
MIT 6.S890 — Topics in Multiagent Learning Thu, Sep 26th 2024

Lecture 7
Learning in games: Bandit feedback

Instructor: Prof. Gabriele Farina (gfarina@mit.edu)★

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports of
typos.

The mathematical abstraction of a repeated decision maker we considered so far assumes that the entire
utility function—evaluated in the strategies of the other players in the environment—is given to the deci-
sion maker as feedback. This is a strong assumption, and in many cases, the decision maker only receives
partial feedback. In this lecture, we consider the case where the decision maker receives feedback only on
the utility of the chosen action. This is known as the bandit feedback setting.

1 Setup and general considerations
A bandit regret minimizer is identical to a full-information regret minimizer, except that the
ObserveUtility(𝑢(𝑡)) operation—where 𝑢(𝑡) : 𝑥 ↦ ⟨𝑔(𝑡), 𝑥⟩ is the utility function picked by the environment
in the full-information case—is replaced with ObserveUtility(𝑤(𝑡)), where 𝑤(𝑡) is the scalar

𝑤(𝑡) ≔ ⟨𝑔(𝑡), 𝑥(𝑡)⟩ ∈ ℝ.

As a general principle, algorithms for the bandit setting are constructed from regret minimizers for the
full-information setting. Indeed, the key idea is to construct an estimator 𝑔(𝑡) of the (unobserved) utility
gradient 𝑔(𝑡), and feed that into a full-information regret minimizer. The estimator is constructed from the
observed utility 𝑤(𝑡) and the chosen action 𝑥(𝑡).

The utility function can still be picked adversarially by the environment. However, to get guarantees, it is
necessary to reduce the power of the environment by letting the utility 𝑢(𝑡) only depend on 𝑥(1),…, 𝑥(𝑡−1)
but not 𝑢(𝑡). In other words, the environment can pick the utility adaptively, but has to decide the utility
before the learner picks the strategy, and not after. This restriction still allows convergence to equilibria.

Example 1.1. Typically, the construction of bandit algorithms follows the following template.

Exploration
term

Strategy
sampler

Full-info.
regr. minim.

Gradient
Estimator

Bandit regret
minimizer

𝑤(𝑡) 𝑔(𝑡) 𝑦(𝑡)

∈ 𝒳
𝑝(𝑡)

∈ 𝒳

𝜉(𝑡) ∈ 𝒳

𝑥(𝑡) ∈ 𝒳

(← for high-prob.
regret bounds only)

The exploration term can be ignored if regret bounds in expectation are sought. Its role becomes im-
portant when high-probability guarantees are sought instead. We explain the difference next.

1

mailto:gfarina@mit.edu

■ Stochastic regret guarantees. Because the estimation is stochastic, the regret of a bandit algorithm is
a random variable. This adds a layer of complexity when approaching the analysis of bandit algorithms.
As a rule of thumb, three “flavors” of guarantees tend to be considered in the literature. We will list them
from weakest (and easiest to obtain) to strongest (and hardest to obtain):

• Guarantees on the pseudoregret, of the form

PseudoReg(𝑇) ≔ max
𝑥̂∈𝒳

𝔼[∑
𝑇

𝑡=1
⟨𝑔(𝑡), 𝑥⟩ −∑

𝑇

𝑡=1
⟨𝑔(𝑡), 𝑥(𝑡)⟩] = 𝑜(𝑇).

• Guarantees on the expected regret, of the form

𝔼[Reg(𝑇)] ≔ 𝔼[max
𝑥̂∈𝒳

∑
𝑇

𝑡=1
⟨𝑔(𝑡), 𝑥⟩ −∑

𝑇

𝑡=1
⟨𝑔(𝑡), 𝑥(𝑡)⟩] = 𝑜(𝑇).

Note the change of order between the expectation and the maximum compared with the pseudoregret
introduced in the previous bullet point.

• High-probability regret guarantees, typically of the form

ℙ[max
𝑥̂∈𝒳

∑
𝑇

𝑡=1
⟨𝑔(𝑡), 𝑥⟩ −∑

𝑇

𝑡=1
⟨𝑔(𝑡), 𝑥(𝑡)⟩ ≤ 𝑜(𝑇)√log

1
𝛿
] ≥ 1 − 𝛿

for any 𝛿 > 0 small enough.

Pseudoregret and expected regret guarantees are different, since max𝔼 ≤ 𝔼max, but the converse is not
true in general. Guarantees on the pseudoregret are not strong enough to conclude convergence to the set
of equilibria, in general.

2 Adversarial bandit learning in normal-form games
Let’s start from the case of normal-form games, in which our decision maker faces the choice of picking
an action out of a finite set 𝐴. The setting in this case is also known as adversarial multi-armed bandit
problem. We have 𝒳 = Δ(𝐴).

■ Strategy sampler. In this settings, most algorithms use the natural strategy sampler: given a distribution
𝑝(𝑡) ∈ Δ(𝐴), the decision maker samples an action 𝑎(𝑡) ∈ 𝐴 according to the probabilities in 𝑝(𝑡). The vector
𝑥(𝑡) is then set to the deterministic distribution 𝑒𝑎(𝑡) . Clearly, 𝔼𝑡[𝑥(𝑡)] = 𝑝(𝑡).

■ Gradient estimator. For this setting, the standard gradient estimator is the importance sampling esti-
mator. Given the utility scalar 𝑤(𝑡) ∈ [0, 1], the importance sampling estimator is defined as

𝑔(𝑡) ≔
⎝
⎜⎛
𝑤(𝑡)

𝑝(𝑡)𝑎(𝑡)⎠
⎟⎞𝑒𝑎(𝑡) ∈ ℝ𝐴.

Theorem 2.1. Let 𝑤(𝑡) = ⟨𝑔(𝑡), 𝑥(𝑡)⟩ where 𝑔(𝑡) is some unknown utility gradient. Then, the importance
sampling estimator 𝑔(𝑡) is unbiased, that is, 𝔼𝑡[𝑔(𝑡)] = 𝑔(𝑡).

Proof . The result follows by direct calculation. The randomness is due to the sampling of the action
𝑎(𝑡). Each action 𝑎 ∈ 𝐴 is sampled with probability 𝑝(𝑡)𝑎 . Hence,

𝔼𝑡[𝑔(𝑡)] = ∑
𝑎∈𝐴

𝑝(𝑡)𝑎 (
𝑤(𝑡)

𝑝(𝑡)𝑎
)𝑒𝑎 =∑

𝑎∈𝐴
𝑝(𝑡)𝑎 (

⟨𝑔(𝑡), 𝑒𝑎(𝑡)⟩
𝑝(𝑡)𝑎

)𝑒𝑎 =∑
𝑎∈𝐴

𝑔(𝑡)𝑎 𝑒𝑎 = 𝑔(𝑡),

2

as we wanted to show. □

2.1 The Exp3 algorithm

The Exp3 (short for “exponential weights for exploration and exploitation”) algorithm, introduced by Auer,
P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. [Aue+02], applies the multiplicative weights update
(MWU) algorithm on the importance sampling estimator. No exporation term is added, so that the deter-
ministic strategy 𝑥(𝑡) is sampled from the 𝑦(𝑡) output by MWU directly (see also Example 1.1).

It is important to note that the analysis of MWU we did in Lectures 5 and 6 does not apply well to ana-
lyze the regret incurred by the full-information regret minimizer. The issue is that the estimated utilities
potentially have a large range due to the division by the probabilities 𝑝(𝑡)𝑎 . However, a better analysis of
MWU in this case is possible.

Theorem 2.2. If the regret minimizer is set to MWU with learning rate 𝜂 = √log|𝐴|/(𝑇 |𝐴|), the Exp3
algorithm guarantees pseudoregret

PseudoReg(𝑇) = 𝑂(√𝑇 |𝐴| log|𝐴|).

2.2 Tsallis entropy

It can be shown that, information theoretically, no bandit learning algorithm for a finite set of actions
|𝐴| can achieve better than Ω(√𝑇 |𝐴|) expected regret in general. The regret guaranteed by the Exp3
algorithm is therefore optimal only up to a logarithmic factor. It remained open for a long time whether
this logarithmic factor could be removed. A positive answer was given recently by Zimmert, J., & Seldin,
Y. [ZS21], who proposed the idea of replacing the MWU algorithm with the FTRL algorithm instantiated
with the (1/2)-Tsallis entropy regularizer

𝜓(𝑥) = 2 − 2∑
𝑎∈𝐴

√𝑥𝑎.

Theorem 2.3. If the regret minimizer is set to FTRL algorithm with (1/2)-Tsallis entropy and learning
rate 𝜂 = √1/𝑇 , the resulting bandit algorithm guarantees expected regret

PseudoReg(𝑇) = 𝑂(√𝑇 |𝐴|),

which is the optimal bound for bandit learning on finite probability distributions.

2.3 The Exp3.P algorithm

The Exp3.P algorithm, introduced by Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. [Aue+02],
is a variant of the Exp3 algorithm to achieve high-probability regret guarantees. Intuitively, the difficulty
with getting high-probabilty bounds for the regret in Exp3 is due to the importance sampling: the gradient
estimator has entries of magnitude inversely proportional to the prbabilities output by MWU. This makes
the variance of the estimator large, and the concentration of the regret around its expectation difficult. To
sidestep the issue, the Exp3.P algorithm uses the idea of superimposing a uniform exploration term to the
output 𝑦(𝑡) of MWU. More specifically, the input to the strategy sampler is set to

𝑝(𝑡) ≔ (1 − 𝛾)𝑦(𝑡) + 𝛾
𝟏
|𝐴|

∈ Δ(𝐴),

where 𝛾 ∈ [0, 1] is a parameter.

3

The exploration term increases the exploration of the algorithm, reducing the variance of the estimator.
However, it is important to observe that this correction incurs a regret penalty due to the fact that MWU
recommended 𝑦(𝑡), and yet the decision maker sampled from 𝑝(𝑡). The effect of such misalignment grows
with the exploration parameter 𝛾. Nonetheless, the following can be shown.

Theorem 2.4 ([AR09]). Consider the Exp3.P algorithm with exploration parameter 𝛾 = √|𝐴|/𝑇 and
learning rate 𝜂 = √log|𝐴|/(𝑇 |𝐴|). Then, for any 𝛿 ∈ (0, 1),

ℙ[Reg(𝑇) ≤ 𝑂(√𝑇|𝐴| log
|𝐴|
𝛿
)] ≥ 1 − 𝛿.

3 Adversarial bandit learning on more general convex domains
Today, we know that bandit optimization is possible well past probability simplexes. In fact, we can con-
struct bandit algorithms for any convex and compact domain 𝒳 ⊆ ℝ𝑑. In particular, we mention the general
general result by Abernethy, J., & Rakhlin, A. [AR09], who showed that the a bandit algorithm can be
constructed starting from a full-information regret miminizer build using the FTRL algorithm with a self-
concordant distance-generating function.

Bibliography
[Aue+02] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multiarmed bandit

problem,” SIAM journal on computing, vol. 32, no. 1, pp. 48–77, 2002.

[ZS21] J. Zimmert and Y. Seldin, “Tsallis-INF: An optimal algorithm for stochastic and adversarial
bandits,” Journal of Machine Learning Research, vol. 22, no. 28, pp. 1–49, 2021.

[AR09] J. Abernethy and A. Rakhlin, “Beating the Adaptive Bandit with High Probability,” Jan. 2009.
[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-10.html

[AR09] J. Abernethy and A. Rakhlin, “Beating the adaptive bandit with high probability,” in 2009
Information Theory and Applications Workshop, 2009, pp. 280–289.

4

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-10.html

	Setup and general considerations
	Adversarial bandit learning in normal-form games
	The Exp3 algorithm
	Tsallis entropy
	The Exp3.P algorithm

	Adversarial bandit learning on more general convex domains
	Bibliography

