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Lecture 10
Stochastic gradient descent

Instructor: Prof. Gabriele Farina (& gfarina@mit.edu)*

As we have seen in the past few lectures, gradient descent and its family of algorithms (including
accelerated gradient descent, projected gradient descent and mirror descent) are first-order methods
that can compute approximate minima of differentiable functions. The cost of each iteration of these
algorithms is dominated (linearly) by the time it takes to evaluate the gradient of the objective func-
tion at each point generated by the algorithm.

1 Preliminary words on stochastic methods

In some cases, including in most machine learning applications, the objective function contains a huge
number of terms (usually, a summation over training data points), rendering the gradient computation
prohibitively expensive. Today, we will investigate an approach to sidestep this difficulty in practice.
The idea is simple, and it is a general principle of algorithm design broadly:

If exact computation is expensive, replace it with a cheaper estimate.

In particular, as is often the case, we will investigate replacing the computation of an exact gradient
with the computation of a cheap, unbiased random estimator of it. This approach, based on random-
ness (aka. stochasticity) leads to the family of algorithms that go under the name of stochastic gradient
descent.

As one might expect, such a stochastic approach is not free. We will be trading an ezact quantity (the
exact gradient of the objective function) for a cheap estimate that is subject to variance, subjecting
the resulting algorithm to random (erratic) steps rather than clean descent steps. This tradeoff is
nonetheless extremely favorable for multiple reasons:

e As a matter of pragmatism, stochastic gradient descent algorithms can perform a significantly
larger number of steps in the same time that it takes (exact) gradient descent to perform even
a single step. In certain cases, the exact algorithm might not be able to perform a single step in
the allotted computation budget. By this metric, the choice between an exact and a stochastic
method reduces to the choice between an algorithm that is not able to start, and one that—as
erratic as it may be—at least makes some progress.

e As a subtler comment, the use of stochasticity, as opposed to using a powerful exact method, has
been observed empirically to lead to better solutions in machine learning settings, even when the
exact algorithm can be run fast enough. In machine learning, minimizing the objective function
on the training data correlates, but is conceptually different from, finding a good model for the
task at hand. In other words, the role of optimization in machine learning is to (i) produce
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models that interpolate well the training dataset, but also (ii) do not overfit, that is, generalize
well to unseen but in-distribution (“similar”) examples. Using stochastic gradient descent has
been linked with a reduction in overfitting and increased success on this second goal, partly due
to the presence of noise, which enables the algorithm to escape local minima and saddle points.

2 Empirical risk minimization (ERM) problems in machine learning

Many problems in machine learning can be abstracted as follows:

o We are given a dataset of k examples (z1,9;), ..., (2, Yi), where z; € R™ is a feature vector and
y; € R is a label. For example:

» we might be interested in building a classifier for handwritten digits, where each z; is a
vector containing 28 x 28 grayscale pixel intensities, and each y, is the digit itself (a multi-
nomial classification problem); or

» we might be interested in predicting the price of a house, where each z; is a vector containing
features of the house (e.g., number of bedrooms, square footage, etc.), and each y, is the
price of the house (a regression problem); or

» we might be interested in predicting the next word in a sentence, where each z; is a vector
containing the previous words in the sentence, and each y; is the next word (a multinomial
classification problem); or

» we might be interested in predicting the probability of a user clicking on an ad, where each
z; is a vector containing features of the user and the ad, and each y; is the probability of
clicking (a binary—that is, two-class—classification problem); et cetera.

o We have selected a model class of functions gy : R™ — R™ that we believe can capture the rela-
tionship between the features and the labels. These functions are parameterized by a vector 6 €
R?. For example, in the case of neural networks,  would be the set of layer weights and biases.

» The output dimension m of the model is typically m =1 in the case of regression and
binary classification problems (indicating the probability of the, say, positive class).

» In the case of multinomial classification, m is typically the number of classes and indicates
the (unnormalized) log-probability the model assigns to the event that z; belongs to each
possible class.

o We are interested in finding a choice of parameters 6 that “fits the data well”. This is typically
done by minimizing the empirical risk (or empirical loss) of the model, defined as

L
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where £: R™ x R — R is a loss function that measures the discrepancy between the model’s
prediction gy(z;) and the true label y,. For example, in regression problems, a reasonable
choice might be the squared loss £(a, b) = (a — b)*. For classification, in which the model output
90(z) = (91.6(2), s m o(2:)) € R™ predicts the unnormalized log-probability of each class and
y; € {1,...,m}, the log loss (also known as cross entropy loss or softmax loss) is often used:

T exp{gj,o(zi)}
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In many cases, an explicit regularization term is added on top of J,,,, to reduce overfitting.



3 Stochastic gradient descent

The empirical regret minimization objective f = J,,,, defined above is a sum of k terms, one for each
example in the dataset. When the dataset is large, evaluating the gradient of J,,, at each iteration of
gradient descent can be computationally expensive. In this case, we can replace at each iteration the
exact gradient V f with a cheap, unbiased estimator Vf of it. This means that, denoting with E, the
expectation conditioned on all past random choices (that is, all randomization used at times 1, ...,¢t —
1), the estimator Vf(z,) satisfies E, [?f(mt)] = Vf(z,). This leads to the stochastic gradient descent
(SGD) algorithm,

Tip1 7= Ty — ”@f(xt) where E, [@f(‘rt)] = Vf(:rt). (1)

3.1 Typical unbiased estimator: mini-batches

Different instantiations of SGD differ in the choice of the estimator Vf(z,). For empirical risk mini-

mization problems, the most common choice is to replace the gradient of f = J,  with the average

mp
gradient of a wuniformly randomly subset of training data (typically sampled without replacement),
called a mini-batch. The resulting instantiation of SGD is therefore known as mini-batch SGD.

Computing the random mini-batch is usually easy to do by using a random shuffle of the dataset, and
selecting the first b examples as the mini-batch. The size of the mini-batch b is a hyperparameter of
the algorithm. A popular choice is b = 32 or b = 64.

4 Analysis of stochastic gradient descent

As we have already seen several times, the analysis of variants of the gradient descent algorithm passes
through generalizing the two key descent lemmas: the gradient descent lemma and the (Euclidean)
mirror descent lemma. In this case, we will need to modify the lemmas to account for the fact that
the gradient of the objective has been replaced with an unbiased estimator in (1).

4.1 Stochastic gradient descent lemma

Recall that an L-smooth function f:R™ — R satisfies the quadratic upper bound
L
f) < J@+(Vi@y=a)+Fle -l Va,yeR™

Exactly as we did in Lecture 7, we apply the previous bound for the specific choice y = z,,;,z = z,,
and obtain

F(een) < £ = m{V 7). V(@) + 5[5

Taking the (conditional) expectation on both sides and using the unbiasedness E, [Vf(z,)] = V f(z;)
we therefore obtain the following stochastic generalization of the gradient descent lemma.

Theorem 4.1 (Stochastic gradient descent lemma). Let f : R™ — R be L-smooth and 1 > 0 be an
arbitrary stepsize. Two consecutive iterates (z,, z,,,) produced by the stochastic gradient descent
algorithm (1) satisfy

B[/ (@] < fa) IV + 2o B[ 9 ]].



The quantity term E, [H@f (z4) Hz], which controls the quadratic term in the previous bound, is often

called the variance of the stochastic gradient Vf.

4.2 Convergence in gradient norm

Just like the gradient descent lemma for exact gradient descent, the stochastic gradient descent lemma
guarantees descent in function value, in expectation, when n > 0 is sufficiently small. In the stochastic
case, perhaps unsurprisingly, this threshold value of 1 depends inversely proportionally on the vari-
ance of the unbiased estimator. Specifically, suppose that E, [H@f (%)“2] < G at all times ¢. Then,

the gradient descent lemma can be written as
2 _ 1 L
V£l < ;]Et [f(20) = ()] + EHG.

Summing over all times ¢t = 0,1, ..., — 1, we therefore obtain
T—1 , 11! L
Z ||vf($t)||2 <= ZEt [f(mt) - f(xt+1>] + -nGT.
t=0 m\ =0 2

Taking expectations on both sides, the conditional expectations E, decay into regular expectations
E, and we can therefore exploit the telescoping nature of the sum f(z,) — f(z,,,), obtaining

! 01 1 L
S E[IVf(=,)]3] < o (F@o) —Elf(@r)]) + 3nGT.
t=0

Assuming the function is lower bounded by the value f,, we therefore have

1 = f(ilf ) — f* L
7 2 EIVAl] < 7= + o

Picking n ~ LT then reveals that within T iterations, at least one E[|V f(z,)|] ~ and we recover

1
VT VT’
convergence in gradient norm no matter the (bounded) variance of the estimator.

4.3 Stochastic Euclidean mirror descent lemma

When the objective function is further assumed to be convez, then we have seen in Lecture 7 that the
Fuclidean mirror descent lemma applies, and guarantees descent in distance to the set of minimizers.

To generalize the Euclidean mirror descent lemma, we operate as in Lecture 7, starting from the linear
lower bound property

fy) 2 f(x) +(Vf(z),y—z)  Va,yeR"

that holds for any convex function. Applying the bound for the specific choice = z,, and rearranging
terms, we find

f(zy) < fly) = (VF(zy),y — ) Vy e R"
= f(y) — <Et [6f(xt)]7y_$t> Vy e R"
= f(y) — E, %<xt_mt+l7y_xt> Vy € R,

where the first equality follows from the unbiasedness of the gradient estimator Vf, and the second
from the definition of the SGD algorithm (1).



Using the three-point equality we discussed in Lecture 7,
_1<$t — Ty, Y —Ty) = L |z, — y”; - “wt+1 - Z/“2 + ||xt - 9'3t+1H2 )
n 277 2 2
we obtain the stochastic version of the Euclidean mirror descent lemma.

Theorem 4.2 (Stochastic Euclidean mirror descent lemma). Let f : R™ — R be convex. Then, for
any stepsize n > 0 and y € R", two consecutive iterates (z,, z, ;) produced by the SGD algorithm
(1) satisfy

1
flzy) < fly) + %Et [th - y||§ — |1 — y”i + |z — thHz]'

In particular, by setting y = «,, where x, is a minimizer of f, we can extract an expected decrease in

2 provided 7 is chosen small enough, which is again totally analogous to the exact

distance |z, —z,

case seen in Lecture 7.

4.4 Convergence in convex function value

With the stochastic generalizations of the Euclidean mirror descent lemmas, we can obtain a conver-
gence rate (in terms of function value) by using a telescopic argument, similar to what we did in
Lecture 7. However, we will not be able to recover the % rate of convergence for SGD.

Let z, be a minimizer of the L-smooth and convex function function f, and assume E, [va (z) ||ﬂ <G

at all z. By summing the bound given in the stochastic Euclidean mirror descent lemma (Theorem 4.2)
for all t =0,...,T — 1, we obtain

zf 2) <Tf( ZE AN e NN R XA
t=0
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Taking expectations on both sides, the conditional expectations E, decay into regular expectations
E, and we can therefore exploit the telescoping nature of the sum |z, — :v*||§ — ||y — =, ||z
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Moving the term T f(x,) to the left-hand side and dividing by T, we find
n
—ZE (@)= (2] < grleo— .1+ 5G.

Hence, we have the following:



Theorem 4.3. Consider the SGD algorithm (1) run on a convex function By picking n = 2=

VGT’
this immediately implies that at least one of the iterates z,, t € {0, ..., — 1}, satisfies

VG o 1

E — <—(1 — —

[fle) = flz)] < = (1+ 2o — =.13) N

By convexity, the same bound holds also for IE[ f (ET) — f(z *)], where Z7 is the average of the
iterates xq, ..., Tp_q.

T
(non-stochastic) gradient descent case. However, in establishing this result, we have not used the

gradient descent lemma. So, the above result does not require L-smoothness. As a consequence,

Remark 4.1. It is important to realize that the above bound is of order % rather than L as in the

the previous result shows that non-stochastic gradient descent, applied to convex functions that
are not L-smooth, guarantees \/LT convergence in function value provided that the stepsize is

chosen well.

5 Further readings

Several variations of the SGD algorithm and its analysis are known. For one, it is known that when
the objective function is strongly convex, the SGD algorithm can be shown to converge at a rate of
1/T in function value, provided the stepsize is chosen well.

Variance reduction techniques, which aim to reduce the variance of the gradient estimator, have
been proposed to accelerate the convergence of SGD. These techniques include the SVRG (stochastic
variance reduced gradient) algorithm [JZ13], SAG (stochastic average gradient) [SLB17], and SAGA
[DBL14].
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