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Fig. 2. Increasing sizes of imperfect-information games solved over time measured in unique
information sets (i.e., after symmetries are removed). The shaded regions refer to the technique used
to achieve the result; the dashed line shows the result established in this paper.
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“Deepfied” Game-Theoretic Approaches
Pros and Cons

+ Clear theoretical foundation
- Approximate best responses are expensive
- Fictitious play & double oracle can converge slowly

- Importance sampling can cause high variance
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In two-player zero-sum normal-form games, if 7 < o/ L? magnetic mirror
descent converges exponentially fast to a regularized equilibrium in self-play.
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Perturbed RPS: Iteration O
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Some approaches for large imperfect information games

1. Use deep reinforcement learning to approximate best response for fictitious
play or double oracle.

2. Use deep learning to approximate regret values for CFR.

3. Use regularized deep policy gradient algorithms.



