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Game Solving

Approach 1: Linear Programming
(two-player zero-sum)

Approach 2: Learning

Last time

Today



Recall: No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

Objective: sublinear (external) regret

𝑅($) ≔ max
%&∈(	

*
"*+

$

⟨𝑢("), -𝑥 − 𝑥(")⟩	

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for 
extensive-form games



Recall: Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

-2.0

+1.4

-0.7

StrategyUtility vector



Recall: Learning Algorithms

Regret matching (RM): Probability of each action 
proportional to ReLU of regret on the action

Multiplicative Weights Update (MWU): Prob. of each 
action proportional to exp of regret on the action

Follow-The-Regularized-Leader (FTRL):

𝑥(") ∝ 𝑟 " $

𝑥(") ∝ exp(𝜂 ⋅ 𝑟 " )

𝑥(") = argmax
%∈'

⟨𝑟("), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	

Recall (HW1): MWU is 
FTRL with negative 
entropy



Recall: Connections with Equilibria

• Recall: when all players play external-regret-minimizing strategies, 
then:
• In two-player zero-sum games, their average strategies converge to the set of 

Nash equilibrium (gives an alternative approach to previous lecture)
• In general, the average product distribution of play converges to the set of 

coarse-correlated equilibria



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

How to sidestep 
exponential size?

Main idea:

𝑅(") ≔ max
$%∈'	

'
)*+

"

𝑢 ) , *𝑥 − 𝑥 )

Every point in the polytope is a convex combination of its 
finitely many vertices V ≔ 𝑣+, … , 𝑣, . So, operate a 
change of variable: learn the convex combination, not the 
points 𝑥())

𝑅(") ≔ max
-.∈/(0)	

'
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" ⋮
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⋮
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Perf. of vertex



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

What is the local 
feedback?

Main idea:

Run a local no-regret algorithm at each 
decision point to update your strategy.

”Process” the utility vector 𝑢()) (which is 
for the whole sequence-form strategy) 
and chop it up into local feedback for 
each decision point.



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

What regularizers are 
easy to deal with?

Main idea:

The sequence-form polytope is a convex set. So, we can 
apply the FTRL algorithm in its general form, and that 
guarantees no-regret

𝑥(") = argmax
%∈(

⟨𝑈("), 𝑥⟩ −
1
𝜂
𝜑(𝑥)	



Kernelized MWU



𝜆(6) ≔ 6
|9!|

𝟏	 ∈ ℝ9!         

For 𝑡 = 1, 2, …
Play mixed strategy Ω: ∋ 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨( # ,*⟩

∑*,∈.!
A(#) <, ⋅C%	⟨( # ,*,⟩

Vertex MWU algorithm
Setup

Ω1 ⊆ ℝ2
𝑉3  vertices of Ω1 

General Setup:

ΩI ⊆  ℝ?		polyhedral strategy set 
for Player i (e.g., sequence-form 
polytope for EFGs) with 0/1 
vertices

𝑉: verRces of ΩI 

“Utility of vertex v”

…We weight vertices using MWU



𝜆(6) ≔ 6
|9!|

𝟏	 ∈ ℝ9!         
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Vertex MWU algorithm
Setup

Ω1 ⊆ ℝ2
𝑉3  vertices of Ω1 

Main theorem

When Ω: has 0/1-coordinate 
vertices, Vertex MWU can be 

implemented using d+1 
evaluations of the 0/1-

polyhedral kernel at each 
iteration

Crucially independent on the number of vertices of Ω:!

As long as the kernel function can be evaluated efficiently, 
then Vertex (O)MWU can be simulated in polynomial time



Setup
Ω ⊆ ℝ?
𝑉 vertices of Ω
𝑉 ⊆ {0, 1}? 

Definition (0/1-feature map of Ω)

𝜙J ∶ ℝ? → ℝ9,                        𝜙J 𝑥 𝑣 ≔ ∏K:< K M6𝑥[𝑘] 

Given any vector, for each vertex it computes the product 
of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Ω)

𝐾J ∶ ℝ?×ℝ? → ℝ,    𝐾J 𝑥, 𝑦 ≔ 𝜙J 𝑥 , 𝜙J 𝑦 = ∑<∈9∏K:< K M6𝑥 𝑘 ⋅ 𝑦[𝑘]



Let’s see how the feature map and the kernel help 
simulate Vertex MWU



Idea #1 𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9        

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨( # ,*⟩

∑*,∈. A
(#) <, ⋅C%	⟨( # ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2  

Lemma 1: At all times t, 𝜆 ;  is 
proportional to the feature 

map of the vector

ℝ? ∋ 𝑏 ; ≔ exp 𝜂H
RM6

;S6

𝑢 R 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#,    𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘] 

Proof: by induction 

Consequence: by keeping track of 𝑏(;) we 
are implicitly keeping track of 𝜆(;) as well

…So, no need to actually perform the update on 
line 5 explicitly

5

3
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Setup
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𝑉 vertices of Ω
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Lemma 1: At all times t, 𝜆 ;  is 
proportional to the feature 

map of the vector

ℝ? ∋ 𝑏 ; ≔ exp 𝜂H
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;S6

𝑟 R 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#,    𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘] 

Proof: by induction 

Consequence: by keeping track of 𝑏(;) we 
are implicitly keeping track of 𝜆(;) as well

…So, no need to actually perform the update on 
line 5 explicitly

5

3

Remaining obstacle: how can 
we evaluate line 3 with only 

implicit access to 𝜆(") via 𝑏(")?



Idea #2 𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9        

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨( # ,*⟩

∑*,∈. A
(#) <, ⋅C%	⟨( # ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2  Lemma 1: At all times t, 𝜆 ;  is 

proportional to the feature map 
of the vector

ℝ" ∋ 𝑏 ) ≔ exp 𝜂:
*'(

)+(

𝑢 * 	
5

3

Lemma 2: At all times t, 𝑥 ;  can be reconstructed from 𝑏(;) as

𝑥(;) = 1 −
𝐾J 𝑏 ; , 𝟏 − 𝑒6
𝐾J 𝑏 ; , 𝟏

, … , 1 −
𝐾J(𝑏 ; , 𝟏 − 𝑒?)
𝐾J(𝑏 ; , 𝟏)

(d+1 kernel 
evaluations)



𝜆(6) ≔ 6
|9|𝟏	 ∈ ℝ

9        

For 𝑡 = 1, 2, …
Play 𝑥(;) ≔ ∑<	∈	9! 𝜆

(;) 𝑣 ⋅ 𝑣

Observe utility 𝑢(;) ∈ ℝ?

Set 𝜆 ;@6 𝑣 ≔ A(#) < ⋅C%	⟨( # ,*⟩

∑*,∈. A
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Vertex MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2  

𝑏(6) ≔ 0 ∈ ℝ?
𝑏(6) ≔ 𝟏	 ∈ ℝ?        

For 𝑡 = 1, 2, …

Play 𝑥()) ≔ 1 − 4! 5 " ,𝟏89#
4! 5 " ,𝟏

, … , 1 − 4!(5 " ,𝟏89$)
4!(5 " ,𝟏)

Observe utility 𝑢(;) ∈ ℝ?

Set 𝑏 ;@6 ≔ exp 𝜂 ∑RM6; 𝑢 R

Kernelized MWU algorithm
Setup

Ω ⊆ ℝ2
𝑉 vertices of Ω
𝑉 ⊆ {0,1}2  



Counterfactual Regret 
Minimization



Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…

…but is a no-external-regret algorithm for 
sequence-form strategies

🚨 
Papercut 

Alert™

Counterfactual Regret Minimization



Big Picture Idea:

A B
C

D E F

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Each local 
learner is 

responsible for 
refining the 

behavior at their 
decision point 

Can locally use 
regret matching, 

mulIplicaIve 
weights update, 

…



Local Training Feedback

Each local learner receives as feedback what is known as a 
counterfactual utility vector

This is constructed starting from the 𝑢(")



Recall: Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

-2.0

+1.4

-0.7

StrategyUtility vector



Recall: Learning in Normal-Form Games

CFR 
Learning

Algorithm

𝑏6

𝑏T

𝑏6𝑏U

𝑏6𝑏V

Strategy
(in sequence form)

𝑏6 𝑏T

𝑏U 𝑏V

Probabilities of actions chosen 
by local learners

Local 
Learner

Local 
Learner



Recall: Learning in Normal-Form Games

-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form 
strategy)

Strategy

𝑏6 𝑏T

𝑏U 𝑏V

-2.0
+1.4 𝑏6

𝑏T

𝑏6𝑏U

𝑏6𝑏V

Strategy
(in sequence form)

CFR 
Learning

Algorithm-0.7 -0.4

Main question: what utility 
to pass to the local learners?

Local 
Learner

Local 
Learner



Counterfactual Utilities

𝑏6 𝑏T

𝑏U 𝑏V

-2.0
+1.4

-0.7 -0.4

Local 
Learner

Local 
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

N𝑢U = −0.7
N𝑢V = −0.4
N𝑢T = +1.4
N𝑢6 = −2.0 + 𝑏U ⋅ −0.7 + 𝑏V ⋅ (−0.4)



Why does it work?

• Proof time!



Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅=>?
(@) ≤<

A

max 0, 𝑅A
@

• Therefore: if the local regret minimizers all have regret 𝑂( 𝑇) , then 
CFR has regret 𝑂( 𝑇) (where the 𝑂 hides game-dependent 
constants) 

Decision points Local regret cumulated by learner at j



Implementation details
• See accompanying notes



Further pushing performance

• Regret Matching+ at each decision point (see Lecture 5)
• Use alternation

• When computing average strategy, weigh strategy at time t by t:

𝑥̅(@) ∝<
@

𝑡	 ⋅ 𝑥(")	

CFR+: CFR with the following settings:



Advantages of CFR

…On the other hand, it converges to equilibrium at a 1/sqrt(T) rate, 
rather than e^(-T)

Compared to linear programming, CFR is significantly more 
scalable

CFR uses an approach local to each decision point (easier to 
parallelize, warm-start, etc.)

- [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
- [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]
- …



CFR Lends itself to further extensions


