Some Approaches for Large Imperfect-Information Games

MIT 6.S890

How can we approach large imperfect-information games?

Tabular game-theory?

- Tabular game-theory?
- Deep reinforcement learning?

- Tabular game-theory?
- Deep reinforcement learning?
- "Deepified" game-theory?

- Tabular game-theory?
- Deep reinforcement learning?
- "Deepified" game-theory?
- "Game-theorified" deep reinforcement learning?

How can we approach large imperfect-information games?

• CFR?

Fig. 2. Increasing sizes of imperfect-information games solved over time measured in unique information sets (i.e., after symmetries are removed). The shaded regions refer to the technique used to achieve the result; the dashed line shows the result established in this paper.

How can we approach large imperfect-information games?

• Deep reinforcement learning?

How can we approach large imperfect-information games?

• Deep reinforcement learning?

How can we approach large imperfect-information games?

• Deep reinforcement learning?

How can we approach large imperfect-information games?

"Deepified" game-theory?

How can we "deepify" game-theoretic approaches?

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play

 $\bar{\pi} \leftarrow \text{uniform_policy}()$

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

```
Algorithm 1 Fictitious Play \bar{\pi} \leftarrow \text{uniform\_policy}()
```

while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$

How can we "deepify" game-theoretic approaches?

Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play

```
\bar{\pi} \leftarrow \text{uniform\_policy}()
while is_time_left() do
\pi \leftarrow \text{best\_response}(\bar{\pi})
\bar{\pi} \leftarrow \text{update\_average}(\bar{\pi}, \pi)
```

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play

```
\bar{\pi} \leftarrow \text{uniform\_policy}()
\mathbf{while} \text{ is\_time\_left}() \mathbf{do}
\pi \leftarrow \text{best\_response}(\bar{\pi})
\bar{\pi} \leftarrow \text{update\_average}(\bar{\pi}, \pi)
\mathbf{end} \mathbf{while}
\text{return } \bar{\pi}
```

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

```
Algorithm 1 Fictitious Play
\bar{\pi} \leftarrow \text{uniform\_policy()}
while is_time_left() do
\pi \leftarrow \text{best\_response}(\bar{\pi})
\bar{\pi} \leftarrow \text{update\_average}(\bar{\pi}, \pi)
end while
\text{return } \bar{\pi}
```

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

```
Algorithm 1 Fictitious Play
   \bar{\pi} \leftarrow \text{uniform\_policy}()
   while is_time_left() do
        \pi \leftarrow \text{best\_response}(\bar{\pi})
        \bar{\pi} \leftarrow \text{update\_average}(\bar{\pi}, \pi)
   end while
   return \bar{\pi}
```

How can we "deepify" game-theoretic approaches?

Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$ return $\bar{\pi}$

Algorithm 2 Double Oracle

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$ return $\bar{\pi}$

Algorithm 2 Double Oracle

 $\Pi \leftarrow \{\text{uniform_policy}()\}$

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$ return $\bar{\pi}$

Algorithm 2 Double Oracle

 $\Pi \leftarrow \{\text{uniform_policy}()\}$ **while** is_time_left() **do** $\pi_* \leftarrow \text{nash}(\Pi)$

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$ return $\bar{\pi}$

Algorithm 2 Double Oracle

 $\Pi \leftarrow \{\text{uniform_policy}()\}$ while is_time_left() do $\pi_* \leftarrow \text{nash}(\Pi)$ $\pi \leftarrow \text{best_response}(\pi_*)$

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$ end while return $\bar{\pi}$

Algorithm 2 Double Oracle

$$\Pi \leftarrow \{\text{uniform_policy}()\}$$
while is_time_left() **do**

$$\pi_* \leftarrow \text{nash}(\Pi)$$

$$\pi \leftarrow \text{best_response}(\pi_*)$$

$$\Pi \leftarrow \Pi \cup \{\pi\}$$

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$ end while

Algorithm 2 Double Oracle

$$\Pi \leftarrow \{\text{uniform_policy}()\}$$
while is_time_left() do
 $\pi_* \leftarrow \text{nash}(\Pi)$
 $\pi \leftarrow \text{best_response}(\pi_*)$
 $\Pi \leftarrow \Pi \cup \{\pi\}$
end while
return π_*

How can we "deepify" game-theoretic approaches?

• Idea 1: Use deep reinforcement learning to approximate best response

Algorithm 1 Fictitious Play $\bar{\pi} \leftarrow \text{uniform_policy}()$ while is_time_left() do $\pi \leftarrow \text{best_response}(\bar{\pi})$ $\bar{\pi} \leftarrow \text{update_average}(\bar{\pi}, \pi)$

Algorithm 2 Double Oracle $\Pi \leftarrow \{\text{uniform_policy}()\}$ while is_time_left() do $\pi_* \leftarrow \mathrm{nash}(\Pi)$ $\pi \leftarrow \text{best_response}(\pi_*)$ end while return π_*

How can we "deepify" game-theoretic approaches?

How can we "deepify" game-theoretic approaches?

• Idea 2: Use deep learning to approximate regret

How can we "deepify" game-theoretic approaches?

• Idea 2: Use deep learning to approximate regret

$$\sigma^{t+1}(I,a) = \frac{R_+^t(I,a)}{\sum_{a' \in A(I)} R_+^t(I,a')}$$

How can we "deepify" game-theoretic approaches?

• Idea 2: Use deep learning to approximate regret

$$\sigma^{t+1}(I,a) = \frac{R_+^t(I,a)}{\sum_{a' \in A(I)} R_+^t(I,a')}$$

Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

Fictitious Play + DRL (NFSP)

Johannes Heinrich University College London, UK j.heinrich@cs.ucl.ac.uk David Silver University College London, UK d.silver@cs.ucl.ac.uk

Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

Fictitious Play + DRL (NFSP)

Johannes Heinrich University College London, UK j.heinrich@cs.ucl.ac.uk

David Silver University College London, UK d.silver@cs.ucl.ac.uk

A Unified Game-Theoretic Approach to **Multiagent Reinforcement Learning**

Marc Lanctot DeepMind lanctot@

Vinicius Zambaldi

DeepMind vzambaldi@ Audrūnas Gruslys DeepMind audrunas@

Angeliki Lazaridou DeepMind angeliki@

Karl Tuyls DeepMind karltuyls@

Julien Pérolat DeepMind perolat@

David Silver DeepMind davidsilver@ Thore Graepel DeepMind thore@

Double Oracle + DRL (PSRO)

Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

Fictitious Play + DRL (NFSP)

Johannes Heinrich University College London, UK j.heinrich@cs.ucl.ac.uk

David Silver University College London, UK d.silver@cs.ucl.ac.uk

A Unified Game-Theoretic Approach to **Multiagent Reinforcement Learning**

Marc Lanctot DeepMind lanctot@

Vinicius Zambaldi DeepMind vzambaldi@

Audrūnas Gruslys DeepMind audrunas@

Angeliki Lazaridou DeepMind

angeliki@

Karl Tuyls DeepMind karltuyls@ Julien Pérolat DeepMind perolat@

David Silver DeepMind davidsilver@ Thore Graepel DeepMind thore@

Double Oracle + DRL (PSRO)

Deep Counterfactual Regret Minimization

CFR + DL (Deep CFR)

Pros and Cons

Pros and Cons

+ Clear theoretical foundation

"Deepfied" Game-Theoretic Approaches Pros and Cons

- + Clear theoretical foundation
- Approximate best responses are expensive

"Deepfied" Game-Theoretic Approaches Pros and Cons

- + Clear theoretical foundation
- Approximate best responses are expensive
- Fictitious play & double oracle can converge slowly

"Deepfied" Game-Theoretic Approaches Pros and Cons

- + Clear theoretical foundation
- Approximate best responses are expensive
- Fictitious play & double oracle can converge slowly
- Importance sampling can cause high variance

Can we "game-theorify" deep reinforcement learning?

Can we "game-theorify" deep reinforcement learning?

Can we "game-theorify" deep reinforcement learning?

Modern deep policy gradient algorithms:

1. Maximize value

Can we "game-theorify" deep reinforcement learning?

- 1. Maximize value
- 2. Control update size

Can we "game-theorify" deep reinforcement learning?

- 1. Maximize value
- 2. Control update size
- 3. Regularize policy

Can we "game-theorify" deep reinforcement learning?

- Maximize value
 Online mirror descent
- 3. Regularize policy

Can we "game-theorify" deep reinforcement learning?

- Maximize value
 Control update size

 Online mirror descent
- 3. Regularize policy

$$\pi_{t+1} = \arg\max_{\pi} \langle q, \pi \rangle - \frac{1}{\eta} \mathrm{KL}(\pi, \pi_t)$$

Can we "game-theorify" deep reinforcement learning?

- 1. Maximize value2. Control update size3. Online mirror descent
- 3. Regularize policy

$$\pi_{t+1} = \arg \max_{\pi} \langle q, \pi \rangle - \frac{1}{\eta} \mathrm{KL}(\pi, \pi_t) - \alpha \mathrm{KL}(\pi, \rho)$$

Can we "game-theorify" deep reinforcement learning?

Modern deep policy gradient algorithms:

- Maximize value
 Online mirror descent
 Control update size
- 3. Regularize policy

"Magnetic" mirror descent

$$\pi_{t+1} = \arg \max_{\pi} \langle q, \pi \rangle - \frac{1}{\eta} \mathrm{KL}(\pi, \pi_t) - \alpha \mathrm{KL}(\pi, \rho)$$

A Unified Approach to Reinforcement Learn-ING, QUANTAL RESPONSE EQUILIBRIA, AND TWO-PLAYER ZERO-SUM GAMES

Nicolas Loizou

Johns Hopkins University

nloizou@jhu.edu

J. Zico Kolter

Carnegie Mellon University zkolter@cs.cmu.edu

Ioannis Mitliagkas Mila, Université de Montréal

Noam Brown Meta AI ioannis@mila.quebec noambrown@meta.com

ryan.dorazio@mila.quebec

Marc Lanctot DeepMind

lanctot@deepmind.com

Christian Kroer Columbia University ck2945@columbia.edu

Can we "game-theorify" deep reinforcement learning?

Modern deep policy gradient algorithms:

- Maximize value
 Control update size
- Online mirror descent

3. Regularize policy

"Magnetic" mirror descent

$$\pi_{t+1} = \arg\max_{\pi} \langle q, \pi \rangle - \frac{1}{\eta} \mathrm{KL}(\pi, \pi_t) - \alpha \mathrm{KL}(\pi, \rho)$$

Magnet

UNIFIED APPROACH TO REINFORCEMENT LEARN-ING, QUANTAL RESPONSE EQUILIBRIA, AND TWO-PLAYER ZERO-SUM GAMES

J. Zico Kolter

Carnegie Mellon University zkolter@cs.cmu.edu

Ioannis Mitliagkas Mila, Université de Montréal

ioannis@mila.quebec

Nicolas Loizou

Noam Brown

Meta AI

Johns Hopkins University nloizou@jhu.edu

Marc Lanctot

DeepMind lanctot@deepmind.com

ryan.dorazio@mila.quebec

Christian Kroer Columbia University noambrown@meta.com

ck2945@columbia.edu

What about Nash equilibria?

What about Nash equilibria?

"Game-Theorified" Deep RL Approaches

Pros and Cons

"Game-Theorified" Deep RL Approaches

Pros and Cons

- Shakier theoretical foundation

"Game-Theorified" Deep RL Approaches

Pros and Cons

- Shakier theoretical foundation
- + Scale naturally

Some approaches for large imperfect information games

Some approaches for large imperfect information games

1. Use deep reinforcement learning to approximate best response for fictitious play or double oracle.

Some approaches for large imperfect information games

- 1. Use deep reinforcement learning to approximate best response for fictitious play or double oracle.
- 2. Use deep learning to approximate regret values for CFR.

Some approaches for large imperfect information games

- 1. Use deep reinforcement learning to approximate best response for fictitious play or double oracle.
- 2. Use deep learning to approximate regret values for CFR.
- 3. Use regularized deep policy gradient algorithms.