixed strategy Ω: ∋ 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨(# ,*⟩

∑*,∈.!
A(#) <, ⋅C%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω1 ⊆ ℝ2
𝑉3 vertices of Ω1

General Setup:

ΩI ⊆ ℝ?		polyhedral strategy set
for Player i (e.g., sequence-form
polytope for EFGs) with 0/1
vertices

𝑉: verRces of ΩI

“Utility of vertex v”

…We weight vertices using MWU

𝜆(6) ≔ 6
|9!|

𝟏	 ∈ ℝ9!

For 𝑡 = 1, 2, …
Play mixed strategy Ω: ∋ 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨(# ,*⟩

∑*,∈.!
A(#) <, ⋅C%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω1 ⊆ ℝ2
𝑉3 vertices of Ω1

Main theorem

When Ω: has 0/1-coordinate
vertices, Vertex MWU can be

implemented using d+1
evaluations of the 0/1-

polyhedral kernel at each
iteration

Crucially independent on the number of vertices of Ω:!

As long as the kernel function can be evaluated efficiently,
then Vertex (O)MWU can be simulated in polynomial time

Setup
Ω ⊆ ℝ?
𝑉 vertices of Ω
𝑉 ⊆ {0, 1}?

Definition (0/1-feature map of Ω)

𝜙J ∶ ℝ? → ℝ9, 𝜙J 𝑥 𝑣 ≔ ∏K:< K M6𝑥[𝑘]

Given any vector, for each vertex it computes the product
of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Ω)

𝐾J ∶ ℝ?×ℝ? → ℝ, 𝐾J 𝑥, 𝑦 ≔ 𝜙J 𝑥 , 𝜙J 𝑦 = ∑<∈9∏K:< K M6𝑥 𝑘 ⋅ 𝑦[𝑘]

Let’s see how the feature map and the kernel help
simulate Vertex MWU

Idea #1 𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨(# ,*⟩

∑*,∈. A
(#) <, ⋅C%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2

Lemma 1: At all times t, 𝜆 ; is
proportional to the feature

map of the vector

ℝ? ∋ 𝑏 ; ≔ exp 𝜂H
RM6

;S6

𝑢 R 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#, 𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘]

Proof: by induction

Consequence: by keeping track of 𝑏(;) we
are implicitly keeping track of 𝜆(;) as well

…So, no need to actually perform the update on
line 5 explicitly

5

3

Idea #1 𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨(# ,*⟩

∑*,∈. A
(#) <, ⋅C%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2

Lemma 1: At all times t, 𝜆 ; is
proportional to the feature

map of the vector

ℝ? ∋ 𝑏 ; ≔ exp 𝜂H
RM6

;S6

𝑟 R 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#, 𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘]

Proof: by induction

Consequence: by keeping track of 𝑏(;) we
are implicitly keeping track of 𝜆(;) as well

…So, no need to actually perform the update on
line 5 explicitly

5

3

Remaining obstacle: how can
we evaluate line 3 with only

implicit access to 𝜆(") via 𝑏(")?

Idea #2 𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨(# ,*⟩

∑*,∈. A
(#) <, ⋅C%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2 Lemma 1: At all times t, 𝜆 ; is

proportional to the feature map
of the vector

ℝ" ∋ 𝑏) ≔ exp 𝜂:
*'(

)+(

𝑢 * 	
5

3

Lemma 2: At all times t, 𝑥 ; can be reconstructed from 𝑏(;) as

𝑥(;) = 1 −
𝐾J 𝑏 ; , 𝟏 − 𝑒6
𝐾J 𝑏 ; , 𝟏

, … , 1 −
𝐾J(𝑏 ; , 𝟏 − 𝑒?)
𝐾J(𝑏 ; , 𝟏)

(d+1 kernel
evaluations)

𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨(# ,*⟩

∑*,∈. A
(#) <, ⋅C%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2

𝑏(6) ≔ 0 ∈ ℝ?
𝑏(6) ≔ 𝟏	 ∈ ℝ?

For 𝑡 = 1, 2, …

Play 𝑥()) ≔ 1 − 4! 5 " ,𝟏89#
4! 5 " ,𝟏

, … , 1 − 4!(5 " ,𝟏89$)
4!(5 " ,𝟏)

Observe utility 𝑢(;) ∈ ℝ?

Set 𝑏 ;@6 ≔ exp 𝜂 ∑RM6; 𝑢 R

Kernelized MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2

Counterfactual Regret
Minimization

Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…

…but is a no-external-regret algorithm for
sequence-form strategies

🚨
Papercut

Alert™

Counterfactual Regret Minimization

Big Picture Idea:

A B
C

D E F

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Each local
learner is

responsible for
refining the

behavior at their
decision point

Can locally use
regret matching,

mulIplicaIve
weights update,

…

Local Training Feedback

Each local learner receives as feedback what is known as a
counterfactual utility vector

This is constructed starting from the 𝑢(")

Recall: Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

-2.0

+1.4

-0.7

StrategyUtility vector

Recall: Learning in Normal-Form Games

CFR
Learning

Algorithm

𝑏6

𝑏T

𝑏6𝑏U

𝑏6𝑏V

Strategy
(in sequence form)

𝑏6 𝑏T

𝑏U 𝑏V

Probabilities of actions chosen
by local learners

Local
Learner

Local
Learner

Recall: Learning in Normal-Form Games

-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form
strategy)

Strategy

𝑏6 𝑏T

𝑏U 𝑏V

-2.0
+1.4 𝑏6

𝑏T

𝑏6𝑏U

𝑏6𝑏V

Strategy
(in sequence form)

CFR
Learning

Algorithm-0.7 -0.4

Main question: what utility
to pass to the local learners?

Local
Learner

Local
Learner

Counterfactual Utilities

𝑏6 𝑏T

𝑏U 𝑏V

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

N𝑢U = −0.7
N𝑢V = −0.4
N𝑢T = +1.4
N𝑢6 = −2.0 + 𝑏U ⋅ −0.7 + 𝑏V ⋅ (−0.4)

Why does it work?

• Proof time!

Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅=>?
(@) ≤<

A

max 0, 𝑅A
@

• Therefore: if the local regret minimizers all have regret 𝑂(𝑇) , then
CFR has regret 𝑂(𝑇) (where the 𝑂 hides game-dependent
constants)

Decision points Local regret cumulated by learner at j

Implementation details
• See accompanying notes

Further pushing performance

• Regret Matching+ at each decision point (see Lecture 5)
• Use alternation

• When computing average strategy, weigh strategy at time t by t:

𝑥̅(@) ∝<
@

𝑡	 ⋅ 𝑥(")	

CFR+: CFR with the following settings:

Advantages of CFR

…On the other hand, it converges to equilibrium at a 1/sqrt(T) rate,
rather than e^(-T)

Compared to linear programming, CFR is significantly more
scalable

CFR uses an approach local to each decision point (easier to
parallelize, warm-start, etc.)

- [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
- [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]
- …

CFR Lends itself to further extensions

