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Recall: Extensive-form games



Recall: Strategies

Idea Obvious downsides Good news

(Reduced) Normal-form 
strategies

Distribution over 
deterministic strategies

𝜇 ∈ Δ(Π)

Exponentially-sized 
object 

In rare cases, it’s possible 
to operate implicitly on 
the exponential object 
via a kernel trick

Behavioral strategies Local distribution over 
actions at each decision 
point

𝑏 ∈	×! 	Δ(𝐴!)

Expected utility is 
nonconvex in the the 
entries of vector 𝑏

Kuhn’s theorem: same 
power as reduced 
normal-form strategies

Sequence-form 
strategies

”Probability flows” on 
the tree-form decision 
process

𝒙 ∈ 𝑸 (convex polytope)

None Everything is convex!

Kuhn’s theorem applies 
automatically.



Recall: Strategic Form
Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a 
list of all possible 

assignments of actions at 
each information set

(Histories in the same 
information must get 

assigned the same action)



Recall: Strategic Form
Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a 
list of all possible 

assignments of actions at 
each information set

(Histories in the same 
information must get 

assigned the same action)

Valid assignments for Player 1: 27
Valid assignments for Player 2: 64

These assignements are called 
“reduced normal-form plans”



Recall: Equivalent Normal-Form Game
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Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the 
expected utility when players use that 
combination of reduced normal-form 

plans
Don’t forget 

nature moves 

With this, we have reduced the 
extensive-form game to a normal-form 

game

Inherit notions of Nash, correlated 
equilibrium, coarse correlated 

equilibrium, …

Example: Nash equilibrium in Kuhn 
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over 
the 27 plans of 

Player 1
Distribution over 
the 64 plans of 

Player 2

Payoff matrix on 
the left

You can use any technique for normal-form games: 
learning, linear programming, …
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Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the 
expected utility when players use that 
combination of reduced normal-form 

plans
Don’t forget 

nature moves 

With this, we have reduced the 
extensive-form game to a normal-form 

game

Inherit notions of Nash, correlated 
equilibrium, coarse correlated 

equilibrium, …

Example: Nash equilibrium in Kuhn 
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over 
the 27 plans of 

Player 1
Distribution over 
the 64 plans of 

Player 2

Payoff matrix on 
the left

You can use any technique for normal-form games: 
learning, linear programming, …

Big issue: the number of reduced normal-form plans scales 
exponentially with the game tree size!

This approach is not scalable beyond very small games

We need better techniques



Recall: Behavioral Strategies

Idea: Strategy = choice of distribution over available actions 
at each “decision point”

Information set

We found it convenient to 
take the point of view of a 

single player: face 
decisions and 
observations



Recall: Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

1 Expected utility is not     
      linear in this representation

      Reason: prob. of reaching a 
      terminal state is product of     
      variables

Products = non-convexity !"#$

Idea: Strategy = choice of 
distribution over available 

actions at each decision point



Recall: Expected Utility
Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
x 0.8 (Pl1)

0.6 0.4

When these are variables being optimized, we have a product! Non-
convexity in player’s strategy



“Fixing” Behavioral Strategies:
Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

! Expected utility is a
      linear function

⭐ Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

Idea: Store probability for whole 
sequences of actions

Children

Parent 0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically 
encode products of probabilities on paths, expected utility 

is linear in this strategy representation!



Recall: Expected Utility
Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1) x 0.4 (Pl2)
0.6 0.4

Single variable from strategy vector! Nonlinearity is gone



Recall: Equilibrium Computation

Payoff matrix: Each cell contains the 
expected utility when players use that 
combination of reduced normal-form 

plans

With this, we have reduced the 
extensive-form game to a normal-form 

game

Inherit notions of Nash, correlated 
equilibrium, coarse correlated 

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐵𝑦

Distribution over 
the 27 plans of 

Player 1
Distribution over 
the 64 plans of 

Player 2

Payoff matrix in 
reduced normal form

You can use any technique for normal-form games: 
learning, linear programming, …

Payoff matrix: Each cell contains the 
expected utility when players use that 
combination of reduced normal-form 

plans

With this, we have reduced the 
extensive-form game to a normal-form 

game

Inherit notions of Nash, correlated 
equilibrium, coarse correlated 

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
$
𝑥#𝐴𝑦

Sequence-form 
polytope of player 
1 (dimension 12)

Sequence-form 
polytope of player 
2 (dimension 12)

Sequence-form 
payoff matrix

You can still use learning, linear programming, …

BEFORE: Reduced–normal form NOW: Sequence form

Scale exponentially 
with tree size

Scale linearly with 
tree size



Let’s code up a solver 
together!

Nash equilibrium
(two-player zero-sum):

max
!∈&!

min
$∈&"

𝑥#𝐴𝑦

Sequence-form 
polytope of player 
1 (dimension 12)

Sequence-form 
polytope of player 
2 (dimension 12)

Sequence-form 
payoff matrix for 

player 1

You can still use learning, linear programming, …



Two Approaches to Solve The Max-Min 
Problem

Approach 1: Linear Programming
Approach 2: Learning

For sequence-form 
polytopes in particular: 
Counterfactual Regret 

Minimization (CFR)



Nash equilibrium
(two-player zero-sum):

max
!∈&!

min
$∈&"

𝑥#𝐴𝑦

Sequence-form 
polytope of player 
1 (dimension 12)

Sequence-form 
polytope of player 
2 (dimension 12)

Sequence-form 
payoff matrix for 

player 1

Why / How can this be 
converted into a linear 

program?



Linear Program Formulation

/max 3min 𝑥"𝐴𝑦
s. t. 𝑦 ∈ 𝑄#

s. t. 𝑥 ∈ 𝑄$

max
%∈'!

min
(∈'"

𝑥"𝐴𝑦
1

Nested optimization problem. The inner 
problem is linear

Remember: 𝑦 is from the sequence-form polytope 𝑄<

- Root decision points have mass 1
- Probability mass is conserved
- 𝑦 ≥ 0

Compactly:

𝑄# = 3𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

max /
min 𝑥"𝐴𝑦

s. t. 𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

2



Linear Program Formulation

/max 3min 𝑥"𝐴𝑦
s. t. 𝑦 ∈ 𝑄#

s. t. 𝑥 ∈ 𝑄$

max
%∈'!

min
(∈'"

𝑥"𝐴𝑦
1

max /
min 𝑥"𝐴𝑦

s. t. 𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

2

max I
max 𝑓#𝑣

s. t. 𝐹#"𝑣 ≤ 𝐴"𝑥
𝑣 ∈ ℝ

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

3 Dualize!

max 𝑓#𝑣

s. t.

𝐹$𝑥 = 𝑓$
𝐹#"𝑣 ≤ 𝐴"𝑥
𝑥 ≥ 0
𝑣 ∈ ℝ

𝑄$ = 3𝐹$𝑥 = 𝑓$
𝑥 ≥ 0 	 𝑄# = 3𝐹#𝑦 = 𝑓#

𝑦 ≥ 0

4Single linear 
program!



Linear Program Formulation

/max 3min 𝑥"𝐴𝑦
s. t. 𝑦 ∈ 𝑄#

s. t. 𝑥 ∈ 𝑄$

max
%∈'!

min
(∈'"

𝑥"𝐴𝑦
1

max /
min 𝑥"𝐴𝑦

s. t. 𝐹#𝑦 = 𝑓#
𝑦 ≥ 0

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

2

max I
max 𝑓#𝑣

s. t. 𝐹#"𝑣 ≤ 𝐴"𝑥
𝑣 ∈ ℝ

s. t. 𝐹$𝑥 = 𝑓$
𝑥 ≥ 0

3 Dualize!

max 𝑓#𝑣

s. t.

𝐹$𝑥 = 𝑓$
𝐹#"𝑣 ≤ 𝐴"𝑥
𝑥 ≥ 0
𝑣 ∈ ℝ

𝑄$ = 3𝐹$𝑥 = 𝑓$
𝑥 ≥ 0 	 𝑄# = 3𝐹#𝑦 = 𝑓#

𝑦 ≥ 0

4Single linear 
program!

What do we need to implement this?

1. From the game tree, extract 𝐹$, 𝐹#, 𝑓$, 𝑓#, and 𝐴

2. Code up the linear program

3. Profit!



How to construct 𝐹!, 𝑓!, 𝐹", 𝑓"?

In sequence form, we 
have one variable per 

action at each decision 
point (information set)

Matrices 𝐹N, 𝑓N, 𝐹<, 𝑓< 
encode the probability 

flow conservation 
constraints



Step 1: Construct each player’s tree-form 
decision process

Effectively boils down to figuring out:
for each information set J of the player, what was the last (information set, action) 

pair for the player on the path from the root of the tree to J? (“parent” of J)

J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)



Step 1: Construct each player’s tree-form 
decision process

Effectively boils down to figuring out:
for each information set J of the player, what was the last (information set, action) 

pair for the player on the path from the root of the tree to J? (“parent” of J)

J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

A B C

D E F



J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

A B C

D E F

Step 2: Assign numerical identifiers

We will use numerical IDs 
to each action at each 

information set

(J, action) ID

(A, chk) 0

(A, bet) 1

(B, chk) 2

(B, bet) 3

(C, chk) 4

(C, bet) 5

(D, fold) 6

(D, call) 7

(E, fold) 8

… …

(F, call) 11

0 1 2 3 4 5

6 7 8 9 10 11

Sequence-form constraints:
𝑥O + 𝑥N = 1
𝑥< + 𝑥P = 1
𝑥Q + 𝑥R = 1
𝑥S + 𝑥T = 𝑥O
𝑥U + 𝑥V = 𝑥<
𝑥NO + 𝑥NN = 𝑥Q
𝑥), … , 𝑥$$ ≥ 0



J Actions Parent

A [chk, bet] None

B [chk, bet] None

C [chk, bet] None

D [fold, call] (A, chk)

E [fold, call] (B, chk)

F [fold, call] (C, chk)

A B C

D E F

Step 2: Assign numerical identifiers

We will use numerical IDs 
to each action at each 

information set

(J, action) ID

(A, chk) 0

(A, bet) 1

(B, chk) 2

(B, bet) 3

(C, chk) 4

(C, bet) 5

(D, fold) 6

(D, call) 7

(E, fold) 8

… …

(F, call) 11

0 1 2 3 4 5

6 7 8 9 10 11

Sequence-form constraints:
𝑥O + 𝑥N = 1
𝑥< + 𝑥P = 1
𝑥Q + 𝑥R = 1
𝑥S + 𝑥T = 𝑥O
𝑥U + 𝑥V = 𝑥<
𝑥NO + 𝑥NN = 𝑥Q
𝑥), … , 𝑥$$ ≥ 0

In matrix-vector form,

 

+1 +1

+1 +1

+1 +1

-1 +1 +1

-1 +1 +1

-1 +1 +1

+1

+1

+1
𝑥	 = 

𝐹$ 𝑓$



Plan of attack

• Step 1: for each player, figure out the parent relationships



Plan of attack

• Step 1: for each player, figure out the parent relationships
• Step 2: then, assign numerical IDs and compile the matrices F and f



A B C

D E F

0 1 2 3 4 5

6 7 8 9 10 11

The Payoff Matrix 𝐴
Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) ×	 𝑥* (Pl1)

When these are variables being optimized, we have a product! Non-
convexity in player’s strategy

×	 𝑦$ (Pl1)
0 1



Implementation

• class Game
• tpx_pl1: Treeplex
• tpx_pl2: Treeplex
• A: payoff matrix (numpy array, player 1 on rows for A)

• class Treeplex
• infosets: dict[str, Infoset]
• num_seqs: int. Total number of actions across decision points (12 in figure)

• class Infoset:
• actions: dictionary from action name (e.g., “fold”) to unique ID (e.g., 6)
• parent: unique ID of the parent infoset action. (may be None)

A B C

D E F

0 1 2 3 4 5

6 7 8 9 10 11




