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ABSTRACT

Policy gradient methods have become a staple of any single-agent reinforce-
ment learning toolbox, due to their combination of desirable properties: iterate
convergence, efficient use of stochastic trajectory feedback, and theoretically-
sound avoidance of importance sampling corrections. In multi-agent imperfect-
information settings (extensive-form games), however, it is still unknown whether
the same desiderata can be guaranteed while retaining theoretical guarantees. In-
stead, sound methods for extensive-form games rely on approximating counter-
factual values (as opposed to Q values), which are incompatible with policy gra-
dient methodologies. In this paper, we investigate whether policy gradient can be
safely used in two-player zero-sum imperfect-information extensive-form games
(EFGs). We establish positive results, showing for the first time that a policy
gradient method leads to provable best-iterate convergence to a regularized Nash
equilibrium in self-play.

1 INTRODUCTION

In recent years, deep reinforcement learning (DRL) has succeeded tremendously in many applica-
tions with large and complex environments, such as games (Mnih et al., 2013; Silver et al., 2017),
autonomous driving (Kiran et al., 2021), robotics (Ibarz et al., 2021), and large language models
(e.g. Ouyang et al. (2022) and ChatGPT). Much of these successes are due to the applicability of
scalable algorithms, such as proximal policy optimization (PPO) (Schulman et al., 2017) and soft
actor-critic (SAC) (Haarnoja et al., 2018). The success of these algorithms hinges on a few critical
properties—these algorithms (I) only require value estimates obtained from repeated random roll-
outs which can be implemented efficiently; (II) converge in iterates (as opposed to in averages),
removing the need for either training an average policy approximator or storing snapshots of past
policies; and (III) soundly avoid importance sampling corrections, which can be detrimental in
practice as they often lead to outsized reward estimates.

However, DRL is not applicable in multi-agent imperfect-information settings, such as Texas
Hold’em poker, where they tend to end up trapped in cycles without making progress (Balduzzi et al.,
2019). Constructing policy gradient algorithms that enjoy the same wide applicability as their DRL
counterparts and yet retain theoretical guarantees in tabular settings even in imperfect-information
games is a challenging, open direction of research. Current sound algorithms for competitive games
typically see their scalability limited by two major obstacles: their lack of last- (or even best-) iterate
convergence, and their reliance on counterfactual values. In what follows we illustrate both of these
issues separately.

Average vs iterate convergence. In the last decade, most scalable techniques to solve Nash equi-
librium strategies in two-player zero-sum imperfect-information extensive-form games (EFGs) have
been based on Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) and its modern
variants (Tammelin et al., 2015; Farina et al., 2019a; Brown and Sandholm, 2019; Farina et al.,
2021a). These algorithms guarantee that their average strategy converges to the set of Nash equi-
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librium (NE) strategies. However, average-iterate convergence is not desirable within the regime
of deep learning, where strategies are stored indirectly as a vector of neural network weights. To
represent and use the average strategy, some authors have resorted to storing in memory multiple
snapshots of the network (Steinberger, 2019; Steinberger et al., 2020), sampling one at random; this
can quickly become expensive in large games (Liu et al., 2023)). Alternatively, some authors have
included—as part of their pipeline—training a second network whose goal is approximating the av-
erage strategy (Brown et al., 2019). This approach is also undesirable, as it incurs an additional error
in the approximation of the average strategy.

In light of the above discussion, a recent trend in the literature has focused on algorithms that do not
require taking averages of strategies and instead converge to the set of Nash equilibrium strategies—
in short, exhibit iterate convergence. A distinction between two forms of iterate convergence is often
made: best-iterate convergence, meaning that at least one of the iterates produced by the algorithm
is very close to equilibrium, and last-iterate convergence, meaning that the last iterate produced is.
While this line of work has produced a wealth of algorithms with provable last-iterate convergence
Daskalakis and Panageas (2019); Anagnostides et al. (2022); Wei et al. (2021); Lee et al. (2021);
Cen et al. (2021); Liu et al. (2023), a major obstacle towards practical combination with function
approximation has been the reliance of these algorithms on counterfactual values, which we discuss
next.

Counterfactual values vs Q-values. Aside from the cycling effect, there is another reason that re-
inforcement learning, commonly based on Q-values in single-agent environments, is not applicable
in EFGs, which is the fundamental state concept being replaced by the information set. Players’
expected payoffs of taking action a at an information set s need to consider the opponent’s reach
probabilities to s, captured in the notion of counterfactual values. These are essentially Q-values
multiplied by the probability of the opponent and environment reaching s from the game’s root when
the opponent follows their strategy.

The downsides of counterfactual values become apparent when turning the attention onto estimation
of values. Q-values are extremely practical to estimate by performing random rollouts. For coun-
terfactual values, several techniques have been proposed. A popular technique in this space is using
importance sampling to estimate the counterfactual values (Lanctot et al., 2009; Farina et al., 2020).
However, importance sampling is not suitable for DRL in large-scale environments due to the high
dispersion (i.e., range of values) of the produced estimator—for instance, the estimated Q-value can
be as large as the game size (Kozuno et al., 2021; Bai et al., 2022; Fiegel et al., 2023), thus hindering
the stable training of neural networks. Certain variance reduction techniques, such as those by
Schmid et al. (2019), still suffer a large dispersion even though the variance is reduced.

External Sampling vs Trajectory Rollouts. Algorithms that sidestep the need for importance sam-
pling, such as External Monte Carlo CFR (Lanctot et al., 2009), do that at the expense of exploring
about square-root of the EFG size in every iteration to reduce the variance of the estimator. This is in
stark contrast with DRL, which simply samples a batch of trajectories at every iteration, each with a
size proportional to the height of the tree, which is typically logarithmic in the size of the game. In
large games such as Stratego, where the size of the game tree is approximately 10535 (Perolat et al.,
2022), external sampling needs to visit more than 10200 infosets at each iteration while trajectory
rollouts only visits no more than 4 · 103 infosets per iteration.

Contributions. Given the above discussion, a question is natural:

Is it possible to design a theoretically sound policy gradient method for solving two-player
zero-sum extensive-form games that achieves the desiderata (I), (II), (III) listed in the introduction?

Such an algorithm would enable estimating values via rollouts, without need of importance sam-
pling, all while ensuring iterate convergence, bringing EFG technology more in line with modern
DRL technology. Our aim in this paper is to show that a positive answer to the question is possible.

In this work, we develop the first principled policy gradient approach for solving imperfect infor-
mation EFGs. Our approach builds on a particular notion of Q-values for EFGs, called trajectory
Q-values, which admits efficient estimation through random rollouts without importance sampling.
Our algorithm also introduces a new regularizer for EFGs, which we coin bidilated regularizer.
When paired with trajectory Q-values, the bidilated regularizer enables iterate convergence with
both full-information and stochastic feedback obtained through the sampled trajectory. To obtain
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the results, we devised a novel learning rate schedule that increases with the depth of the game tree.
It ensures that the strategies of ancestors are changing slower than those of the children, and are
therefore stable when the children are updating their payoff estimates.

The discussion about related work is postponed to Appendix A, and summarized in Table 1.

Algorithm Iterate convergence Q-values Stochastic feedback
DREAM, DEEP-CFR
(Steinberger et al., 2020; Brown et al., 2019)

✗ ✗ ✓

OOMD, REG-DOMD, MMD
(Lee et al., 2021; Liu et al., 2023; Sokota et al., 2023)

✓(last) ✗ ✗

ADAPTIVE FTRL (Fiegel et al., 2023) ✗ ✗ ✓
ESCHER, LOCALOMD (McAleer et al., 2023;
Fiegel et al., 2024)

✗ ✓ ≈ (off-policy)

ARMAC, ACH (Gruslys et al., 2020; Fu et al., 2021) ✗ ✓ ≈ (infinite samples)
QFR (this paper) ✓(best) ✓ ✓

Table 1: The table above compares the related work in three aspects: convergence guarantee, feed-
back type, and supporting sampling or not. (last) and (best) denote last-iterate convergence and
best-iterate convergence, respectively.

2 PRELIMINARIES

For any vector x, we use xi as element i of vector x and ∥x∥p as the p-norm. We let ∥x∥
denote the Euclidean norm ∥x∥2. We use ∆n to denote the (n − 1)-dimensional probabil-
ity simplex {x ∈ [0, 1]n :

∑n
i=1 xi = 1}. We also define the Bregman divergence Dψ(x,y) :=

ψ(x) − ψ(y) − ⟨∇ψ(y),x− y⟩ with respect to the c-strongly convex function ψ. The c-strong
convexity of ψ implies the bound Dψ(x,y) ≥ c

2 ∥x− y∥2. For any integer n ≥ 0, we use
[n] := {1, 2, · · · , n− 1, n}. For any set S, we denote with |S| as its cardinality.

Extensive-Form Games. EFGs are played on a rooted game tree. In this paper we focus on two-
player zero-sum EFGs; hence, each node (also known as history) belongs to exactly one player out
of the set {1, 2} ∪ {c}. The special player c is called the chance player, and models stochastic
events (for example: a roll of the dice or dealing a card from a shuffled deck) sampled from a
known distribution. We useH1,H2,Hc to denote the set of nodes belonging to each of the players.
Terminal nodes (nodes without children) have an associated payoff for each player, i.e. U1(h),U2(h)
for player 1, 2 individually and U1(h) = −U2(h) for any terminal node h since the game is zero-
sum.

To model imperfect information, the set of nodes Hi of each player i ∈ [2] is partitioned into infor-
mation sets (or infosets for short) s1, s2, · · · , sm. Nodes in the same infoset are indistinguishable
for the acting player of that infoset. For example, in poker player 1 cannot distinguish two nodes
in the game tree that only differ on the private cards of player 2, since player 1 does not observe
the hand of the opponent. We use Si := {s1, s2, · · · , sm} to denote the collection of all infosets of
player i. Let H := H1 ∪ H2 and S := S1 ∪ S2 be the joint set of nodes and infosets of player 1, 2
for convenience. Because nodes in the same infoset are indistinguishable from the acting player,
they must all have the same action set, which we denote with As as the action set of infoset s ∈ S.
Furthermore, p : S → {1, 2} denotes the player that an infoset s belongs to.

We make the assumption that each player remembers all their past observations and actions; this
assumption is standard and goes under the name of perfect recall. A direct corollary of this assump-
tion is that nodes in the same infoset s ∈ Si have the same past observation along the path from the
root to the node in the view of player i. For any two nodes h, h′ ∈ H, we write h ⊑ h′ if h is on the
path from the root of the game tree to h′. Suppose h ∈ s and for any a ∈ As, we write (h, a) ⊑ h′ if
the path from the root of the game tree to node h′ includes the edge corresponding to taking action
a at s. For any two infosets s, s′ ∈ Si that belong to the same player i ∈ [2], whenever there exist
two nodes h ∈ s, h′ ∈ s′ such that h ⊑ h′, we write s ⊑ s′. Similarly, we write (s, a) ⊑ s′ for
any a ∈ As when there exist nodes h ∈ s, h′ ∈ s′ such that (h, a) ⊑ h′. Moreover, we can define
(s, a) ⊑ (s′, a′) for s, s′ ∈ Si for some i ∈ [2] and a ∈ As, a′ ∈ As′ . Furthermore, for any player
i ∈ [2], we define the parent sequence σ(s) of an infoset s ∈ Si as the last infoset-action pair (s′, a′),
where s′ ∈ Si, a′ ∈ As′ , encountered along the path from root to any nodes in s (the choice of node
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in s is irrelevant and σ(s) is either unique or non-existing due to the perfect-recall assumption ).
If there does not exist such infoset-action pair, we let σ(s) = ∅. For any node h ∈ H, we define
σi(h) as the last infoset-action pair (s, a), where s ∈ Si, encountered along the path from root to h.
Finally, we define the depth D(h) of a node h ∈ H as the number of actions (of all players) on the
path from the root of the game tree to h. The depth D(s) of an infoset s ∈ Si is the maximum depth
of any node h ∈ s. Furthermore, D := maxh∈HD(h) is the depth of the game.

Strategies in EFGs. Since players cannot differentiate nodes in the same infoset, their strategies
must be the same at all of them. For player i and infoset s ∈ Si (i.e. p(s) = i), we use πi(a | s) to
denote the probability of taking action a ∈ As at any node in infoset s. We use π := (π1, π2) to
denote the strategy profile. For a player i, given an assignment of πi(a | s) for each s ∈ Si, a ∈ As,
then we can represent strategies for the EFG via their sequence-form representation (Von Stengel,
1996). This is a mapping µπi

i :
⋃
s∈Si,a∈As

{(s, a)} → [0, 1] associated with strategy πi for each
player i ∈ [2], where µπi

i (s, a) := µπi
i (σ(s)) · πi(a | s) for any s ∈ Si, a ∈ As. Note that µπi

i (∅) =
1. For each h ∈ H, according to the definition above, µπi

i (σ1(h)) is equal to the product of the
probability of all of Player i’s actions from the root of the tree down to node h. We use µc(h) to
denote the probability of reaching h ∈ H contributed by the chance player. We assume µc(h) > 0
for any h ∈ H, since otherwise h will never be reached and thus can be removed from the game
tree.

For simplicity, let µπ1
1 to be a vector with index (s, a), where s ∈ Si, a ∈ As, and (µπ1

1 )(s,a) =
µπ1
1 (s, a). In this representation, the expected utility for Player 1 is the bilinear function

(µπ1
1 )⊤Aµπ2

2
1 (the utility for Player 2 is −(µπ1

1 )⊤Aµπ2
2 since the game is zero-sum). We de-

fine the convex polytope of all valid sequence-form strategies as Π1,Π2 for player 1, 2 respectively,
and Π := Π1 × Π2. For simplicity, let µπ := (µπ1

1 , µπ2
2 ) as the concatenation of the sequence-

form strategy of both players. Sometimes, we will omit the subscript of µ when it is clear from the
context, such as writing µ

πp(s)

p(s) (s, ·) as µπ(s, ·).
Counterfactual and Q-Values. In this section we recall some key notions of values for EFGs. Our
exposition is mostly intuitive to avoid notational burden; all definitions can be found in Appendix B.
We start from introducing these values for nodes and for Player 1 (the definitions are symmetric for
Player 2), and will later extend the definition to infosets.

• The Q-value Qπ
1 (h, a) associated with strategies π1, π2 for node-action pair (h, a) is defined as

Player 1’s expected utility in the subtree rooted at h, when Player 1 follows π1 and Player 2 follows
π2 after first selecting a as their first action.

• The counterfactual value CFπ
1 (h, a) is defined as the product of the corresponding Q-value with

the probability that Player 2 and the chance player reach h; in symbols,

CFπ
1 (h, a) := µπ2

2 (σ2(h)) · µc(h) ·Qπ
1 (h, a).

• The trajectory Q-value Qπ
1 (h, a) is defined as the product of the corresponding Q-value with the

probability of the path of actions from the root of the game tree down to h. In symbols,

Qπ
1 (h, a) := µπ1

1 (σ1(h)) · µπ2
2 (σ2(h)) · µc(h) ·Qπ

1 (h, a).

We now extend these definitions from nodes to infosets. Consider infoset s ∈ S and action a ∈ As.
For trajectory Q-value and counterfactual value we simply have Qπ

1 (s, a) :=
∑
h∈sQ

π
1 (h, a) and

CFπ
1 (s, a) :=

∑
h∈s CF

π
1 (h, a). For Q-value, Qπ

1 (s, a) := Eh∼d(· | s)[Qπ
1 (h, a)], where d(h | s) ∝

µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h)) ∝ µc(h)µ

π2
2 (σ2(h))

2 for any h ∈ s. All definitions are symmetric
for Player 2.

Regret and Equilibrium. When players 1 and 2 play according to strategies µπ1
1 , µπ2

2 respectively,
the utility of Player 1 is (µπ1

1 )⊤Aµπ2
2 and that of Player 2 is −(µπ1

1 )⊤Aµπ2
2 since the game is zero-

sum. An ϵ-approximate Nash equilibrium (NE) of the game is then defined as follows.

Definition 2.1 (ϵ-approximate Nash Equilibrium). For compact convex set C1, C2, a strategy profile
(µ1, µ2) ∈ C1 × C2 is an ϵ-approximate NE if

max
µ̂1∈C1

µ̂⊤
1 Aµ2 − min

µ̂2∈C2

µ⊤
1 Aµ̂2 ≤ ϵ. (2.1)

1A ∈ [−1, 1]
∑

s∈S1
|As|×

∑
s′∈S2

|As′ | is the utility matrix of the game.
2Because σ1(h) = σ(s) for any s ∈ S1 and h ∈ s due to the perfect-recall assumption.
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When ϵ = 0, we also simply call the strategy profile a Nash equilibrium (NE). Equation (2.1) is also
called the exploitability of the strategy profile (µ1, µ2).

Given a sequence of T strategy pairs (µ(t)
1 , µ

(t)
2 ) ∈ C1 × C2, we can define the regret of Player 1 as

(Player 2’s is analogous),

R
(T )
1 := max

µ̂1∈C1

T∑
t=1

(
µ̂1 − µ(t)

1

)⊤
Aµ

(t)
2 . (2.2)

A folklore result establishes a direct connection between regret minimization and approximate Nash
equilibrium. Specifically, when the players’ strategies incur regret R(T )

1 and R(T )
2 respectively, then

the average strategies of the players form an ϵ-approximate NE, where

ϵ = (R
(T )
1 +R

(T )
2 )/T. (2.3)

3 Q-FUNCTION BASED REGRET MINIMIZATION (QFR)

In this section, we propose our policy gradient algorithm for EFGs, which we coin Q-Function based
Regret Minimization (QFR). In QFR, for each player i ∈ [2] and state s ∈ Si, we enforce the strategy
π
(t)
i (· | s) to explore with probability γs using the exploration strategy νs, in order to ensure that

each infoset will be reached with a positive probability γ > 0.

Then, we show that QFR converges in best iterate to the regularized Nash equilibrium. Specifically,
QFR will converge to the solution µ(τ,γ),∗ = (µ

(τ,γ),∗
1 , µ

(τ,γ),∗
2 ) of the original bilinear minimax

objective plus additional regularization term ψΠ1

bi (µ
π1
1 , µπ2

2 ) and ψΠ2

bi (µ
π1
1 , µπ2

2 ), which we call bidi-
lated regularizer. ψΠ1

bi (µ
π1
1 , µπ2

2 ) is strongly convex with respect to µπ1
1 and convex with respect

to µπ2
2 . Conversely, ψΠ2

bi (µ
π1
1 , µπ2

2 ) is strongly convex with respect to µπ2
2 and convex with respect

to µπ1
1 . In contrast to the original bilinear objective, optimizing the regularized objective will sta-

bilize the training process, and result in better convergence results. Formally, the regularized and
perturbed (perturb refers to the exploration) game is,

max
µ
π1
1 ∈Π1 :

∀s∈S1, π1(· | s)∈∆|As|
γs,νs

min
µ
π2
2 ∈Π2 :

∀s∈S2, π2(· | s)∈∆|As|
γs,νs

(µπ1
1 )

⊤
Aµπ2

2 − τψΠ1

bi (µ
π1
1 , µπ2

2 ) + τψΠ2

bi (µ
π1
1 , µπ2

2 )

(3.1)

where ∆
|As|
γs,νs

:=
{
u ∈ ∆|As| : ∀a ∈ As, ua ≥ γsνs,a

}
, and τ ≥ 0 controls the magnitude of

the regularizer. Note that the NE of the non-regularized game can be computed by annealing the
regularization coefficient τ by using a standard technique (Liu et al., 2023).

To decompose the regularizer ψΠi

bi to each infoset for efficient update, we resort to the concept di-
lated regularizer (Hoda et al., 2010). Take Euclidean norm for example, unlike naively choosing
1
2 ∥µ

πi
i ∥

2 as the regularizer, dilated regularizer weights the regularizer 1
2 ∥πi(· | s)∥

2 at each infoset
s ∈ Si by the reach probability of player i to s, i.e. 1

2

∑
s∈Si

µπi
i (σ(s)) ∥πi(· | s)∥2. It is shown

in Hoda et al. (2010) that the dilated regularizer is strongly convex with respect to µπi
i . However,

dilated regularizer ψΠi only weights the reach probability of player i, neglecting that of the oppo-
nents, of which the asymmetry causes importance sampling when estimating the regularizer term
in a rolling trajectory. Therefore, a natural solution is weighting the strongly convex regularizer
ψ∆
s : ∆|As| → R at each infoset s ∈ S (typically it is Euclidean norm or negative entropy) by the

reach probability of all players. Formally, the bidilated regularizer ψΠ1

bi (µ
π1
1 , µπ2

2 ) of player 1 is
defined as (that of player 2 can be defined similarly),

ψΠ1

bi (µ
π1
1 , µπ2

2 ) :=
∑
s∈S1

µπ1
1 (σ(s))

(∑
h∈s

µc(h)µ
π2
2 (σ2(h))

)
ψ∆
s (π1(· | s)), (Bidilated regularizer)

ψΠ1(µπ1
1 ) =

∑
s∈S1

µπ1
1 (σ(s))ψ∆

s (π1(· | s)) (Dilated regularizer)
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The details can be referred to Appendix D. For notational simplicity, let ψΠ(µπ) : Π → R =

ψΠ1(µπ1
1 )+ψΠ2(µπ2

2 ) and ψΠ
bi(µ

π) : Π→ R = ψΠ1

bi (µ
π1
1 , µπ2

2 )+ψΠ2

bi (µ
π1
1 , µπ2

2 ). With all ingredi-
ents at hand, we can introduce the algorithm Q-Function based Regret minimization
(QFR). At each timestep t, QFR will sample a trajectory according to the current strategy π(t−1)

(Line 3 of Algorithm 1). Then, the trajectory Q-value will be estimated from the trajectory (Line 10-
12, ψ estimates the trajectory Q-value contributed by additional bidilated regularizer of the game,
W estimates the that contributed by the reward of the original game). Lastly, all infosets along
the trajectory will be updated with a variant of Regularized Optimistic Mirror Descent (Reg-OMD)
proposed in Liu et al. (2023) (Line 14). In Reg-OMD, at timestep t, the strategy π(t) serves as
the prediction of π(t+1). Then in the next timestep t + 1, π(t) will be updated with the trajectory
Q-value estimated at π(t). The pseudocode of QFR is proposed in Algorithm 1.

Algorithm 1 Q-Function based Regret minimization (QFR)

1: Initialize π(1)
i (· | s), π(1)

i (· | s) as uniform distribution over ∆|As| for any i ∈ [2] and s ∈ Si.
2: for t = 2, 3, · · · , T do
3: Sample a trajectory (h0, a0, h1, · · · , hK) ∼ π(t−1), where h0=∅ and hK is terminal
4: Let s0, s1, · · · , sK be the infosets corresponding to h0, h1, · · · , hK
5: for k = K,K − 1, · · · , 0 do
6: if node hk belongs to the chance player then
7: continue to the new iteration directly
8: else
9: p← p(sk)

10: ψ ← −∑K
k′=k+1:p(sk′ )=p

ψ∆
sk′ (π

(t−1)
p ) +

∑K
k′=k+1:p(sk′ )=3−p ψ

∆
sk′ (π

(t−1)
3−p )

11: W ← Up(hK), end-of-trajectory utility of player p (only terminal nodes have utility ̸= 0)
12: Compute the unbiased estimator of trajectory Q-value as

q̃(t−1)(sk, a) =

{
(W + τψ)∇a log π(t−1)

p (a | sk) a = ak
0 Otherwise.

13: Compute the estimated value function as

Ṽ πp(sk) = Ea∼πp(· | sk)
[
q̃(t−1)(sk, a)

]
− τψ∆

sk
(πp(· | sk)) .

14: Update π(t−1)
p , π

(t−1)
p according to

π(t)
p (· | sk)← argmax

πp(· | sk)∈∆
|Ask

|
γsk

,νsk

Ṽ πp (sk)−
1

ηsk
Dψ∆

sk
(πp(· | sk), π(t−1)

p (· | sk))

π(t)
p (· | sk)← argmax

πp(· | sk)∈∆
|Ask

|
γsk

,νsk

Ṽ πp (sk)−
1

ηsk
Dψ∆

sk
(πp(· | sk), π(t)

p (· | sk)), (3.2)

where ∆
|As|
γs,νs

:=
{
u ∈ ∆|As| : ∀a ∈ As, ua ≥ γsνs,a

}
15: For all infosets s not visited at timestep t, let π(t)

p(s)(· | s) = π
(t−1)
p(s) (same for π(t)

p(s))

We define the largest learning rate among all ancestor infosets of s ∈ S as ηancs :=
maxi∈[2],h∈smax(s′,a′)⊑σi(h) ηs′ (ηs is the learning rate of infoset s), and we have the follow-
ing theorem that establishes the best-iterate convergence of Algorithm 1 to the NE µ(τ,γ),∗ =

(µ
(τ,γ),∗
1 , µ

(τ,γ),∗
2 ) of Equation (3.1) with high-probability.

Theorem 3.1 (Informal). Consider Algorithm 1. When ηancs

ηs
≤ τCη,Ts , where Cηs is a game-

dependent constant, and ηs is smaller than a game dependent constant (formally defined in Ap-
pendix F) for any s ∈ S, we have the following guarantee with probability 1− 2δ.

T∑
t=2

DψΠ(µ(τ,γ),∗,µπ(t)

) ≤ Õ
(
max
s∈S

ηsT

)
+ Õ

(
1

mins∈S ηs

)
+ Õ

(√
T log

1

δ

)
. (3.3)
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The Õ notion hides the logarithm of T . The proof and the formal version are postponed to Appendix
F. Theorem 3.1 gives a high-probability upper-bound on the cumulative Bregman divergence. By
letting ηs = Θ(1/

√
T ) for all infoset s ∈ S, the right-hand-side of (3.3) is bounded by Õ(

√
T ).

Therefore, it implies that
∑T
t=2DψΠ(µ(τ,γ),∗,µπ(t)

) is upper-bounded by Õ(
√
T ) with probability

1−2δ. Then, there must exist some t∗ ∈ [T ] so thatDψΠ(µ(τ,γ),∗,µπ(t∗)

) ≤ Õ(1/
√
T ), because the

minimum over
{
DψΠ(µ(τ,γ),∗,µπ(t)

) : t = 2, 3, · · · , T
}

must be bounded by the average, which

is Õ(1/
√
T ). Therefore, by computing the exploitability (the expected utility confronting a best-

responding opponent) routinely, we can find an approximate NE (Liu et al., 2023) of the regularized
game. Moreover, according to Lemma Liu et al. (2023, Lemma D.1.), the exploitability of the
regularized NE will be bounded by O(τ) in the original game so that our iterates will also get a low
exploitability in the original game by fixing τ to be small or anneal it as Liu et al. (2023).

4 ANALYSIS

In this section, we provide the proof sketch of Theorem 3.1. Section 4.1 introduces some necessary
notions and properties for the analysis. Section 4.2 shows the convergence of QFR under full-
information feedback (traversing all infosets at each iteration), and Section 4.3 generalizes to the
stochastic setting in Section 3.

4.1 PRELIMINARIES AND BASIC PROPERTIES

In order to keep the presentation modular between Q-values and trajectory Q-values, we will assume
that, at each iteration t, the local strategy at each infoset will be updated by taking a step in the
direction of some generalized value vector q(t)(s, ·) ∈ R|As|. For each a ∈ As, (we will use

CF
(t)
1 (s, a) instead of CFπ(t)

1 (s, a) and µ(t)
i instead of µπ

(t)
i
i as the shorthand notion), the relationship

of counterfactual values and the feedback is,

CF
(t)
1 (s, a) =


∑
h∈s µc(h)µ

(t)
2 (σ2(h)) · q(t)(s, a) q(t)(s, ·) is Q-value

q(t)(s,a)

µ
(t)
1 (σ(s))

q(t)(s, ·) is trajectory Q-value

q(t)(s, a) q(t)(s, ·) is counterfactual value

(4.1)

It is noteworthy that when sampling a trajectory from the root to a terminal node, the utility will
be a good estimator of trajectory Q-value. Therefore, to estimate CF

(t)
1 (s, a), we need to divide the

reaching probability µ(t)
1 (σ(s)) of s, which can be extremely small and thus induces a large variance.

In the following, we will write CF
(t)
1 (s, a) = m

(t)
s q(t)(s, a) and m(t)

s is different for different types
of q(t)(s, ·) according to Equation (4.1).

Note that the value of m(t)
s in most cases depends on the strategies that are produced by the algo-

rithm; hence, there is some circularity in the dependence between the properties satisfied by m(t)
s

and those satisfied by our algorithm. To break this circularity, at the heart of our correctness proof
we will verify and leverage two key properties of the sequence of m(t)

s that arises from using our
algorithm: boundedness and stability, as detailed next.

Property 1 (Boundedness). For any t ∈ [T ] and s ∈ S, we have m(t)
s ∈ [M1,M2] where 0 <

M1 ≤M2 < +∞.

Property 2 (Stability). For any t ∈ [T − 1] and s ∈ S, we define the largest learning rate among all
ancestor infosets of s as ηancs := maxi∈[2],h∈smax(s′,a′)⊑σi(h) ηs′ , where ηs′ is the learning rate of
infoset s′, then ∣∣∣m(t+1)

s −m(t)
s

∣∣∣ ≤ C−
s η

anc
s (Additive Stability)∣∣∣∣∣m(t+1)

s

m
(t)
s

− 1

∣∣∣∣∣ ≤ C/s ηancs . (Multiplicative Stability)
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Property 1 will be satisfied by enforcing π(t)(· | s) ⪰ γsνs for every s ∈ S , where γs ∈ (0, 1]
and νs ∈ ∆|As| are specified in Appendix G.2. The proof that our algorithm produces iterates that
satisfy Property 2 can be found in Appendix C.

4.2 CONVERGENCE WITH FULL INFORMATION FEEDBACK

QFR runs a variant of Regularized Optimistic Mirror Descent (Reg-OMD) (Liu et al., 2023) algo-
rithm to update the strategy in each infoset. For notational simplicity, we define the reach probability
of opponents to an infoset s ∈ S as µ(t)

−p(s)(s) :=
∑
h∈s µc(h)µ

(t)
3−p(s)(σ3−p(s)(h)). The update rule

is

π
(t)

p(s)(· | s)= argmin
πp(s)(· | s)∈∆

|As|
γs,νs

〈
πp(s)(· | s),−q(t−1)(s, ·)

〉
+
τµ

(t−1)

−p(s)(s)

m
(t−1)
s

ψ∆
s (πp(s)(· | s))

+
1

ηs
Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s))

π
(t+1)

p(s) (· | s)= argmin
πp(s)(· | s)∈∆

|As|
γs,νs

〈
πp(s)(· | s),−q(t)(s, ·)

〉
+
τµ

(t)

−p(s)(s)

m
(t)
s

ψ∆
s (πp(s)(· | s))

+
1

ηs
Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s))

(4.2)

where ∆
|As|
γs,νs

:=
{
u ∈ ∆|As| : ∀a ∈ As, ua ≥ γsνs,a

}
and ψ∆

s is the regularizer chosen for in-
foset s. Here q(t)(s, ·) can be the trajectory Q-value, Q-value, or counterfactual value associated
with π(t). When q(t)(s, ·) is the trajectory Q-value, (4.2) is the full-information version of (3.2).

By analyzing the update rule (4.2), we can get the following inequality. For any s ∈ S and strategy
πp(s)(· | s) ∈ ∆

|As|
γs,νs , we have

T∑
t=1

(
τµ

(t)

−p(s)(s)ψ
∆
s (π

(t)

p(s)(· | s))− τµ
(t)

−p(s)(s)ψ
∆
s (πp(s)(· | s)) +m(t)

s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

≤
T∑
t=2

(
m

(t)
s −m

(t−1)
s

ηs
− τµ

(t−1)

−p(s)(s)

)
︸ ︷︷ ︸

1

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s)) +O(ηsT ) +O

(
1

ηs

)
. (4.3)

Then, since
∣∣∣m(t)

s −m(t−1)
s

∣∣∣ ≤ O(ηancs ), 1 ≤ − τ2µ
(t−1)
−p(s)(s) ≤ −

τγ
2

∑
h∈s µc(h) when ηancs is

smaller then ηs by a small enough constant (please refer to Appendix E for details). Then, by
applying the generalized regret decomposition lemma (Liu et al., 2023) (details can be found in
Lemma E.3) to Equation (4.3), the difference of π(t)

p(s) and πp(s) in an infoset s can be extended to
the difference of the whole game. Specifically, by letting

diff1(µ
π
,µ

π′
) :=

(
µ
π1
1 − µ

π′
1

1

)⊤
Aµ

π2
2 − τ

(
ψ

Π1
bi

(µ
π1
1 , µ

π2
2 ) − ψ

Π1
bi

(µ
π′
1

1 , µ
π2
2 )

)
+ τ

(
ψ

Π2
bi

(µ
π1
1 , µ

π2
2 ) − ψ

Π2
bi

(µ
π′
1

1 , µ
π2
2 )

)
and diff2 similarly, then the summation of the left-hand-side of Equation (4.3) over all infoset s ∈ S
is equal to is equal to

T∑
t=1

diff1(µ(τ,γ),∗,µ(t)) + diff2(µ(τ,γ),∗,µ(t)) ≥ 0. (4.4)

The non-negativity is because µ(τ,γ),∗ is the NE of Equation (3.1). By combining (4.3) and (4.4),
we have

0 ≤
∑
s∈S

µ(τ,γ),∗(σ(s))

(
−τγ

2

∑
h∈s

µc(h)

T∑
t=2

Dψ∆
s
(π

(τ,γ),∗
p(s) (· | s), π(t)

p(s)(· | s)) +O(ηsT ) +O

(
1

ηs

))
(a)
= − τγ

2
min
s∈S

∑
h∈s

µc(h)

T∑
t=2

DψΠ(µ(τ,γ),∗,µπ(t)

) +O(max
s∈S

ηsT ) +O

(
1

mins∈S ηs

)
.
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(a) is by Lemma 4.1 in the following. By rearranging the terms, we can get an upperbound on∑T
t=2DψΠ(µ(τ,γ),∗,µπ(t)

).

Lemma 4.1 (Lemma D.2. in Liu et al. (2022)). For any strategy µπ,µπ̃ ∈ Π and regularizer
ψ∆
s : ∆|As| → R for each infoset s ∈ S, we have

DψΠ(µπ,µπ̃) =
∑
s∈S

µπ(σ(s))Dψ∆
s
(πp(s)(· | s), π̃p(s)(· | s)). (4.5)

For completeness, the proof of the lemma can be found in Appendix E.1. Here is the full theorem.

Theorem 4.2 (Informal). Consider the update rule (4.2) and q(t)(s, ·) is chosen to be counterfactual
value, trajectory Q-value, or Q-value. When ηancs

ηs
≤ τCηs , where Cηs is a game-dependent constant,

and ηs is smaller than a game dependent constant (formally defined in Appendix E) for any s ∈ S,
we have the following guarantee.

T∑
t=2

DψΠ(µ(τ,γ),∗,µπ(t)

) ≤ O
(
max
s∈S

ηsT

)
+O

(
1

mins∈S ηs

)
. (4.6)

The proof and the formal version are postponed to Appendix E. Therefore, by choosing ηs =

Θ
(

1√
T

)
for any s ∈ S as in Theorem 4.2, QFR enjoys best-iterate convergence with full-

information feedback.

4.3 CONVERGENCE WITH STOCHASTIC FEEDBACK

We complement the results of Section 4.2 by showing that the best-iterate convergence guaranteed by
QFR is still guaranteed when only visiting a trajectory at each iteration. The proof utilizes standard
concentration inequalities, incurring an additional sublinear cost caused by the noise incurred from
sampling, as recalled in the following lemma.

Lemma 4.3 (Generalization of Proposition 1 in Farina et al. (2020)). Let M, M̃ be positive con-
stants such that

∣∣f (t)(u)− f (t)(u′)
∣∣ ≤M and

∣∣∣f̃ (t)(u)− f̃ (t)(u′)
∣∣∣ ≤ M̃ for any u,u′ ∈ C for any

t ∈ [T ], where C is a convex set. Then, if for any u, E[f̃ (t)(u) | f̃ (1), f̃ (2), · · · , f̃ (t−1)] = f (t)(u)

and u(t) is deterministically influenced by f̃ (1), f̃ (2), · · · , f̃ (t−1), then for any δ ∈ (0, 1) and u ∈ C,
we have

Pr

(
T∑
t=1

(
f (t)(u)− f (t)(u(t))

)
≤

T∑
t=1

(
f̃ (t)(u)− f̃ (t)(u(t))

)
+ (M + M̃)

√
2T log

1

δ

)
≥ 1− δ.

Next, we will substitute the following values into Lemma 4.3,

f (t)s (u) :=
1

µ
(t)
p(s)(σ(s))

⟨q(t)(s, ·),u⟩ − τµ(t)
−p(s)(s)ψ

∆
s (u)

f̃ (t)s (u) :=

{
1

µ
(t)

p(s)
(σ(s))

⟨q̃(t)(s, ·),u⟩ − τ

µ
(t)

p(s)
(σ(s))

ψ∆
s (u) s is visited at timestep t

0 Otherwise

, where q̃(t) is defined in Algorithm 1. The proof of f̃
(t)
s being an unbiased esti-

mator of f
(t)
s is postponed to Appendix F. Then, Equation (4.3) can be bounded by∑T

t=1

(
f̃
(t)
s (πp(s)(· | s))− f̃ (t)s (π

(t)
p(s)(· | s))

)
, which can be further bounded by analyzing the

update-rule Equation (3.2). The analysis is similar to the one in Section 4.2 and can be found in
Appendix F. Finally, we have Theorem 3.1.

5 EXPERIMENTS

In the experiments, we apply QFR in 4-Sided Liar’s Dice, Leduc Poker (Southey et al., 2005), Kuhn
Poker (Kuhn, 1950), and 2 × 2 Abrupt Dark Hex. The learning rate is the same in all infosets,
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unlike what the theorem requires, which shows that QFR is easier to implement than what the theory
suggests. Note that for MMD (Sokota et al., 2023), there is no theory for convergence when using
trajectory Q-value and Q-value as feedback, while QFR has.

In order to pick hyperparameters, we performed a grid-search for QFR and MMD on learning rate η,
regularization τ , perturbation γ, and the regularizer is either negative entropy or Euclidean distance.
For BalancedOMD (BOMD) (Bai et al., 2022) and BalancedFTRL (BFTRL) (Fiegel et al., 2023),
we applied grid search to the learning rate η and fixed the exploration rate (IX parameter) to η

20 as
suggested in Fiegel et al. (2023). For the outcome-sampling CFR / CFR+, we also applies grid-
search on the exploration parameter. The details of experiments, the comparison between QFR and
baselines with full-information, and the ablation study of QFR when the strategy is approximated by
neural network, can be found in Appendix H.
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1Figure 1: Exploitability of Algorithm 1 in 4 benchmark games. We can see that QFR outperforms
outcome-sampling CFR / CFR+, MMD, and BOMD in all games. It outperforms BFTRL in all
games except Liar’s Dice. For each line, we repeat the experiments 100 times with different seeds.

The experimental result of Algorithm 1 is presented in Figure 1. In the experiments, QFR and MMD
are both using an unbiased estimator of the trajectory Q-value, while CFR and CFR+ use an unbiased
estimator of the counterfactual value.

Figure 1 shows that QFR outperforms outcome-sampling CFR, CFR+, and BOMD in all games.
Moreover, QFR outperforms BFTRL in all games except Liar’s Dice, with a relatively small gap
(QFR 0.174 v.s. BFTRL 0.167 in exploitability). The reason may be Liar’s Dice is too easy since
it can be solved within 50 iterations with full-information feedback (see Figure 2 in Appendix H).
Lastly, QFR outperforms MMD in all games.

The superiority of QFR over CFR, CFR+, BOMD, and BFTRL may be attributed to both the ad-
ditional regularization (best-iterate convergence) and the avoidance of importance sampling. For
MMD, QFR is superior due to the optimistic updates, since optimistic updates allow predictions of
the gradients at the next iteration. The code of QFR and baselines for tabular games can be found in
LiteEFG3 (Liu et al., 2024).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we focused on the question of whether the following properties can coexist while solv-
ing two-player zero-sum extensive-form games: (I) learning with random rollouts, (II) converging
in iterates, and (III) avoiding importance sampling. These properties are standard desiderata in the
reinforcement learning literature for single-agent settings, but have thus far eluded extensive-form
games. The answer is affirmative, and we propose an algorithm, QFR, that achieves all of them.
We hope this work can serve as a step in the direction of bridging the gap between reinforcement
learning techniques and imperfect-information extensive-form games. In the future, it would be in-
teresting to investigate the performance of algorithms that are both sound and work well in large
domains.

3https://github.com/liumy2010/LiteEFG/tree/main/LiteEFG/baselines
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Supplementary Material

A ADDITIONAL RELATED WORK

This section compares our paper to prior literature on three aspects: convergence guarantees, notion
of values used by the algorithm, and support of value estimation via rollouts. We provide a visual
comparison of the most relevant algorithms in Table 1.

Convergence Guarantee. Most CFR-based algorithms (Zinkevich et al., 2007; Tammelin et al.,
2015; Steinberger et al., 2020) only guarantee that the average strategy converges to an NE, though
empirically some variants of CFR exhibit last-iterate convergence (Bowling et al., 2015; Tammelin
et al., 2015). Motivated by the success of Optimistic Mirror Descent (OMD) achieving last-iterate
convergence in normal-form games (NFGs) (Mertikopoulos et al., 2019; Wei et al., 2021; Cai et al.,
2022), Farina et al. (2019b) first empirically showed that OMD also enjoys last-iterate convergence
in EFGs. Then, Lee et al. (2021) theoretically proved that Optimistic Multiplicative Weights Update
(OMWU), an instance of OMD, converges in EFGs with unique NE assumption.

Use of Q-Values. To achieve last-iterate convergence in EFGs, additional regularization and op-
timism are widely used. Perolat et al. (2021) used that approach in continuous time, using coun-
terfactual values under full-information (i.e., non-sampled) feedback. Lee et al. (2021); Liu et al.
(2023) achieved last-iterate convergence in EFGs using discrete-time updates, but both of their con-
vergence results are based on counterfactual values in the non-sampled case. Sokota et al. (2023)’s
MMD algorithm empirically observed convergence by using sampled (trajectory) Q-values in con-
junction with entropic regularization, without theoretical guarantees. In this paper, we combine reg-
ularization and optimism, and obtain a theoretically sound algorithm (QFR) for solving two-player
zero-sum EFGs using sampled Q-values / trajectory Q-values.

Rollout-based estimation. Lanctot et al. (2009) proposed Outcome-Sampling Monte-Carlo CFR
(OS-MCCFR), a variant of CFR which uses random rollouts to estimate counterfactual values.
Later, Farina and Sandholm (2021); Farina et al. (2021b); Bai et al. (2022), and Fiegel et al. (2023)
proposed algorithms that converge in EFGs with trajectories at each iteration. However, those al-
gorithms rely on importance sampling, which causes numerical instability due to the large range
of feedback. ESCHER McAleer et al. (2023) and LocalOMD (Fiegel et al., 2024) sample trajecto-
ries off-policy. This is usually undesirable as it favors exploring parts of the game tree according
to uniform random probability, rather than focusing on those that are more likely given the policy.
ARMAC (Gruslys et al., 2020) and ACH (Fu et al., 2021) support both Q-values and approximately-
on-policy estimation, but like ESCHER and LocalOMD they do not guarantee convergence of the
iterates. Moreover, neither of them is computationally efficient since they need to sample many
trajectories (possibly infinite) at each iteration to ensure that the estimation of feedback is totally
accurate. Also, ACH does not converge to the set of NEs, even in terms of average-iterate conver-
gence.

B FORMAL DEFINITION OF TRAJECTORY Q-VALUE, Q-VALUE, AND
COUNTERFACTUAL VALUE

In the following, we will formally define trajectory Q-value, Q-value, and counterfactual value re-
spectively.

For any s ∈ S, a ∈ As, the trajectory Q-value Qπ
1 (s, a) is formally defined as,

Qπ
1 (s, a) :=

1

π1(a | s)
∑

h′ : ∃h∈s,(h,a)⊑h′

µc(h
′)µπ1

1 (σ1(h
′))µπ2

2 (σ2(h
′))U1(h′) (B.1)

In (B.1), µc(h) denotes the probability of reaching h contributed by the chance player. We use
{Ui : H → [−1, 1]}i∈[2] to denote the utility assigned to each player at each node of the game. We
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assume this is nonzero only at terminal nodes (nodes with an empty action set) without loss of
generality.

At the same time, we can define the Q-value, defined as the expected utility conditioned on reaching
infoset s,

Qπ
1 (s, a) :=

Qπ
1 (s, a)∑

h∈s µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))

. (B.2)

Typically, algorithms like CFR and its variants (Tammelin et al., 2015; Brown and Sandholm, 2019)
use counterfactual values as feedback to learn the equilibrium. The counterfactual value at infoset s
of player i is the Q-value at s times the reach probability of the opponent and the chance player to
s. Formally, for any s ∈ S, a ∈ As, we can define the counterfactual value CFπ

1 (s) as,

CFπ
1 (s, a) :=

∑
h′ : ∃h∈s,(h,a)⊑h′

µc(h
′)
µπ1
1 (σ1(h

′))
µπ1
1 (s, a)

µπ2
2 (σ2(h

′))U1(h′). (B.3)

CFπ
i is not compatible with rolling out trajectories as reinforcement learning usually does, since a

rolling trajectory includes the probability of both players reaching infoset s, which hinders extending
algorithms to large games.

Also, for any s ∈ S1 and a ∈ As (similar for player 2), we have

CFπ
1 (s, a) =

1

µπ1
1 (σ(s))

Qπ
1 (s, a) (B.4)

CFπ
1 (s, a) =

∑
h∈s µc(h)µ

π1
1 (σ1(h))µ

π2
2 (σ2(h))

µπ1
1 (σ(s))

·Qπ
1 (s, a)

(i)
=

∑
h∈s

µc(h)µ
π2
2 (σ2(h))Q

π
1 (s, a),

(B.5)

where equality (i) follows from σ1(h) = σ(s) for any s ∈ S1 and h ∈ s, which is a consequence to
the perfect-recall assumption.

C STABILITY OF TRAJECTORY Q-VALUE AND Q-VALUE

In this section, we will show the stability of trajectory Q-value and Q-value, i.e. proving Property 2
when the regularizer in each infoset s ∈ S can be written as,

ψ∆
s (u) =

{
αs

2

∑
a∈As

u2a (Euclidean Norm)

αs
(
log |As|+

∑
a∈As

ua log ua
)

(Negative Entropy),
(C.1)

where αs > 0 is a state-dependent constant. We add log |As| to the negative entropy to ensure the
regularizer is always positive. Previous work (Kroer et al., 2020) chose specific αs to ensure the
dilated regularizer associated with ψ∆

s is 1-strongly convex. For generality of the result, we keep
the αs in the regularizer.

Due to the symmetry between two players, we will only prove that for s ∈ S1. Moreover, to stabilize
trajectory Q-value and Q-value, the learning rate need to satisfy the following conditions.

(A) maxh∈s
∑

(s′,a′)⊑σi(h)
ηs′ ≤ ηs for any s ∈ S, i ∈ [2]

(B) 6ηancs maxs′∈S
(

2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
≤ 1 for any s ∈ S , where ∥q∥∞ :=

maxt∈[T ],s∈S
∥∥q(t)(s, ·)∥∥∞ and its upperbound is given in Lemma G.1

(C) ηs

(
2 ∥q∥∞ + ταs

M1
log 1

γ

)
≤ 1 for any s ∈ S

(A) ensures that
∑

(s′,a′)⊑σ(s) ηs′ ≤ 2ηancs for any s ∈ S. (B), (C) ensure that the update at each
iteration will not change the strategy too much.
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C.1 STABILITY OF TRAJECTORY Q-VALUE

Lemma C.1 (Stability of m
(t)
s under Euclidean regularizer). Consider when ψ∆

s (u) =
αs

2

∑
a∈As

u2a for any s ∈ S and (A) is satisfied. For any s ∈ S and t = 1, 2, · · · , T , when

m
(t)
s is the trajectory Q-value feedback, we have

C−
s =

6

γ2
max
s′∈S

Cdiff
s′ C/s =

6

γ2M1
max
s′∈S

Cdiff
s′ . (C.2)

Proof. For trajectory Q-value feedback, for any s ∈ S1,∣∣∣m(t+1)
s −m(t)

s

∣∣∣ = ∣∣∣∣∣ 1

µ
(t+1)
1 (σ(s))

− 1

µ
(t)
1 (σ(s))

∣∣∣∣∣
=

∣∣∣µ(t+1)
1 (σ(s))− µ(t)

1 (σ(s))
∣∣∣

µ
(t+1)
1 (σ(s))µ

(t)
1 (σ(s))

=

∣∣∣∏(s′,a′)⊑σ(s) π
(t+1)
1 (a′ | s′)−∏(s′,a′)⊑σ(s) π

(t)
1 (a′ | s′)

∣∣∣
µ
(t+1)
1 (σ(s))µ

(t)
1 (σ(s))

≤ 1

γ2

∑
(s′,a′)⊑σ(s)

∣∣∣π(t+1)
1 (a′ | s′)− π(t)

1 (a′ | s′)
∣∣∣ .

In the last line, we use the fact µ(t+1)
1 (σ(s)), µ

(t)
1 (σ(s)) ≥ γ, and∣∣∣∣∣∣

∏
(s′,a′)⊑σ(s)

π
(t+1)
1 (a′ | s′)−

∏
(s′,a′)⊑σ(s)

π
(t)
1 (a′ | s′)

∣∣∣∣∣∣
≤

∏
(s′,a′)⊑σ1(σ(s))

π
(t+1)
1 (a′ | s′)

∣∣∣π(t+1)
1 (σ(s))− π(t)

1 (σ(s))
∣∣∣

+ π
(t)
1 (σ(s))

∣∣∣∣∣∣
∏

(s′,a′)⊑σ(σ(s))
π
(t+1)
1 (a′ | s′)−

∏
(s′,a′)⊑σ(σ(s))

π
(t)
1 (a′ | s′)

∣∣∣∣∣∣
≤
∣∣∣π(t+1)

1 (σ(s))− π(t)
1 (σ(s))

∣∣∣+
∣∣∣∣∣∣

∏
(s′,a′)⊑σ(σ(s))

π
(t+1)
1 (a′ | s′)−

∏
(s′,a′)⊑σ(σ(s))

π
(t)
1 (a′ | s′)

∣∣∣∣∣∣ .
We abuse the notion of π1(σ(s)) as π1(a′ | s′) and σ(σ(s)) = σ(s′), given σ(s) = (s′, a′).

By recursively applying the process above, we will get∣∣∣∣∣∣
∏

(s′,a′)⊑σ(s)
π
(t+1)
1 (a′ | s′)−

∏
(s′,a′)⊑σ(s)

π
(t)
1 (a′ | s′)

∣∣∣∣∣∣ ≤
∑

(s′,a′)⊑σ(s)

∣∣∣π(t+1)
1 (a′ | s′)− π(t)

1 (a′ | s′)
∣∣∣ .

Lemma C.2. Consider the update-rule (4.2). When we choose ψ∆
s to be negative entropy or Eu-

clidean distance, we have∥∥∥π(t)
p(s)(· | s)− π

(t)
p(s)(· | s)

∥∥∥
1
,
∥∥∥π(t+1)

p(s) (· | s)− π(t)
p(s)(· | s)

∥∥∥
1
≤ Cdiff

s ηs, (C.3)

where

Cdiff
s :=


2
αs

(
2 ∥q∥∞ + ταs

M1
log 1

γ

)
Negative Entropy

|As|
αs
∥q∥∞ +

2
√

|As|τ
M1

Euclidean Distance.
(C.4)
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The proof is postponed to Appendix G.3. By using Lemma C.2, we have∣∣∣m(t+1)
s −m(t)

s

∣∣∣
≤ 1

γ2

∑
(s′,a′)⊑σ(s)

∣∣∣π(t+1)
1 (a′ | s′)− π(t)

1 (a′ | s′)
∣∣∣

≤ 1

γ2

∑
(s′,a′)⊑σ(s)

( ∣∣∣π(t+1)
1 (a′ | s′)− π(t)

1 (a′ | s′)
∣∣∣+ ∣∣∣π(t+1)

1 (a′ | s′)− π(t+1)
1 (a′ | s′)

∣∣∣
+
∣∣∣π(t)

1 (a′ | s′)− π(t)
1 (a′ | s′)

∣∣∣ )
≤ 3

γ2

∑
(s′,a′)⊑σ(s)

Cdiff
s′ ηs′ .

At the same time,∣∣∣∣∣m(t+1)
s

m
(t)
s

− 1

∣∣∣∣∣ = 1

m
(t)
s

∣∣∣m(t+1)
s −m(t)

s

∣∣∣ ≤ 3
∑

(s′,a′)⊑σ(s) C
diff
s′ ηs′

γ2M1
.

Therefore, C−
s = 6

γ2 maxs′∈S Cdiff
s′ and C/s =

6maxs′∈S C
diff
s′

γ2M1
by (A).

Lemma C.3 (Stability of m
(t)
s under entropy regularizer). Consider when ψ∆

s (u) =
αs
(
log |As|+

∑
a∈As

ua log ua
)

for any s ∈ S, and (A), (B), (C) are satisfied. For any s ∈ S
and t = 1, 2, · · · , T , when m(t)

s is the trajectory Q-value feedback, we have

C−
s =

12maxs′∈S
(

2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
γ

C/s = 12max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
. (C.5)

Proof.∣∣∣m(t+1)
s −m(t)

s

∣∣∣ = ∣∣∣∣∣ 1

µ
(t+1)
1 (σ(s))

− 1

µ
(t)
1 (σ(s))

∣∣∣∣∣ = 1

µ
(t+1)
1 (σ(s))

∣∣∣∣∣µ(t+1)
1 (σ(s))

µ
(t)
1 (σ(s))

− 1

∣∣∣∣∣ .
We will then use the following lemma which shows the multiplicative stability when using negative
entropy regularizer.

Lemma C.4. When ψ∆
s (u) = αs

(
log |As|+

∑
a∈As

ua log ua
)

for any s ∈ S, (A), (B), (C) are
satisfied, then for any s ∈ S, h ∈ s, t = 1, 2, · · · , T , we have∣∣∣∣∣µ(t+1)

1 (σ1(h))

µ
(t)
1 (σ1(h))

− 1

∣∣∣∣∣ ,
∣∣∣∣∣µ(t+1)

2 (σ2(h))

µ
(t)
2 (σ2(h))

− 1

∣∣∣∣∣ ≤ 12ηancs max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
. (C.6)

The proof can be found at the end of this section. Then, for any s ∈ S1, we have

∣∣∣m(t+1)
s −m(t)

s

∣∣∣ = 1

µ
(t+1)
1 (σ(s))

∣∣∣∣∣µ(t+1)
1 (σ(s))

µ
(t)
1 (σ(s))

− 1

∣∣∣∣∣ ≤12ηancs maxs′∈S
(

2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
µ
(t+1)
1 (σ(s))

≤
12ηancs maxs′∈S

(
2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
γ

.

Therefore, C−
s =

12maxs′∈S

(
2∥q∥∞

α
s′

+ τ
M1

log 1
γ

)
γ .

Similarly, we have C/s = 12maxs′∈S
(

2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
.
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Proof of Lemma C.4. Firstly, we invoke Lemma C.5.

Lemma C.5. Consider update-rule (4.2). When ψ∆
s (u) = αs

(
log |A|+∑a∈As

ua log ua
)

for any
s ∈ S, and (B) is satisfied, for any s ∈ S, a ∈ As and t = 1, 2, · · · , T ,

exp

(
− ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

))
≤ π(t)(a | s)
π(t)(a | s)

,
π(t+1)(a | s)
π(t)(a | s)

≤ exp

(
ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

))
(C.7)

Cdiff
s =

2

αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

)
. (C.8)

The proof is postponed to Appendix G.3.

By Lemma C.5, we have

µ
(t+1)
1 (σ1(h))

µ
(t)
1 (σ1(h))

=

∏
(s′,a′)⊑σ1(h)

π
(t+1)
1 (a′ | s′)∏

(s′,a′)⊑σ1(h)
π
(t)
1 (a′ | s′)

=

∏
(s′,a′)⊑σ1(h)

π
(t+1)
1 (a′ | s′)∏

(s′,a′)⊑σ1(h)
π
(t)
1 (a′ | s′)

·
∏

(s′,a′)⊑σ1(h)
π
(t+1)
1 (a′ | s′)∏

(s′,a′)⊑σ1(h)
π
(t+1)
1 (a′ | s′)

·
∏

(s′,a′)⊑σ1(h)
π
(t)
1 (a′ | s′)∏

(s′,a′)⊑σ1(h)
π
(t)
1 (a′ | s′)

≤ exp

3
∑

(s′,a′)⊑σ1(h)

ηs′

αs′

(
2 ∥q∥∞ +

ταs′

M1
log

1

γ

)
≤ exp

3max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

) ∑
(s′,a′)⊑σ1(h)

ηs′


(A)

≤ exp

(
6max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
ηancs

)
≤1 + 12ηancs max

s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
.

At the last line, we use the fact that ex ≤ 1 + 2x for x ∈ [0, 1]. Similarly, by using 1 + x ≤ ex, we
can also get the lower-bound 1− 6ηancs maxs′∈S

(
2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
.

C.2 STABILITY OF Q-VALUE

Lemma C.6 (Stability of m
(t)
s under Euclidean regularizer). Consider when ψ∆

s (u) =
αs

2

∑
a∈As

u2a for any s ∈ S , and (A) is satisfied. For any s ∈ S and t = 1, 2, · · · , T , when

m
(t)
s is the Q-value feedback, we have

C−
s = 6|s|max

s′∈S
Cdiff
s′ C/s =

6|s|
M1

max
s′∈S

Cdiff
s′ (C.9)

where |s| is the number of nodes in infoset s.

Proof. With Q-value feedback, for any s ∈ S1,∣∣∣m(t+1)
s −m(t)

s

∣∣∣ = ∣∣∣∣∣∑
h∈s

µc(h)(µ
(t+1)
2 (σ2(h))− µ(t)

2 (σ2(h)))

∣∣∣∣∣
≤
∑
h∈s

µc(h)
∣∣∣µ(t+1)

2 (σ2(h))− µ(t)
2 (σ2(h))

∣∣∣
≤|s|max

h∈s

∣∣∣µ(t+1)
2 (σ2(h))− µ(t)

2 (σ2(h))
∣∣∣ .
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In the last line, |s| denotes the number of nodes in s. By similar argument as in Lemma C.1, for any
h ∈ s, we have∣∣∣µ(t+1)

2 (σ2(h))− µ(t)
2 (σ2(h))

∣∣∣
=

∣∣∣∣∣∣
∏

(s′,a′)⊑σ2(h)

π
(t+1)
2 (a′ | s′)−

∏
(s′,a′)⊑σ2(h)

π
(t)
2 (a′ | s′)

∣∣∣∣∣∣
≤

∑
(s′,a′)⊑σ2(h)

∣∣∣π(t+1)
2 (a′ | s′)− π(t)

2 (a′ | s′)
∣∣∣

≤
∑

(s′,a′)⊑σ2(h)

( ∣∣∣π(t+1)
2 (a′ | s′)− π(t)

2 (a′ | s′)
∣∣∣+ ∣∣∣π(t+1)

2 (a′ | s′)− π(t+1)
2 (a′ | s′)

∣∣∣
+
∣∣∣π(t)

2 (a′ | s′)− π(t)
2 (a′ | s′)

∣∣∣ )
≤3

∑
(s′,a′)⊑σ2(h)

Cdiff
s′ ηs′ .

Therefore,
∣∣∣m(t+1)

s −m(t)
s

∣∣∣ ≤ 3|s|maxh∈s
∑

(s′,a′)⊑σ2(h)
Cdiff
s′ ηs′ . Similarly,∣∣∣∣∣m(t+1)

s

m
(t)
s

− 1

∣∣∣∣∣ = 1

m
(t)
s

∣∣∣m(t+1)
s −m(t)

s

∣∣∣ ≤ 3|s|
M1

max
h∈s

∑
(s′,a′)⊑σ2(h)

Cdiff
s′ ηs′ .

Finally, C−
s = 6|s|maxs′∈S Cdiff

s′ and C/s =
6|s|maxs′∈S C

diff
s′

M1
according to (A).

Lemma C.7 (Stability of m
(t)
s under Entropy regularizer). Consider when ψ∆

s (u) =
αs
(
log |As|+

∑
a∈As

ua log ua
)

for any s ∈ S, and (A), (B), (C) are satisfied. For any s ∈ S
and t = 1, 2, · · · , T , when m(t)

s is the Q-value feedback, we have

C−
s = 12M2 max

s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
C/s = 12max

s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
. (C.10)

Proof. With Q-value, for any s ∈ S1, we have∣∣∣∣∣m(t+1)
s

m
(t)
s

− 1

∣∣∣∣∣ =
∣∣∣∣∣
∑
h∈s µc(h)µ

(t+1)
2 (σ2(h))∑

h∈s µc(h)µ
(t)
2 (σ2(h))

− 1

∣∣∣∣∣ .
By Lemma C.4, we have

µ
(t+1)
2 (σ2(h))

µ
(t)
2 (σ2(h))

≤ 1 + 12ηancs max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
Therefore, ∑

h∈s µc(h)µ
(t+1)
2 (σ2(h))∑

h∈s µc(h)µ
(t)
2 (σ2(h))

≤
∑
h∈s µc(h)

(
1 + 12ηancs maxs′∈S

(
2∥q∥∞
αs′

+ τ
M1

log 1
γ

))
µ
(t)
2 (σ2(h))∑

h∈s µc(h)µ
(t)
2 (σ2(h))

≤1 + 12ηancs max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
.

Similarly, we have∑
h∈s µc(h)µ

(t+1)
2 (σ2(h))∑

h∈s µc(h)µ
(t)
2 (σ2(h))

≥ 1− 12ηancs max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
.

20



Published as a conference paper at ICLR 2025

Therefore,
∣∣∣m(t+1)

s

m
(t)
s

− 1
∣∣∣ ≤ 12ηancs maxs′∈S

(
2∥q∥∞
αs′

+ τ
M1

log 1
γ

)
. At the same time,

∣∣∣m(t+1)
s −m(t)

s

∣∣∣ = m(t)
s

∣∣∣∣∣m(t+1)
s

m
(t)
s

− 1

∣∣∣∣∣ ≤ 12ηancs M2 max
s′∈S

(
2 ∥q∥∞
αs′

+
τ

M1
log

1

γ

)
.

D BIDILATED REGULARIZER

Dilated regularizer (Hoda et al., 2010) is the foundation of previous work (Lee et al., 2021; Liu
et al., 2023; Sokota et al., 2023) to apply mirror-descent and its variants on sequence-form strate-
gies. Recently, additional regularization has become a powerful tool for learning in EFGs (Liu
et al., 2023; Sokota et al., 2023). Specifically, we can change the objective of the game to
maxµπ1

1 ∈Π1
minµπ2

2 ∈Π2
(µπ1

1 )
⊤
Aµπ2

2 − τψΠ1(µπ1
1 ) + τψΠ2(µπ2

2 ), where τψΠ1(µπ1
1 ), τψΠ2(µπ2

2 )

is the additional regularizer and τ controls its magnitude. By adding the additional regularizer, the
objective becomes strongly convex-concave instead of convex-concave, and thus linear convergence
rate can be achieved.

However, the dilated regularizer of player i ∈ [2] is ψΠi(µπi
i ) =

∑
s∈Si

µπi
i (σ(s))ψ∆

s (πi(· | s)),
which only counts the reach probability µπi

i (σ(s)) of player i. Therefore, when sampling a tra-
jectory, to estimate the additional regularization, importance sampling is needed to offset the reach
probability of player 3 − i and the chance player, which causes a large dispersion of feedback.
Therefore, to avoid importance sampling on the regularizer, we propose the bidilated regularizer in
this section, to which all players contribute symmetrically. The bidilated regularizer of player 1 is
defined as,

ψΠ1

bi (µ
π1
1 , µπ2

2 ) :=
∑
s∈S1

µπ1
1 (σ(s))

(∑
h∈s

µc(h)µ
π2
2 (σ2(h))

)
ψ∆
s (π1(· | s)). (D.1)

The additional term is the probability of reaching infoset s contributed by player 2 and the chance
player. The bidilated regularizer for player 2 can also be defined similarly. In the following, we will
show that several preferable properties of dilated regularizer still hold for its bidilated version.

Firstly, the bidilated regularizer ψΠ1

bi (µ
π1
1 , µπ2

2 ) is still convex with respect to µπ1
1 and µπ2

2 individ-
ually. This can be inferred from the fact that the dilated regularizer is convex with respect to µπ1

1

(Hoda et al., 2010). By enforcing π2(· | s) ≥ γsνs for every s ∈ S2 with γs > 0,νs ∈ ∆|As|, where
νs has full support, we have µπ2

2 (s, a) ≥ γ > 0 for any s ∈ S2, a ∈ As, where γ is a constant.
Then, we have the following lemma.

Lemma D.1. For any τ, γ > 0, the Nash equilibrium µ(τ,γ),∗ = (µ
(τ,γ),∗
1 , µ

(τ,γ),∗
2 ) of Equa-

tion (3.1) is unique.

Proof. Let define F τ1 (µ
π1
1 , µπ2

2 ) := −Aµπ2
2 + τ∇µπ1

1
ψΠ1

bi (µ
π1
1 , µπ2

2 ) − τ∇µπ1
1
ψΠ2

bi (µ
π1
1 , µπ2

2 ) and
F τ2 (µ

π1
1 , µπ2

2 ) := A⊤µπ1
1 + τ∇µπ2

2
ψΠ2

bi (µ
π1
1 , µπ2

2 )− τ∇µπ2
2
ψΠ2

bi (µ
π1
1 , µπ2

2 ).

For any µπ
′
1

1 ∈ Π1, we have〈
F τ1 (µ

π1
1 , µπ2

2 ), µπ1
1 − µ

π′
1

1

〉
=
〈
−Aµπ2

2 + τ∇µπ1
1
ψΠ1

bi (µ
π1
1 , µπ2

2 )− τ∇µπ1
1
ψΠ2

bi (µ
π1
1 , µπ2

2 ), µπ1
1 − µ

π′
1

1

〉
=−

〈
Aµπ2

2 , µπ1
1 − µ

π′
1

1

〉
+ τD

ψ
Π1
bi (·,µπ2

2 )

(
µ
π′
1

1 , µπ1
1

)
− τψΠ1

bi (µ
π′
1

1 , µπ2
2 ) + τψΠ1

bi (µ
π1
1 , µπ2

2 )− τψΠ2

bi (µ
π1
1 , µπ2

2 ) + τψΠ2

bi (µ
π′
1

1 , µπ2
2 ).

The last line uses the fact that ψΠ2

bi (µ
π1
1 , µπ2

2 ) is linear with respect to µπ1
1 .
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The counterpart of µπ2
2 is〈

F τ2 (µ
π1
1 , µπ2

2 ), µπ2
2 − µ

π′
2

2

〉
=
〈
A⊤µπ1

1 + τ∇µπ2
2
ψΠ2

bi (µ
π1
1 , µπ2

2 )− τ∇µπ2
2
ψΠ2

bi (µ
π1
1 , µπ2

2 ), µπ2
2 − µ

π′
2

2

〉
=
〈
A⊤µπ1

1 , µπ2
2 − µ

π′
2

2

〉
+ τD

ψ
Π2
bi (µ

π1
1 ,·)

(
µ
π′
2

2 , µπ2
2

)
− τψΠ2

bi (µ
π1
1 , µ

π′
2

2 ) + τψΠ2

bi (µ
π1
1 , µπ2

2 )− τψΠ1

bi (µ
π1
1 , µπ2

2 ) + τψΠ1

bi (µ
π1
1 , µ

π′
2

2 ).

Let µπ = (µπ1
1 , µπ2

2 ) and F τ (µπ) = (F τ1 (µ
π1
1 , µπ2

2 ), F τ2 (µ
π1
1 , µπ2

2 )). Then by taking the summa-
tion of equations above, we have〈

F τ (µπ),µπ − µπ′
〉

=− (µπ1
1 )

⊤
Aµ

π′
2

2 + (µ
π′
1

1 )⊤Aµπ2
2 + τD

ψ
Π1
bi (·,µπ2

2 )

(
µ
π′
1

1 , µπ1
1

)
+ τD

ψ
Π2
bi (µ

π1
1 ,·)

(
µ
π′
2

2 , µπ2
2

)
+ τψΠ1

bi (µ
π1
1 , µ

π′
2

2 )− τψΠ1

bi (µ
π′
1

1 , µπ2
2 ) + τψΠ2

bi (µ
π′
1

1 , µπ2
2 )− τψΠ2

bi (µ
π1
1 , µ

π′
2

2 ).

Then, 〈
F τ (µπ)− F τ (µπ′

),µπ − µπ′
〉

=τ
(
D
ψ

Π1
bi (·,µπ2

2 )

(
µ
π′
1

1 , µπ1
1

)
+D

ψ
Π2
bi (µ

π1
1 ,·)

(
µ
π′
2

2 , µπ2
2

)
+D

ψ
Π1
bi (·,µπ′

2
2 )

(
µπ1
1 , µ

π′
1

1

)
+D

ψ
Π2
bi (µ

π′
1

1 ,·)

(
µπ2
2 , µ

π′
2

2

))
.

Since µπ,µπ′ ⪰ γ, D
ψ

Π1
bi (·,µπ′

2
2 )

(
µπ1
1 , µ

π′
1

1

)
≥ γminh∈H µc(h)DψΠ1

(
µπ1
1 , µ

π′
1

1

)
by Lemma 4.1.

Moreover, there exists M > 0 so that DψΠ1

(
µπ1
1 , µ

π′
1

1

)
≥ M

∥∥∥µπ1
1 − µ

π′
1

1

∥∥∥2 according to Hoda
et al. (2010); Lee et al. (2021). Therefore, the NE is unique when τ, γ > 0 by Rosen (1965).

E PROOF OF THEOREM 4.2

Theorem E.1 (Formal Version of Theorem 4.2). Consider the update rule (4.2) and q(t)(s, ·) is
chosen to be counterfactual value, trajectory Q-value, or Q-value. When ηancs

ηs
≤ τCηs , where Cηs :=

γ

2C−
s

∑
h∈s µc(h) for any s ∈ S and (A), (B), (C) are satisfied, we have the following guarantee.

T∑
t=2

DψΠ(µ
(τ,γ),∗,µπ(t)

)

≤ 2

γmins∈S
∑
h∈s µc(h)

∑
s∈S

(
C/s + C−,Q

s

)
ηancs µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)

p(s)(· | s))− ψ∆
s (π

(t+1)

p(s) (· | s))
∣∣∣

+
4

τγmins∈S
∑
h∈s µc(h)

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T (E.1)

+
2

τγmins∈S
∑
h∈s µc(h)

∑
s∈S

m
(1)
s

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(π

(τ,γ),∗
p(s) (· | s), π(1)

p(s)(· | s)),

where C−,Q
s denotes C−

s associated with Q-value, regardless of which feedback type q(t)(s, ·) is.

Proof Sketch. The structure of this section will be as follows. (i). By analyzing the update-rule
(4.2), we can get the difference of utilities between our strategy π(t) and an arbitrary strategy π at
a single timestep t in each infoset. (ii). By telescoping and using the smoothness (the strategy as
well as the feedback will not change much at each iteration) of the update-rule, we can further get
an upperbound on the cumulated difference. (iii). By decomposition lemma (Liu et al., 2023), the
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difference in each infoset can be extended to the difference of utility in the whole game. Then, by
rearranging the terms we can get an upperbound on the cumulated distance to the NE.

Firstly, we will use a standard analysis of the update rule (4.2). For notational simplicity, we define
µ
(t)
−p(s)(s) :=

∑
h∈s µc(h)µ

(t)
3−p(s)(σ3−p(s)(h)).

Lemma E.2 (Generalized from Lemma C.2. in Liu et al. (2023)). Consider the update rule in (4.2).
When ψ∆

s is strongly convex, then for any πp(s)(· | s) ∈ ∆|As| and t ≥ 1, we have

ηs
τµ

(t)
−p(s)(s)

m
(t)
s

ψ∆
s (π

(t)
p(s)(· | s))− ηs

τµ
(t)
−p(s)(s)

m
(t)
s

ψ∆
s (πp(s)(· | s))

+ ηsτ

µ(t−1)
−p(s)(s)

m
(t−1)
s

−
µ
(t)
−p(s)(s)

m
(t)
s

(ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

)
+ ηs

〈
−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)
〉

≤Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))− (1 + ηs
τµ

(t)
−p(s)(s)

m
(t)
s

)Dψ∆
s
(πp(s)(· | s), π(t+1)

p(s) (· | s))

− (1 + ηs
τµ

(t−1)
−p(s)(s)

m
(t−1)
s

)Dψ∆
s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s))

−Dψ∆
s
(π

(t)
p(s)(· | s), π

(t)
p(s)(· | s)) + ηs

〈
q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

〉
.

The proof is postponed to Appendix E.2.

Multiplying m(t)
s on both sides of Lemma E.2, we have

ηsτµ
(t)
−p(s)(s)ψ

∆
s (π

(t)
p(s)(· | s))− ηsτµ

(t)
−p(s)(s)ψ

∆
s (πp(s)(· | s))

+ ηsτ

(
m

(t)
s

m
(t−1)
s

µ
(t−1)
−p(s)(s)− µ

(t)
−p(s)(s)

)(
ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

)
+ ηsm

(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩

≤m(t)
s Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s))− (m(t)
s + ηsτµ

(t)
−p(s)(s))Dψ∆

s
(πp(s)(· | s), π(t+1)

p(s) (· | s))

− (m(t)
s + ηsτ

m
(t)
s

m
(t−1)
s

µ
(t−1)
−p(s)(s))Dψ∆

s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s))

−m(t)
s Dψ∆

s
(π

(t)
p(s)(· | s), π

(t)
p(s)(· | s)) + ηsm

(t)
s

〈
q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

〉
.

By noticing the fact that µ(t)
−p(s)(s) is equal to m(t)

s associated with Q-value, we can use Property 1
and Property 2 and get,∣∣∣∣∣ m(t)

s

m
(t−1)
s

µ
(t−1)
−p(s)(s)− µ

(t)
−p(s)(s)

∣∣∣∣∣ ≤
∣∣∣∣∣ m(t)

s

m
(t−1)
s

− 1

∣∣∣∣∣µ(t−1)
−p(s)(s) +

∣∣∣µ(t−1)
−p(s)(s)− µ

(t)
−p(s)(s)

∣∣∣
≤C/s ηancs + C−,Q

s ηancs .

We also use the fact that µ(t)
−p(s)(s) ≤ 1 in the last inequality. We use C−,Q

s to denote the C−
s

associated with Q-value for simplicity.

Furthermore, by using Lemma C.2 and Hölder’s Inequality, we have∣∣∣〈q(t−1)(s, ·)− q(t)(s, ·), π(t)
p(s)(· | s)− π

(t+1)
p(s) (· | s)

〉∣∣∣
≤
∥∥∥q(t)(s, ·)− q(t−1)(s, ·)

∥∥∥
∞
·
∥∥∥π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

∥∥∥
1
≤ 2Cdiff

s ∥q∥∞ ηs.
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where ∥q∥∞ = maxt∈[T ],s∈S
∥∥q(t)(s, ·)∥∥∞.

By telescoping and non-negativity of Bregman divergence, we have

T∑
t=1

(
ηsτµ

(t)
−p(s)(s)ψ

∆
s (π

(t)
p(s)(· | s))− ηsτµ

(t)
−p(s)(s)ψ

∆
s (πp(s)(· | s))

+ ηsm
(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

≤
T∑
t=2

(
m(t)
s −m(t−1)

s − ηsτµ(t−1)
−p(s)(s)

)
︸ ︷︷ ︸

1

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))

+
(
C/s + C−,Q

s

)
ηancs ηsτ

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣+ 2Cdiff
s ∥q∥∞ η2sM2T

+m(1)
s Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).

1 can be upper-bounded by C−
s η

anc
s −ηsτγ

∑
h∈s µc(h) ≤ −ηsτγ2

∑
h∈s µc(h) by Property 2 and

letting ηanc
s

ηs
≤ τγ

2C−
s

∑
h∈s µc(h). By non-negativity of Bregman divergence, we have

T∑
t=1

(
ηsτµ

(t)
−p(s)(s)ψ

∆
s (π

(t)
p(s)(· | s))− ηsτµ

(t)
−p(s)(s)ψ

∆
s (πp(s)(· | s))

+ ηsm
(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

≤− ηsτγ
∑
h∈s µc(h)

2

T∑
t=2

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))

+
(
C/s + C−,Q

s

)
ηsτη

anc
s

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+ 2Cdiff

s ∥q∥∞ η2sM2T +m(1)
s Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).

Then, we will use the following regret decomposition lemma to extend the difference within an
infoset above to the difference of the game.

Lemma E.3 (Lemma 5.1 in Liu et al. (2023)). Let Π := Π1×Π2, the polytope of all valid sequence-
form joint strategies. For any µπ1

1 ∈ Π1, µ
π2
2 ∈ Π2, we let µπ = (µπ1

1 , µπ2
2 ) ∈ Π to denote the joint

strategy, ψΠ(µπ) : Π → R = ψΠ1(µπ1
1 ) + ψΠ2(µπ2

2 ), and F (µπ) := (−Aµπ2
2 ,A⊤µπ1

1 ). For any
µ(1),µ(2), · · · ,µ(T ),µπ ∈ Π and τ ≥ 0, we have

G(T ),Π(µπ) :=

T∑
t=1

(F (µ(t))⊤(µ(t) − µπ) + τψΠ(µ(t))− τψΠ(µπ))

=
∑
s∈S

µπ(σ(s))G(T )(s;πp(s)(· | s)) (E.2)

R(T ),Π := max
µπ̂∈Π

G(T ),Π(µπ̂) ≤ max
µπ̂∈Π

∑
s∈S

µπ̂(σ(s))R(T )(s) (E.3)

24



Published as a conference paper at ICLR 2025

where

B(t)
p (s, a) :=

∑
(s,a)⊑s′

µ
(t)
p (σ(s′))

µ
(t)
p (s, a)

ψ∆
s′ (π

(t)
p (· | s′)) (E.4)

G(T )(s;πp(s)(· | s)) :=
T∑
t=1

(〈
−CF(t)

p(s)(s, ·) + τB
(t)
p(s)(s, ·), π

(t)
p(s)(· | s)− πp(s)(· | s)

〉
+ τψ∆

s (π
(t)
p(s)(· | s))− τψ∆

s (πp(s)(· | s))
)

(E.5)

R(T )(s) := max
π̂p(s)(· | s)∈∆|As|

G(T )(s; π̂p(s)(· | s)). (E.6)

By using Lemma E.34, we have∑
s∈S

µ(τ,γ),∗(σ(s))

T∑
t=1

(
τµ

(t)

−p(s)(s)ψ
∆
s (π

(t)

p(s)(· | s))− τµ
(t)

−p(s)(s)ψ
∆
s (π

(τ,γ),∗
p(s) (· | s))

+m(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− π
(τ,γ),∗
p(s) (· | s)⟩

)
=

T∑
t=1

((
µ
(τ,γ),∗
1 − µ

(t)
1

)⊤
Aµ

(t)
2 +

(
µ
(t)
1

)⊤
A
(
µ
(t)
2 − µ

(τ,γ),∗
2

)
+ τ

(
ψΠ1

bi (µ
(t)
1 , µ

(t)
2 )− ψΠ1

bi (µ
(τ,γ),∗
1 , µ

(t)
2 )− ψΠ2

bi (µ
(t)
1 , µ

(t)
2 ) + ψΠ2

bi (µ
(τ,γ),∗
1 , µ

(t)
2 )
)

+ τ
(
ψΠ2

bi (µ
(t)
1 , µ

(t)
2 )− ψΠ2

bi (µ
(t)
1 , µ

(τ,γ),∗
2 )− ψΠ1

bi (µ
(t)
1 , µ

(t)
2 ) + ψΠ1

bi (µ
(t)
1 , µ

(τ,γ),∗
2 )

))
=

T∑
t=1

((
µ
(τ,γ),∗
1 − µ

(t)
1

)⊤
Aµ

(τ,γ),∗
2 +

(
µ
(τ,γ),∗
1

)⊤
A
(
µ
(t)
2 − µ

(τ,γ),∗
2

)
+ τ

(
ψΠ1

bi (µ
(t)
1 , µ

(τ,γ),∗
2 )− ψΠ1

bi (µ
(τ,γ),∗
1 , µ

(τ,γ),∗
1 ) + ψΠ2

bi (µ
(τ,γ),∗
1 , µ

(τ,γ),∗
1 )− ψΠ2

bi (µ
(t)
1 , µ

(τ,γ),∗
2 )

)
+ τ

(
ψΠ2

bi (µ
(τ,γ),∗
1 , µ

(t)
2 )− ψΠ2

bi (µ
(τ,γ),∗
1 , µ

(τ,γ),∗
2 ) + ψΠ1

bi (µ
(τ,γ),∗
1 , µ

(τ,γ),∗
1 )− ψΠ1

bi (µ
(τ,γ),∗
1 , µ

(t)
2 )
))

≥0.

The last inequality is because µ(τ,γ),∗ is the NE of
maxµπ1

1 ∈Π1 : µ
π1
1 ⪰γ minµπ2

2 ∈Π2 : µ
π2
2 ⪰γ (µ

π1
1 )

⊤
Aµπ2

2 − τψΠ1

bi (µ
π1
1 , µπ2

2 ) + τψΠ2

bi (µ
π1
1 , µπ2

2 ).

Therefore,

0 ≤
∑
s∈S

µ(τ,γ),∗(σ(s))
T∑
t=1

(
τµ

(t)
−p(s)(s)ψ

∆
s (π

(t)
p(s)(· | s))− τµ

(t)
−p(s)(s)ψ

∆
s (π

(τ,γ),∗
p(s) (· | s))

+m(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− π
(τ,γ),∗
p(s) (· | s)⟩

)
≤− τγmins∈S

∑
h∈s µc(h)

2

T∑
t=2

∑
s∈S

µ(τ,γ),∗(σ(s))Dψ∆
s
(π

(τ,γ),∗
p(s) (· | s), π(t)

p(s)(· | s))

+
∑
s∈S

(
C/s + C−,Q

s

)
τηancs µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+ 2

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T

+
∑
s∈S

m
(1)
s

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(π

(τ,γ),∗
p(s) (· | s), π(1)

p(s)(· | s)).

4It can be easily generalized to bidilated version by absorbing the reach probability of player 3 − p and
the chance player into ψ∆

s for ψΠp

bi and player p. For ψΠ3−p

bi , since it is linear with respect to µπp
p , it can be

combined into the counterfactual value.
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(i) is because µ(τ,γ),∗ is the NE of the regularized and perturbed EFG. Then, by rearranging the
terms, we have

T∑
t=2

DψΠ(µ
(τ,γ),∗,µπ(t)

)

=

T∑
t=2

∑
s∈S

µ(τ,γ),∗(σ(s))Dψ∆
s
(π

(τ,γ),∗
p(s) (· | s), π(t)

p(s)(· | s))

≤ 2

γmins∈S
∑
h∈s µc(h)

∑
s∈S

(
C/s + C−,Q

s

)
ηancs µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)

p(s)(· | s))− ψ∆
s (π

(t+1)

p(s) (· | s))
∣∣∣

+
4

τγmins∈S
∑
h∈s µc(h)

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T

+
2

τγmins∈S
∑
h∈s µc(h)

∑
s∈S

m
(1)
s

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(π

(τ,γ),∗
p(s) (· | s), π(1)

p(s)(· | s)).

The first equality is by Lemma 4.1. Now, we achieved best-iterate convergence to the regularized
NE µ(τ,γ),∗ in terms of Bregman divergence.

E.1 PROOF OF LEMMA 4.1

By definition of Bregman divergence, we have

DψΠ(µπ,µπ̃) = ψΠ(µπ)− ψΠ(µπ̃)−
〈
∇ψΠ(µπ̃),µπ − µπ̃

〉
.

For notational simplicity, we use µπ(s, a) as µπ
p(s)(s, a). Since ψΠ(µπ̃) =∑

s∈S µ
π̃(σ(s))ψ∆

s

(
µπ̃(s,·)
µπ̃(σ(s))

)
, for any s ∈ S, a ∈ As, the gradient ∇µπ̃(s,a)ψ

Π(µπ̃) is
equal to

∇µπ̃(s,a)ψ
Π(µπ̃) =

∑
s′∈S : σ(s′)=(s,a)

(
ψ∆
s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
−
〈
∇ψ∆

s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
,
µπ̃(s′, ·)
µπ̃(σ(s′))

〉)

+∇aψ∆
s (

µπ̃(s, ·)
µπ̃(σ(s))

).

Therefore,〈
∇ψΠ(µπ̃),µπ̃

〉
=

∑
s∈S,a∈As

µπ̃(s, a)
∑

s′∈S : σ(s′)=(s,a)

(
ψ∆
s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
−
〈
∇ψ∆

s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
,
µπ̃(s′, ·)
µπ̃(σ(s′))

〉)

+
∑

s∈S,a∈As

µπ̃(s, a)∇aψ∆
s (

µπ̃(s, ·)
µπ̃(σ(s))

)

=
∑

s∈S,a∈As

∑
s′∈S : σ(s′)=(s,a)

µπ̃(σ(s′))ψ∆
s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
(E.7)

−
∑

s∈S,a∈As

∑
s′∈S : σ(s′)=(s,a)

〈
∇ψ∆

s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
, µπ̃(s′, ·)

〉
(E.8)

+
∑

s∈S,a∈As

µπ̃(s, a)∇aψ∆
s (

µπ̃(s, ·)
µπ̃(σ(s))

). (E.9)

Note that (E.7) is equal to
∑
s∈S µ

π̃(σ(s))ψ∆
s

(
µπ̃(s,·)
µπ̃(σ(s))

)
= ψΠ(µπ̃) due to the uniqueness of

σ(s′).
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Similarly, due to the uniqueness of σ(s′), (E.8) is equal to −∑s∈S

〈
∇ψ∆

s

(
µπ̃(s,·)
µπ̃(σ(s))

)
, µπ̃(s, ·)

〉
,

which is equal to the negative of (E.9) and thus cancel out. Therefore,〈
∇ψΠ(µπ̃),µπ̃

〉
= ψΠ(µπ̃).

Moreover,〈
∇ψΠ(µπ̃),µπ

〉
=

∑
s∈S,a∈As

∑
s′∈S : σ(s′)=(s,a)

µπ(σ(s′))ψ∆
s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)

−
∑

s∈S,a∈As

µπ(s, a)
∑

s′∈S : σ(s′)=(s,a)

〈
∇ψ∆

s′

(
µπ̃(s′, ·)
µπ̃(σ(s′))

)
,
µπ̃(s′, ·)
µπ̃(σ(s′))

〉

+
∑

s∈S,a∈As

µπ(s, a)∇aψ∆
s (

µπ̃(s, ·)
µπ̃(s, a)

)

=
∑
s∈S

µπ(σ(s))

(
ψ∆
s

(
µπ̃(s, ·)
µπ̃(σ(s))

)
+

〈
∇ψ∆

s

(
µπ̃(s, ·)
µπ̃(σ(s))

)
,
µπ(s, ·)
µπ(σ(s))

− µπ̃(s, ·)
µπ̃(σ(s))

〉)
.

Therefore,〈
F τ (µπ),µπ − µπ′

〉
=− (µπ1

1 )
⊤
Aµ

π′
2

2 + (µ
π′
1

1 )⊤Aµπ2
2 + τD

ψ
Π1
bi (·,µπ2

2 )

(
µ
π′
1

1 , µπ1
1

)
+ τD

ψ
Π2
bi (µ

π1
1 ,·)

(
µ
π′
2

2 , µπ2
2

)
+ τψΠ1

bi (µ
π1
1 , µ

π′
2

2 )− τψΠ1

bi (µ
π′
1

1 , µπ2
2 ) + τψΠ2

bi (µ
π′
1

1 , µπ2
2 )− τψΠ2

bi (µ
π1
1 , µ

π′
2

2 ).

E.2 PROOF OF LEMMA E.2

Firstly, we introduce the following lemma.

Lemma E.4. Let C be a convex set and x(1) = argminx∈C
{
⟨g,x⟩+ τ0ψ

C(x) + 1
ηDψC (x,x(0))

}
,

where ψC is a strongly-convex function in C and τ0 ≥ 0 is a constant. Then, for any x(2) ∈ C, we
have

ητ0ψ
C(x(1))− ητ0ψC(x(2)) + η

〈
g,x(1) − x(2)

〉
(E.10)

≤DψC (x(2),x(0))− (1 + ητ0)DψC (x(2),x(1))−DψC (x(1),x(0)).

The proof is postponed to the end of this section.

Plug x(0) = π
(t)
p(s)(· | s),x(1) = π

(t+1)
p(s) (· | s),x(2) = πp(s)(· | s), g = −q(t)(s, ·), ψC = ψ∆

s , η =

ηs, τ0 =
τµ

(t)

−p(s)
(s)

m
(t)
s

into Lemma E.4, with C = ∆
|As|
γs,νs ,

ηs
τµ

(t)
−p(s)(s)

m
(t)
s

ψ∆
s (π

(t+1)
p(s) (· | s))− ηs

τµ
(t)
−p(s)(s)

m
(t)
s

ψ∆
s (πp(s)(· | s))

+ ηs⟨π(t+1)
p(s) (· | s)− πp(s)(· | s),−q(t)(s, ·)⟩

≤Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))−

1 + ηs
τµ

(t)
−p(s)(s)

m
(t)
s

Dψ∆
s
(πp(s)(· | s), π(t+1)

p(s) (· | s))

−Dψ∆
s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s)).
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Plug x(0) = π
(t)
p(s)(· | s),x(1) = π

(t)
p(s)(· | s),x(2) = π

(t+1)
p(s) (· | s), g = −q(t−1)(s, ·), ψC = ψ∆

s , η =

ηs, τ0 =
τµ

(t−1)

−p(s)
(s)

m
(t−1)
s

into Lemma E.4, with C = ∆
|As|
γs,νs ,

ηs
τµ

(t−1)
−p(s)(s)

m
(t−1)
s

ψ∆
s (π

(t)
p(s)(· | s))− ηs

τµ
(t−1)
−p(s)(s)

m
(t−1)
s

ψ∆
s (π

(t+1)
p(s) (· | s))

+ ηs⟨π(t)
p(s)(· | s)− π

(t+1)
p(s) (· | s),−q(t−1)(s, ·)⟩

≤Dψ∆
s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s))− (1 + ηs
τµ

(t−1)
−p(s)(s)

m
(t−1)
s

)Dψ∆
s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s))

−Dψ∆
s
(π

(t)
p(s)(· | s), π

(t)
p(s)(· | s)).

Summing them up and adding ηs
〈
q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

〉
to both sides,

we have

ηs
τµ

(t)
−p(s)(s)

m
(t)
s

ψ∆
s (π

(t)
p(s)(· | s))− ηs

τµ
(t)
−p(s)(s)

m
(t)
s

ψ∆
s (πp(s)(· | s)) (E.11)

+ ηsτ(
µ
(t−1)
−p(s)(s)

m
(t−1)
s

−
µ
(t)
−p(s)(s)

m
(t)
s

)(ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s)))

+ ηs⟨−q(t)(s, ·), π(t)
p(s)(· | s)− πp(s)(· | s)⟩

≤Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))− (1 + ηs
τµ

(t)
−p(s)(s)

m
(t)
s

)Dψ∆
s
(πp(s)(· | s), π(t+1)

p(s) (· | s))

− (1 + ηs
τµ

(t−1)
−p(s)(s)

m
(t−1)
s

)Dψ∆
s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s))

−Dψ∆
s
(π

(t)
p(s)(· | s), π

(t)
p(s)(· | s)) + ηs

〈
q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

〉
.

Proof of Lemma E.4.

DψC (x(2),x(0))− (1 + ητ0)DψC (x(2),x(1))−DψC (x(1),x(0))

=
(
ψC(x(2))− ψC(x(0))−

〈
∇ψC(x(0)),x(2) − x(0)

〉)
− (1 + ητ0)

(
ψC(x(2))− ψC(x(1))−

〈
∇ψC(x(1)),x(2) − x(1)

〉)
−
(
ψC(x(1))− ψC(x(0))−

〈
∇ψC(x(0)),x(1) − x(0)

〉)
=ητ0ψ

C(x(1))− ητ0ψC(x(2)) +
〈
(1 + ητ0)∇ψC(x(1))−∇ψC(x(0)),x(2) − x(1)

〉
.

Since

x(1) = argmin
x∈C

{
⟨g,x⟩+ τ0ψ

C(x) +
1

η

(
ψC(x)− ψC(x(0))−

〈
∇ψC(x(0)),x− x(0)

〉)}
,

by first-order optimality, we have,〈
ηg + (1 + ητ0)∇ψC(x(1))−∇ψC(x(0)),x(2) − x(1)

〉
≥ 0.

Therefore,

DψC (x(2),x(0))− (1 + ητ0)DψC (x(2),x(1))−DψC (x(1),x(0))

≥ητ0ψC(x(1))− ητ0ψC(x(2)) + η
〈
g,x(1) − x(2)

〉
.
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F PROOF OF THEOREM 3.1

Theorem F.1 (Formal Version of Theorem 3.1). Consider Algorithm 1. When ηancs

ηs
≤ τCη,Ts for

any s ∈ S, where Cη,Ts :=
γ2 ∑

h∈s µc(h)

2C−
s (log T+log |S|+log 1

δ )
, and (A), (B), (C) are satisfied, we have the

following guarantee with probability 1− 2δ.
T∑
t=2

DψΠ(µ(τ,γ),∗,µπ(t)

)

≤4Cvisit

τ

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T

+
2Cvisit

τ

∑
s∈S

1

ηsµ
(t1s)

p(s)(σ(s))
µ(τ,γ),∗(σ(s)) max

x,y∈∆
|As|
γs,νs

Dψ∆
s
(x,y)

+
4C2

visit

τ

∑
s∈S

1

ηs
µ(τ,γ),∗(σ(s)) max

x,y∈∆
|As|
γs,νs

Dψ∆
s
(x,y) (F.1)

+
4Cvisit

τ

(
1 +

1

γ

)
(∥q∥∞ + τψmax)

√
2T log

|S|
δ

+
∑
s∈S

4C2
visit

ηsτ
max

x,y∈∆
|As|
γs,νs

Dψ∆
s
(x,y),

where Cvisit :=
log T+log |S|+log 1

δ

γ2 mins∈S
∑

h∈s µc(h)
is the maximum gap between any two adjacent visits to an

infoset.

Proof Sketch. (i). Firstly, we show that the estimates in Algorithm 1 are unbiased so that the
conditions of Lemma 4.3 are met. (ii). By Lemma 4.3 and union bound, we can extend the result
of full information feedback to the stochastic feedback. (iii). To ensure the coefficient for the
cumulated distance to NE after telescoping is still positive, we need to bound the largest gap between
the timesteps of two consecutive visits of any infoset.

For any infoset s ∈ S, we define Ts :=
{
t1s, t

2
s, · · ·

}
, where each tks ∈ [T ] is the timestep that s

is along the sampled trajectory. Then, we will show Algorithm 1 uses unbiased estimators so that
we can derive an upper-bound by Lemma 4.3. Note that for any u ∈ ∆

|As|
γs,νs , the expectation of the

additional regularizer term is,

Pr (t ∈ Ts)

 τ

µ
(t)
p(s)(σ(s))

ψ∆
s (u)

 =µ
(t)
p(s)(σ(s))µ

(t)
−p(s)(s)

 τ

µ
(t)
p(s)(σ(s))

ψ∆
s (u)


=τµ

(t)
−p(s)(s)ψ

∆
s (u).

Let s(h) denote the infoset that the node h is in. For the original utility, suppose p(s) = 1 without
loss of generality, the expectation of q̃(t)(s, a) for any a ∈ As is,

1

π
(t)
1 (a | s)

∑
h′∈H : ∃h∈s,(h,a)⊑h′

µ
(t)
1 (σ1(h

′))µ(t)
2 (σ2(h

′))µc(h
′)U1(h′)

− 1

π
(t)
1 (a | s)

∑
h′∈H1 : ∃h∈s,(h,a)⊑h′

µ
(t)
1 (σ1(h

′))µ(t)
2 (σ2(h

′))µc(h
′)ψ∆

s(h)(π
(t)
1 )

+
1

π
(t)
1 (a | s)

∑
h′∈H2 : ∃h∈s,(h,a)⊑h′

µ
(t)
1 (σ1(h

′))µ(t)
2 (σ2(h

′))µc(h
′)ψ∆

s(h)(π
(t)
2 ),

which is equal to q(t)(s, a) by definition.

By Lemma 4.3 and union bound, with probability at least 1 − δ, the following is satisfied for all
infosets s ∈ S,

Pr (t ∈ Ts)

(
τ

µ
(t)

p(s)(σ(s))
ψ∆
s (u)

)
=µ

(t)

p(s)(σ(s))µ
(t)

−p(s)(s)

(
τ

µ
(t)

p(s)(σ(s))
ψ∆
s (u)

)
= τµ

(t)

−p(s)(s)ψ
∆
s (u).
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where ψmax is the upperbound of ψ∆
s , which is maxs∈S

αs

2 when it is Euclidean norm and
maxs∈S αs log |As| when it is entropy.

Let’s define t0s = 1 for notational simplicity. Similar to the proof of Theorem 4.2, for each k ≤
|Ts| − 1, we have

ηsτψ
∆
s (π

(tks )

p(s)(· | s))− ηsτψ∆
s (πp(s)(· | s)) + ηs

〈
−q̃(tks )(s, ·), π(tks )

p(s)(· | s)− πp(s)(· | s)
〉

≤Dψ∆
s
(πp(s)(· | s), π(tks )

p(s)(· | s))− (1 + ηsτ)Dψ∆
s
(πp(s)(· | s), π(tk+1

s )

p(s) (· | s))

− (1 + ηsτ)Dψ∆
s
(π

(tk+1
s )

p(s) (· | s), π(tks )

p(s)(· | s))

+ ηs

〈
q̃(t

k−1
s )(s, ·)− q̃(tks )(s, ·), π(tks )

p(s)(· | s)− π
(tk+1

s )

p(s) (· | s)
〉
.

By multiplying m(tks )
s = 1

µ
(tks )

p(s)
(σ(s))

on both sides and telescoping, we have

|Ts|−1∑
k=1

( τ

µ
(tks )

p(s)(σ(s))

(
ψ∆
s (π

(tks )

p(s)(· | s))− ψ∆
s (πp(s)(· | s))

)
+

1

µ
(tks )

p(s)(σ(s))
⟨−q̃(t

k
s )(s, ·), π(tks )

p(s)(· | s)− πp(s)(· | s)⟩
)

≤
|Ts|∑
k=2

 1

µ
(tks )

p(s)(σ(s))
− 1

µ
(tk−1

s )

p(s) (σ(s))
− ηsτ

µ
(tk−1

s )

p(s) (σ(s))

Dψ∆
s
(πp(s)(· | s), π

(tks )

p(s)(· | s))

+ 2Cdiff
s ∥q∥∞ ηsM2|Ts|+

1

µ
(t1s)

p(s)(σ(s))
Dψ∆

s
(πp(s)(· | s), π

(t1s)

p(s)(· | s)).

Since the probability of visiting infoset s at timestep t is at least γ2
∑
h∈s µc(h),

Pr
(
|tks − tk−1

s | > Ks

)
≤ (1− γ2

∑
h∈s

µc(h))
Ks ≤ exp(−γ2

∑
h∈s

µc(h)Ks).

Therefore, with probability 1−δ, all infosets s ∈ S satisfies that for any 2 ≤ k ≤ |Ts|, |tks−tk−1
s | ≤

log T+log |S|+log 1
δ

γ2
∑

h∈s µc(h)
=: Ks. Then,

1

µ
(tks )

p(s)(σ(s))
− 1

µ
(tk−1

s )
p(s) (σ(s))

− ηsτ

µ
(tk−1

s )
p(s) (σ(s))

≤C−
s η

anc
s

log T + log |S|+ log 1
δ

γ2
∑
h∈s µc(h)

− ηsτ

=C−
s η

anc
s

log T + log |S|+ log 1
δ

γ2
∑
h∈s µc(h)

− ηsτ.
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Therefore, when ηanc
s

ηs
≤ τγ2 ∑

h∈s µc(h)

2C−
s (log T+log |S|+log 1

δ )
, the inequality above is upper-bounded by −ηsτ2 .

Moreover, we can write it as (let t|Ts|+1
s = T + 1 for notational simplicity),

|Ts|∑
k=2

 1

µ
(tks )

p(s)(σ(s))
− 1

µ
(tk−1

s )
p(s) (σ(s))

− ηsτ

µ
(tk−1

s )
p(s) (σ(s))

Dψ∆
s
(πp(s)(· | s), π(tks )

p(s)(· | s))

≤−
|Ts|∑
k=2

t(k+1)
s −1∑
t=t

(k)
s

ηsτ

2Ks
Dψ∆

s
(πp(s)(· | s), π(tks )

p(s)(· | s))

=− ηsτγ
2
∑
h∈s µc(h)

2
(
log T + log |S|+ log 1

δ

) |Ts|∑
k=2

t(k+1)
s −1∑
t=t

(k)
s

Dψ∆
s
(πp(s)(· | s), π(tks )

p(s)(· | s))

(i)
= − ηsτγ

2
∑
h∈s µc(h)

2
(
log T + log |S|+ log 1

δ

) T∑
t=t

(2)
s

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))

≤− ηsτγ
2
∑
h∈s µc(h)

2
(
log T + log |S|+ log 1

δ

) T∑
t=2

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s)) + 2Ks max
x,y∈∆

|As|
γs,νs

Dψ∆
s
(x,y).

(i) uses the fact that for any t ∈ [tks , t
k+1
s − 1], π(t)

p(s)(· | s) = π
(tks )

p(s)(· | s).
Then, following rest of the proof for Theorem 4.2, we finish the proof.

F.1 PROOF OF LEMMA 4.3

Let d(t)(u) :=
(
f (t)(u)− f (t)(u(t))

)
−
(
f̃ (t)(u)− f̃ (t)(u(t))

)
. By the property of f (t), since u(t)

is deterministically influenced by f̃ (1), f̃ (2), · · · , f̃ (t−1), E
[
f̃ (t)(u(t)) | f̃ (1), f̃ (2), · · · , f̃ (t−1)

]
=

f (t)(u(t)). Moreover, E
[
f̃ (t)(u) | f̃ (1), f̃ (2), · · · , f̃ (t−1)

]
= f (t)(u) for any fixed u ∈ C. There-

fore, d(t)(u) is a martingale difference sequence. Then, we can apply the Azuma-Hoeffding in-
equality in the following.

Lemma F.2 (Azuma-Hoeffding inequality). For any martingale difference sequence
x(1), x(2), · · · , x(T ) with x(t) ∈ [a(t), b(t)], we have

Pr

(
T∑
t=1

x(t) ≥ w
)
≤ exp

(
− 2w2∑T

t=1

(
b(t) − a(t)

)2
)
.

Note that
∣∣d(t)(u)∣∣ ≤M + M̃ . By applying Lemma F.2, we have

Pr

(
T∑
t=1

d(t)(u) ≥ w
)
≤ exp

(
− 2w2∑T

t=1 4(M + M̃)2

)
.

Therefore, when taking w = (M + M̃)
√

2T log 1
δ , with probability at least 1− δ,

T∑
t=1

(
f (t)(u)− f (t)(u(t))

)
≤

T∑
t=1

(
f̃ (t)(u)− f̃ (t)(u(t))

)
+ (M + M̃)

√
2T log

1

δ
.

G AUXILIARY LEMMAS

In this section, we present the auxiliary lemmas for the theorems proved in the previous part.
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G.1 UPPERBOUND OF FEEDBACK

Lemma G.1 (Upperbound of Feedback q(t)(s, ·)). Consider the update-rule (4.2). For any timestep
t ∈ [T ], we have the following upper-bound on q(t)(s, ·) and its unbiased estimator q̃(t)(s, ·), no
matter whether it is counterfactual value, trajectory Q-value, or Q-value.

∥q∥∞ :=

{ τ
M1

∥α∥∞Dψmax+1

mins∈S,a∈As γsνs,a
Outcome Sampling of Trajectory Q-value

τ
M1
∥α∥∞Dψmax + 1 Otherwise

(G.1)

where D := maxh∈HD(h) is the maximum depth of infoset and ψmax is the maximum of the
regularizer, which is 1

2mins∈S |As| for Euclidean distance and maxs∈S log |As| for entropy.

Proof. When calculating the feedback q̃(t)(s, a) for outcome sampling of trajectory Q-value, we
need to divide the probability of choosing action a, which is π(t)(a | s) ≥ mins∈S,a∈As

γsνs,a.
Then, its upperbound is that of the full-information feedback setting divided by the constant
mins∈S,a∈As γsνs,a. Therefore, in the following, we will focus on the upperbound of q(t)(s, ·)
in the full-information feedback setting.

In the following proof, we only consider s ∈ S1 since player 1, 2 are symmetric. Furthermore,
we only need to prove the upper-bound above when q(t)(s, ·) is Q-value, since by definition, the

Q-value Qπ
i (s, a) =

Qπ
i (s,a)∑

h∈s µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))

≥ Qπ
i (s, a) (similarly, it is also larger than the

counterfactual value).

Let s(h) be the infoset that node h is in. Firstly, when τ = 0, which means only considering the
contribution of U1 to q(t)(s, ·), for every s ∈ S1, we have

|Qπ
i (s, a)|

=
1∑

h∈s µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))

∣∣∣∣∣∣
∑

h′ : ∃h∈s,(h,a)⊑h′

µc(h
′)U1(h

′)µπ1
1 (σ1(h

′))µπ2
2 (σ2(h

′))

∣∣∣∣∣∣
(i)
=

1∑
h∈s µc(h)µ

π1
1 (σ1(h))µ

π2
2 (σ2(h))

∣∣∣∣∣∣
∑

h′ : ∃h∈s,(h,a)⊑h′,As(h′)=∅

µc(h
′)U1(h

′)µπ1
1 (σ1(h

′))µπ2
2 (σ2(h

′))

∣∣∣∣∣∣
≤ 1∑

h∈s µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))

∑
h′ : ∃h∈s,(h,a)⊑h′,As(h′)=∅

µc(h
′)µπ1

1 (σ1(h
′))µπ2

2 (σ2(h
′))

(ii)
=

1∑
h∈s µc(h)µ

π1
1 (σ1(h))µ

π2
2 (σ2(h))

∑
h∈s

µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h)) = 1.

(i) is because U1(h) ̸= 0 only if h is a terminal node. (ii) is by the tree structure of EFG. Now
consider τ > 0 and U1(h) ≡ 0 for any h ∈ H. Moreover, we will only show the upperbound when
using dilated regularizer, since bidilated regularizer is upperbounded by the dilated one.

Let S(t)(s) =
〈
q(t)(s, ·), π(t)

p(s)(· | s)
〉
− τ

m
(t)
s

ψ∆
s (π

(t)
p(s)(· | s)) when As ̸= ∅ (s is not terminal node)

and S(t)(s) = 0 when As = ∅ (s is the terminal node).

We will prove
∣∣S(t)(s)

∣∣ ≤ τ
M1
∥α∥∞ (D −D(s))ψmax by induction. For infoset s ∈ S1 with

D(s) = D, we have S(t)(s) = 0 = τ ∥α∥∞ (D −D(s))ψmax. Therefore, the initial step of
induction is completed.

Consider when all s′ ∈ S1 with D(s′) > d for some constant d, S(t)(s′) ≤
τ
M1
∥α∥∞ (D −D(s′))ψmax. Let Pr(h→ h′) be the probability of reaching h′ from node h, when

considering all nodes encountered along the path (player 1, 2 action node and the chance node) for

32



Published as a conference paper at ICLR 2025

notational simplicity. Then, for infoset s ∈ S1 with D(s) = d, we have

|Qπ
i (s, a)|

=

∣∣∣∣∣∣
∑

s′∈S1 : σ(s′)=(s,a)

S(t)(s′)
∑
h∈s

µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))∑

h′∈s µc(h
′)µπ1

1 (σ1(h′))µ
π2
2 (σ2(h′))

∑
h′∈s′

Pr(h→ h′)

∣∣∣∣∣∣
≤

∑
s′∈S1 : σ(s′)=(s,a)

τ

M1
∥α∥∞ (D −D(s)− 1)ψmax

·
∑
h∈s

µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))∑

h′∈s µc(h
′)µπ1

1 (σ1(h′))µ
π2
2 (σ2(h′))

∑
h′∈s′

Pr(h→ h′)

=
τ

M1
∥α∥∞ (D −D(s)− 1)ψmax

·
∑
h∈s

µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))∑

h′∈s µc(h
′)µπ1

1 (σ1(h′))µ
π2
2 (σ2(h′))

∑
h′∈H1 : σ1(h′)=(s,a)

Pr(h→ h′)

=
τ

M1
∥α∥∞ (D −D(s)− 1)ψmax.

Therefore, ∣∣∣S(t)(s)
∣∣∣ = ∣∣∣∣〈q(t)(s, ·), π(t)

p(s)(· | s)
〉
− τ

m
(t)
s

ψ∆
s (π

(t)
p(s)(· | s))

∣∣∣∣
≤ τ

M1
∥α∥∞ (D −D(s)− 1)ψmax +

τ

M1
∥α∥∞ ψmax

=
τ

M1
∥α∥∞ (D −D(s))ψmax.

This concludes the induction step.

G.2 BOUNDING M1,M2

By choosing γs as a fixed constant γ0 > 0 for any player i ∈ [2] and s ∈ Si. νs,a is chosen to be
proportional to the number of terminal infosets (s′ ∈ S withAs′ = ∅) in the subtree rooted at (s, a),
we can get γ ≥ γD

0

|S| . Then, we have the following lowerbound and upperbound on m(t)
s .

Lemma G.2. When µ(t)
1 , µ

(t)
2 ⪰ γ, m(t)

s are lowerbounded by M1 and upperbounded by M2 with
the following M1,M2 for different feedback.

M1 :=


γmins∈S

∑
h∈s µc(h) Q-value

1 Trajectory Q-value
1 Counterfactual Value

M2 :=


1 Q-value
1
γ Trajectory Q-value
1 Counterfactual Value

(G.2)

Proof. We only prove the lowerbound and upperbound for infoset s ∈ S1 since two players are
symmetric.

For counterfactual value, since m(t)
s ≡ 1, M1,M2 = 1.

For trajectory Q-value, since m(t)
s = 1

µ
(t)
1 (σ(s))

, we have M2 = 1
γ ≥ m

(t)
s ≥ 1 =M1.

For Q-value, m
(t)
s =

∑
h∈s µc(h)µ

(t)
2 (σ2(h)). Since the reach probability

µπ1
1 (σ(s))

∑
h∈s µc(h)µ

(t)
2 (σ2(h)) ≤ 1 for any π1, we can let π1 play deterministically to

reach s. In this way, m(t)
s is equal to the reach probability so it is also upperbounded by one. At the

same time, m(t)
s ≥ γ

∑
h∈s µc(h) ≥ γmins∈S

∑
h∈s µc(h).
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G.3 PROOF OF LEMMA C.2

Lemma G.3. Consider update-rule (4.2). When ψ∆
s (u) =

αs

2

∑
a∈As

u2a is the Euclidean distance
where αs > 0 is a constant, we have

Cdiff
s =

|As|
αs
∥q∥∞ +

τ

M1

√
|As|. (G.3)

Let τ (t)s :=
τµ

(t)

−p(s)
(s)

m
(t)
s

. When ψ∆
s (u) =

αs

2

∑
a∈As

u2a, we have∥∥∥π(t)
p(s)(· | s)− π

(t)
p(s)(· | s)

∥∥∥
=

∥∥∥∥∥∥Proj∆|As|
γs,νs

 π
(t)
p(s)(· | s)

1 + ηsτ
(t−1)
s

+
ηs

αs(1 + ηsτ
(t−1)
s )

q(t−1)(s, ·)

− π(t)
p(s)(· | s)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ π
(t)
p(s)(· | s)

1 + ηsτ
(t−1)
s

+
ηs

αs(1 + ηsτ
(t−1)
s )

q(t−1)(s, ·)− π(t)
p(s)(· | s)

∥∥∥∥∥∥
≤ηs

(
1

αs(1 + ηsτ
(t−1)
s )

∥∥∥q(t−1)(s, ·)
∥∥∥+ τ

(t−1)
s

1 + ηsτ
(t−1)
s

∥∥∥π(t)
p(s)(· | s)

∥∥∥)

≤ηs
(

1

αs

∥∥∥q(t−1)(s, ·)
∥∥∥+ τ (t−1)

s

∥∥∥π(t)
p(s)(· | s)

∥∥∥)
≤ηs

(√
|As|
αs

∥q∥∞ +
τ

M1

)
.

In the last line, we use the fact that µ(t)
−p(s)(s) ≤ 1.

As a result,
∥∥∥π(t)

p(s)(· | s)− π
(t)
p(s)(· | s)

∥∥∥
1
≤ ηs

(
|As|
αs
∥q∥∞ + τ

M1

√
|As|

)
.

Similarly,
∥∥∥π(t+1)

p(s) (· | s)− π(t)
p(s)(· | s)

∥∥∥
1
≤ ηs

(
|As|
αs
∥q∥∞ + τ

M1

√
|As|

)
.

Proof of Lemma C.5. Let τ (t)s :=
τµ

(t)

−p(s)
(s)

m
(t)
s

. When ψ∆
s (u) = αs

(
log |As|+

∑
a∈As

ua log ua
)
,

the update-rule (4.2) is equivalent to

π(t)(a | s)

=max


π(t)(a | s)

1

1+ηsτ
(t−1)
s exp

(
ηs

αs

(
1+ηsτ

(t−1)
s

)q(t)(s, a)
)

Z
, γsνs,a


=max


π(t)(a | s) exp

(
ηs

αs

(
1+ηsτ

(t−1)
s

)q(t)(s, a)− ηsτ

m
(t−1)
s

(
1+ηsτ

(t−1)
s

) log π(t)(a | s)
)

Z
, γsνs,a


for any a ∈ As, where Z > 0 is a normalizing constant to ensure π(t)(a | s) is still a proba-

bility distribution over ∆|As|. The equivalency is proved in Lemma G.4. For notational simplic-
ity, we define l(t)(s, a) := − 1

αs

(
1+ηsτ

(t−1)
s

)q(t)(s, a) + τ

m
(t−1)
s

(
1+ηsτ

(t−1)
s

) log π(t)(a | s) so that

π(t)(a | s) = max

{
π(t)(a | s) exp(−ηsl(t)(s,a))

Z , γsνs,a

}
.
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Firstly, for γs = 1, we have π(t)
p(s)(· | s) = π

(t)
p(s)(· | s) = νs. Therefore, Cdiff

s = 0 and π(t)(a | s)
π(t)(a | s) = 1

for any a ∈ As. In the following, we assume γs < 1.

We can see that π(t)(a | s) is monotonically decreasing with respect to Z. When Z <

exp
(
−ηsmaxa′∈As l

(t)(s, a′)
)
, for any a ∈ As, we have π(t)(a | s) ≥ π(t)(a | s) exp(−ηsl(t)(s,a))

Z >

π(t)(a | s). Then,
∑
a∈As

π(t)(a | s) > 1.

Therefore, Z ≥ exp
(
−ηsmaxa′∈As l

(t)(s, a′)
)
.

Similarly, when Z > exp
(
−ηsmina′∈As

l(t)(s, a′)
)
, for any a ∈ As, we have

π(t)(a | s) exp(−ηsl(t)(s,a))
Z < π(t)(a | s). It implies that

∑
a∈As

π(t)(a | s) < ∑a∈As
π(t)(a | s), un-

less π(t)(a | s) = γsνs,a for all a ∈ As, which is impossible since we assume γs < 1. Therefore,
Z ≤ exp

(
−ηsmina′∈As l

(t)(s, a′)
)
.

Then, if
π(t)(a | s) exp(−ηsl(t)(s,a))

Z ≥ γsνs,a, we have

1 ≤π
(t)(a | s)
π(t)(a | s)

=
exp

(
−ηsl(t)(s, a)

)
Z

≤ exp

(
ηs max

a′∈As

l(t)(s, a′)− ηsl
(t)(s, a)

)

≤ exp

 ηs

αs
(
1 + ηsτ

(t−1)
s

) (max
a′∈As

q(t)(s, a′)− q(t)(s, a)

)
+

ηsτ
(t−1)
s

1 + ηsτ
(t−1)
s

log max
a′∈As

π(t)(a′ | s)
π(t)(a | s)


(i)

≤ exp

(
ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

))
(ii)

≤ 1 + 2
ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

)
In (i) we use the fact ∥q∥∞ ≥

∣∣q(t)(s, a)∣∣ for any a ∈ As. In (ii) we use ex ≤ 1+2x for x ∈ [0, 1].

If
π(t)(a | s) exp(−ηsl(t)(s,a))

Z < π(t)(a | s), we have

exp
(
−ηsl(t)(s, a)

)
Z

≥ exp

(
ηs min

a′∈As

l(t)(s, a′)− ηsl(t)(s, a)
)

≥ exp

(
− ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

))
.

Therefore,

1 ≥ π(t)(a | s)
π(t)(a | s) ≥

π(t)(a | s) exp
(
−ηsl(t)(s, a)

)
π(t)(a | s)Z ≥ exp

(
− ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

))
≥1− ηs

αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

)
.

Then, for any a ∈ As, we have∣∣∣∣π(t)(a | s)
π(t)(a | s) − 1

∣∣∣∣ ≤2 ηsαs
(
2 ∥q∥∞ +

ταs
M1

log
1

γ

)
.

Therefore,∥∥∥π(t)
p(s)(· | s)− π

(t)
p(s)(· | s)

∥∥∥
1
=
∑
a∈As

π(t)(a | s)
∣∣∣∣π(t)(a | s)
π(t)(a | s) − 1

∣∣∣∣ ≤ 2
ηs
αs

(
2 ∥q∥∞ +

ταs
M1

log
1

γ

)
.

Similarly, the upperbound above also holds for
∣∣∣π(t+1)(a | s)
π(t)(a | s) − 1

∣∣∣.
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G.4 UPDATE RULE OF MWU

For ease of representation, we ignore the learning rate η without loss of generality (the update-rule
is the same without η when multiplying both the gradient g and τ by η).

Lemma G.4. Consider the update-rule x(2) = argminx∈∆γ,ν
|A|
⟨x, g⟩+τψ(x)+Dψ(x,x

(1)) where

x(1) ∈ ∆γ,ν
|A| , γ ≥ 0 is a constant, and ν ∈ ∆|A|, A is the action set and ψ(x) =

∑
a∈A x log x +

log |A|. Then, the update-rule is equivalent to

x(2)a = max


(
x
(1)
a

) 1
1+τ

exp(− ga
1+τ )

Z
, γνa

 (G.4)

for any a ∈ A. Z > 0 is the normalizing constant to ensure
∑
a∈A x

(2)
a = 1.

Proof. By definition of Bregman divergence, Dψ(x,x
(1)) =

∑
a∈A xa log

xa

x
(1)
a

. Therefore, the
Lagrangian function of the update-rule is

F(x, α,β) := ⟨x, g⟩+ τ
∑
a∈A

xa log xa +
∑
a∈A

xa log
xa

x
(1)
a

+ α(
∑
a∈A

xa − 1) +
∑
a∈A

βa(xa − γνa).

By taking∇xF(x, α,λ) = 0, for any a ∈ A, we have

ga + τ log x(2)a + log
x
(2)
a

x
(1)
a

+ 1 + τ + α+ βa = 0,

which implies that

x(2)a =
(
x(1)a

) 1
1+τ

exp

(
− 1

1 + τ
(ga + 1 + τ + α+ βa)

)
.

By duality, βa ≤ 0. By complementary slackness, we have βa(x
(2)
a − γνa) = 0. Therefore, when

βa < 0, we have x(2)a = γνa, which implies that
(
x
(1)
a

) 1
1+τ

exp
(
− 1

1+τ (ga + 1 + τ + α)
)
< γνa.

When βa = 0, we have x(2)a ≥ γνa so that
(
x
(1)
a

) 1
1+τ

exp
(
− 1

1+τ (ga + 1 + τ + α)
)
≥ γνa.

Therefore, the effect of βa is equivalent to take a max on
(
x
(1)
a

) 1
1+τ

exp
(
− 1

1+τ (ga + 1 + τ + α)
)

and we have the update-rule

x(2)a =max

{(
x(1)a

) 1
1+τ

exp

(
− 1

1 + τ
(ga + 1 + τ + α)

)
, γνa

}

=max


(
x
(1)
a

) 1
1+τ

exp(− ga
1+τ )

Z
, γνa


where Z = exp

(
1+τ+α
1+τ

)
.

Remark G.5. In practice, we can implement the update-rule in Lemma G.4 as follows. We assume
γ < 1 since otherwise we can simply let x(2) = ν.

• Compute x̂a =
(
x
(1)
a

) 1
1+τ

exp(− ga
1+τ ) and sort it in increasing order, which is x̂1 ≤ x̂2 ≤

· · · ≤ x̂|A|. Simultaneously, adjusting ν according to the sorting of x̂ to get ν̂, which is the
lowerbound x̂ should satisfy.

• Enumerate i = 0, 1, 2, · · · , |A|. Let Z =
∑

j>i x̂j

1−γ∑i
j=1 ν̂j

.
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1Figure 2: The result of full-information feedback in four benchmark games. We compare with CFR
(Zinkevich et al., 2007), CFR+ (Tammelin et al., 2015), MMD (Sokota et al., 2023), DCFR (Brown
and Sandholm, 2019), and PCFR+ (Farina et al., 2021a). We can see that QFR outperforms MMD in
all games. However, due to multiplicative noise caused by using Q-values, QFR cannot outperform
PCFR+, an advanced variant of CFR.

• Check x̂i ≤ γν̂iZ if i > 0 and x̂i+1 ≥ γν̂i+1Z if i < |A|. If the current Z satisfies, return
it. Otherwise, continue the enumeration.

According to the monotonicity of max

{
(x(1)

a )
1

1+τ exp(− ga
1+τ )

Z , γνa

}
with respect to Z, the algorithm

above will definitely find the correct Z and the time complexity is O(|A| log |A|) (the bottleneck is
the sort).

H EXPERIMENT DETAILS

Figure 1 and Figure 2 are conducted on 240 cores of Intel Xeon Platinum 8260 and Figure 3 is
conducted on Intel(R) Xeon Gold 6248 with NVidia Volta V100. The code is based on LiteEFG
(Liu et al., 2024) with game environments implemented by OpenSpiel (Lanctot et al., 2019). The
range of grid search and the best hyper-parameters can be found in the supplementary materials.

We present the experimental results for full information feedback in Figure 2, that is, we use trajec-
tory Q-value, Q-value, or counterfactual value as q(t)(s, ·) in the update rule (4.2). In Figure 2, we
plot the last-iterate performance for all the algorithms to ensure the comparison is fair.

In Figure 3, we present the ablation study on importance sampling when the strategy is approximated
by the neural network. Our implementation of QFR is based on PPO (Schulman et al., 2017) in
CleanRL (Huang et al., 2022). We can see that with importance sampling, the network gradient
blows up so that the network does not converge, even though we have applied gradient clipping.

I QFR WITH LAZY UPDATE

In this section, we will show a variant of QFR, which we coin it as the lazy update version. In this
version, the original dilated regularizer is applied instead of the bidilated one. The advantage of
this variant is that the convergence only requires the proportion of ηs and ηancs to be a constant with
Q-value and counterfactual value, so that the convergence rate depends polynomially on the game
size.

The disadvantage is that importance sampling is needed for the additional regularizer when using
stochastic feedback (the dispersion of feedback is not very large since the magnitude of the addi-
tional regularizer is controlled by τ ). Moreover, when sampling a trajectory, for those infosets that
are not on the trajectory, we still need to update the strategy π(· | s) in them. In other words, for
those infosets with q̃(t) = 0, we still need to update the strategy due to the additional regularizer
(please refer to (I.4) for details). In practice, we can ignore the update of those infosets that are not
along the trajectory, and postpone the update till the next time visiting them. That’s why we call it a
lazy update.

37



Published as a conference paper at ICLR 2025

0 100 200 300

Iteration (×104)

100

4× 10−1

6× 10−1

2× 100

Exploitability

0 100 200 300

Iteration (×104)

103

107

Gradient Norm (Before Clipping)

Leduc Poker

QFR Counterfactual feedback Traj-Q feedbackQFR Counterfactual feedback Traj-Q feedback

1
Figure 3: The result of QFR with sampling feedback. We can see that with importance sampling,
the gradient norm keeps growing so that the network does not converge even with gradient clipping.
The right figure shows the gradient before clipping and the gradient will be clipped so that its norm
is bounded by 0.5.

Consider the following update-rule, which is (4.2) with dilated regularizer instead of the bidilated
one.

π
(t)
p(s)(· | s)= argmin

πp(s)(· | s)∈∆γs,νs
|As|

〈
πp(s)(· | s),−q(t−1)(s, ·)

〉
+

τ

m
(t−1)
s

ψ∆
s (πp(s)(· | s))

+
1

ηs
Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s)) (I.1)

π
(t+1)
p(s) (· | s)= argmin

πp(s)(· | s)∈∆γs,νs
|As|

〈
πp(s)(· | s),−q(t)(s, ·)

〉
+

τ

m
(t)
s

ψ∆
s (πp(s)(· | s))

+
1

ηs
Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s)) (I.2)

As Theorem 4.2, we can show the convergence of this update-rule. Note that in the following theo-
rem, the proportion of ηs and ηancs is now a constant when the feedback is Q-value or counterfactual
value, which implies a polynomial dependence on the game size.

Theorem I.1. Consider the update rule (I.1) and q(t)(s, ·) is chosen to be counterfactual value,
trajectory Q-value, or Q-value. When ηancs

ηs
≤ τ

2C−
s

for any s ∈ S and (A),(B),(C) are satisfied, we
have the following guarantee.

T∑
t=2

DψΠ(µ(τ,γ),∗,µ(t))

≤2
∑
s∈S

C/s η
anc
s µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣ (I.3)

+
4

τ

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T

+
2

τ

∑
s∈S

M2

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).
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Lemma I.2 (Generalized from Lemma C.2. in Liu et al. (2023)). Consider the update rule in (4.2).
When ψ∆

s is strongly convex, then for any πp(s)(· | s) ∈ ∆|As| and t ≥ 1, we have

ηs
τ

m
(t)
s

ψ∆
s (π

(t)
p(s)(· | s))− ηs

τ

m
(t)
s

ψ∆
s (πp(s)(· | s))

+ ηsτ

(
1

m
(t−1)
s

− 1

m
(t)
s

)
(ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s)))

+ ηs⟨−q(t)(s, ·), π(t)
p(s)(· | s)− πp(s)(· | s)⟩

≤Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))− (1 + ηs
τ

m
(t)
s

)Dψ∆
s
(πp(s)(· | s), π(t+1)

p(s) (· | s))

− (1 + ηs
τ

m
(t−1)
s

)Dψ∆
s
(π

(t+1)
p(s) (· | s), π(t)

p(s)(· | s))

−Dψ∆
s
(π

(t)
p(s)(· | s), π

(t)
p(s)(· | s)) + ηs

〈
q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

〉
.

The lemma’s proof is similar to Lemma E.2.

Multiplying m(t)
s on both sides of Lemma E.2, we have

ηsτψ
∆
s (π

(t)

p(s)(· | s))− ηsτψ
∆
s (πp(s)(· | s)) + ηsτ

(
m

(t)
s

m
(t−1)
s

− 1

)
(ψ∆
s (π

(t)

p(s)(· | s))− ψ∆
s (π

(t+1)

p(s) (· | s)))

+ ηsm
(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩

≤m(t)
s Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s))− (m(t)
s + ηsτ)Dψ∆

s
(πp(s)(· | s), π(t+1)

p(s) (· | s))

− (m(t)
s + ηsτ

m
(t)
s

m
(t−1)
s

)Dψ∆
s
(π

(t+1)

p(s) (· | s), π(t)

p(s)(· | s))

−m(t)
s Dψ∆

s
(π

(t)

p(s)(· | s), π
(t)

p(s)(· | s)) + ηsm
(t)
s

〈
q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)

p(s) (· | s)
〉
.

By using Property 2, we have(
m

(t)
s

m
(t−1)
s

− 1

)
(ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s)))

≥− C/s ηancs

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣ .
Furthermore, by using Lemma C.2 and Hölder’s Inequality, we have∣∣∣〈q(t−1)(s, ·)− q(t)(s, ·), π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

〉∣∣∣
≤
∥∥∥q(t)(s, ·)− q(t−1)(s, ·)

∥∥∥
∞
·
∥∥∥π(t)

p(s)(· | s)− π
(t+1)
p(s) (· | s)

∥∥∥
1
≤ 2Cdiff

s ∥q∥∞ ηs.

where ∥q∥∞ = maxt∈[T ],s∈S
∥∥q(t)(s, ·)∥∥∞.

By telescoping and non-negativity of Bregman divergence, we have
T∑
t=1

(
ηsτψ

∆
s (π

(t)
p(s)(· | s))− ηsτψ∆

s (πp(s)(· | s)) + ηsm
(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

≤
T∑
t=2

(
m(t)
s −m(t−1)

s − ηsτ
)

︸ ︷︷ ︸
1

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s))

+ C/s ηsτη
anc
s

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣+ 2Cdiff
s ∥q∥∞ η2sM2T

+m(1)
s Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).
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1 can be upper-bounded by C−
s η

anc
s − ηsτ ≤ −ηsτ2 by Property 2 and letting ηancs

ηs
≤ τ

2C−
s

. By
non-negativity of Bregman divergence, we have

T∑
t=1

(
ηsτψ

∆
s (π

(t)
p(s)(· | s))− ηsτψ∆

s (πp(s)(· | s)) + ηsm
(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

≤− ηsτ

2

T∑
t=2

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s)) + C/s ηsτη
anc
s

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+ 2Cdiff

s ∥q∥∞ η2sM2T +m(1)
s Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).

For simplicity, we use µ := (x,y), F (µπ) := (−Ay,A⊤x), Π := Π1 ×Π2, and S := S1 × S2.

By using Lemma E.3, we have

0
(i)

≤G(T ),Π(µ(τ,γ),∗)

=
∑
s∈S

µ(τ,γ),∗(σ(s))G(T )(h;π
(τ,γ),∗
p(s) (· |h))

=
∑
s∈S

µ(τ,γ),∗(σ(s))
T∑
t=1

(
τψ∆

s (π
(t)
p(s)(· | s))− τψ∆

s (π
(τ,γ),∗
p(s) (· |h))

+m(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− π
(τ,γ),∗
p(s) (· |h)⟩

)
≤− τ

2

T∑
t=2

∑
s∈S

µ(τ,γ),∗(σ(s))Dψ∆
s
(π

(τ,γ),∗
p(s) (· |h), π(t)

p(s)(· | s))

+
∑
s∈S

C/s τη
anc
s µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+ 2

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T

+
∑
s∈S

m
(1)
s

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).

(i) is because µ(τ,γ),∗ is the NE of the regularized and perturbed EFG. Then, by rearranging the
terms, we have

T∑
t=2

DψΠ(µ(τ,γ),∗,µ(t))

=

T∑
t=2

∑
s∈S

µ(τ,γ),∗(σ(s))Dψ∆
s
(π

(τ,γ),∗
p(s) (· |h), π(t)

p(s)(· | s))

≤2
∑
s∈S

C/s η
anc
s µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+

4

τ

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T

+
2

τ

∑
s∈S

m
(1)
s

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)).

The first line is by Lemma 4.1. Now, we achieved best-iterate convergence to the regularized NE
µ(τ,γ),∗ in terms of Bregman divergence.
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I.1 LAZY QFR WITH STOCHASTIC FEEDBACK

Consider when we can only estimate q(t) at each iteration, we apply the following update-rule to
each individual infoset s ∈ S,

π
(t)
p(s)(· | s)= argmin

πp(s)(· | s)∈∆γs,νs
|As|

〈
πp(s)(· | s),−q̃(t−1)(s, ·)

〉
+

τ

m
(t−1)
s

ψ∆
s (πp(s)(· | s))

+
1

ηs
Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s)) (I.4)

π
(t+1)
p(s) (· | s)= argmin

πp(s)(· | s)∈∆γs,νs
|As|

〈
πp(s)(· | s),−q̃(t)(s, ·)

〉
+

τ

m
(t)
s

ψ∆
s (πp(s)(· | s))

+
1

ηs
Dψ∆

s
(πp(s)(· | s), π(t)

p(s)(· | s)).

Remark I.3. Note that the update-rule above is not realistic, since even when an infoset is unvisited
at timestep t, i.e. q̃(t) = 0, we still need to update the strategy π(t+1)

p(s) (· | s) and π(t+1)
p(s) (· | s) due to

the regularization term. However, we can do a lazy update. We will record the update time th of
each infoset s ∈ S. Once we touch a infoset s ∈ S at timestep t, we will do t− th steps update with
a zero q(t)(s, ·) and update the time stamp th ← t.

Then, we have the following theorem. Note that the dependence on game size is still polynomial for
Q-value and counterfactual value, since ηancs

ηs
is bounded by a constant.

Theorem I.4. Consider update-rule (I.4) and q(t)(s, ·) is chosen to be counterfactual value, trajec-
tory Q-value, or Q-value. When ηanc

s

ηs
≤ τ

2C−
s

for any s ∈ S and (A), (B), (C) are satisfied, we have
the following guarantee with probability 1− δ.

T∑
t=2

DψΠ(µ(τ,γ),∗,µ(t))

≤2
∑
s∈S

C/s η
anc
s µ(τ,γ),∗(σ(s))

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+

4

τ

∑
s∈S

Cdiff
s µ(τ,γ),∗(σ(s)) ∥q∥∞ ηsM2T (I.5)

+
2

τ

∑
s∈S

m
(1)
s

ηs
µ(τ,γ),∗(σ(s))Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)) +
8

τ
∥q∥∞ · |S|

√
2T log

1

δ
.
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By Lemma 4.3, once we have an unbiased estimator q̃(t)(s, ·) for q(t)(s, ·) in each infoset s ∈ S
with the same upper-bound ∥q∥∞, by Lemma 4.3, with probability 1− δ, we have

T∑
t=1

(
τψ∆

s (π
(t)
p(s)(· | s))− τψ∆

s (πp(s)(· | s)) +m(t)
s ⟨−q(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

≤
T∑
t=1

(
τψ∆

s (π
(t)
p(s)(· | s))− τψ∆

s (πp(s)(· | s)) +m(t)
s ⟨−q̃(t)(s, ·), π(t)

p(s)(· | s)− πp(s)(· | s)⟩
)

+ 4 ∥q∥∞
√
2T log

1

δ

(i)

≤ − τ

2

T∑
t=2

Dψ∆
s
(πp(s)(· | s), π(t)

p(s)(· | s)) + C/s τη
anc
s

T∑
t=1

∣∣∣ψ∆
s (π

(t)
p(s)(· | s))− ψ∆

s (π
(t+1)
p(s) (· | s))

∣∣∣
+ 2Cdiff

s ∥q∥∞ ηsm
(t)
s T

+
m

(1)
s

ηs
Dψ∆

s
(πp(s)(· | s), π(1)

p(s)(· | s)) + 4 ∥q∥∞
√

2T log
1

δ
.

(i) follows the discussion in Appendix E.

Then, the proof follows the proof of Theorem 4.2.
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