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Abstract. We introduce Contested Logistics Games, a variant of lo-
gistics problems that account for the presence of an adversary that can
disrupt the movement of goods in selected areas. We model this as a large
two-player zero-sum one-shot game played on a graph representation of
the physical world, with the optimal logistics plans described by the
(possibly randomized) Nash equilibria of this game. Our logistics model
is fairly sophisticated, and is able to handle multiple modes of transport
and goods, accounting for possible storage of goods in warehouses, as
well as Leontief utilities based on demand satisfied. We prove compu-
tational hardness results related to equilibrium finding and propose a
practical double-oracle solver based on solving a series of best-response
mixed-integer linear programs. We experiment on both synthetic and
real-world maps, demonstrating that our proposed method scales to rea-
sonably large games. We also demonstrate the importance of explicitly
modeling the capabilities of the adversary via ablation studies and com-
parisons with a naive logistics plan based on heuristics.

Keywords: Logistics · Game theory · Equilibrium computation.

1 Introduction

Logistics is a multi-million dollar business with applications in numerous real-
world domains. In this paper, we study a variant we call Contested Logistics
(CL). CL features two players, customarily identified with the names Blue and
Red. Blue is the logistics player, while Red is an interdiction player seeking to
reduce Blue’s utility. CL captures the strategic interaction between Red and Blue
as a two-player zero-sum one-shot game. A solution to the game is identified by
the Nash equilibrium (NE) solution concept.

CL is motivated by military considerations, where logistics may be disrupted
by an adversary, and robustness considerations, where logistics may be disrupted
by acts of God, unforeseen failures, political instability, or other factors. Attacks
on supply lines have been extensively documented in real military settings, and
are often viewed as more effective than direct kinetic confrontation [30]. Similarly,
geopolitical powers such as the US, China, and the EU seek to diversify their

Equal contribution between J. Černý and C. K. Ling. †Corresponding author.

ar
X

iv
:2

40
8.

13
05

7v
1 

 [
cs

.G
T

] 
 2

3 
A

ug
 2

02
4



2 J. Černý et al.

supply chains with the intention of being robust against a possible outbreak of
hostilities [16]. Likewise, the recent Evergreen Suez canal blockage incident is a
painful reminder of the potential risks of having a single-point of failure [28].

While the presence of adversaries in logistics is not new [9], the CL model
differs from prior work in that (i) it does not assume a particular behavior of
the adversary, instead allowing Red to act in a manner that most hurts Blue,
and (ii) we allow for very dramatic attacks by Red, completely destroying routes
or segments of railroads, as opposed to relatively tame effects like reducing a
route’s capacity or introducing small uncertainties in supply or demand.

The inclusion of Red introduces game-theoretic considerations. Since Blue’s
logistics and Red’s interdiction plans are chosen simultaneously, the resultant
Nash equilibrium is typically randomized. Additionally, the computation of the
equilibrium poses significant challenges. For instance, the number of possible
logistics plans is doubly exponential, while the number of interdiction plans grows
exponentially with Red’s budget. Thus, explicitly specifying the CL problem as a
zero-sum bimatrix game is not practical. Our main contributions are as follows:

– We formally propose the framework of Contested Logistics (CL) games, a
novel variant of logistics planning that accounts for Red’s capabilities. Our
min-max formulation explicitly models Red actively seeking to thwart Blue,
via relatively drastic measures compared to prior work. We show that an op-
timal strategy exists for both players via von Neumann’s minimax theorem.

– We prove that computing a Nash eq., as well as best responses of Red and
Blue, are NP-hard problems. Nonetheless, the best responses of Blue (respec-
tively, Red) to a fixed randomized Red (resp., Blue) strategy can be written
compactly as a polynomial-size mixed integer linear program (MILP).

– We propose solving CL games via a double oracle method, utilizing our
best-response MILPs. We demonstrate scalability via experiments.

– We conduct experiments using real-world inspired scenarios, observing the
following. (i) Optimal solutions to the CL problem exhibit counter-intuitive
behavior, providing insights into what the solution to the CL problem may
look like in practice. (ii) A naïve, heuristics-based approach for Blue results
in a highly exploitable strategy, suggesting that explicitly accounting for
Red’s capabilities is important. (iii) The cost of overestimating Red’s capa-
bilities (i.e., budget) is relatively low, but conversely, underestimating Red’s
capabilities leads to a drastic decrease in performance, reaffirming the adage
that “it is better to be safe than sorry.”

2 Related Work

This paper is related to several fields spanning across disciplines. We concentrate
on the fields most pertinent to our game-theoretic model. For traditional (non-
adversarial) logistics, refer to the established literature [17,20,33].

Logistics and Routing Models Logistics in a contested environment, where
adversaries actively interfere with supply chain operations, has been explored
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in various contexts, especially within military logistics [4, 24]. Many existing
models assume a simplified model of Red, who acts blindly or with limited infor-
mation and follows a fixed (deterministic or stochastic) behavior [5,22,37]. While
bi-level optimization is sometimes incorporated, the solutions typically remain
deterministic, limiting their ability to adapt to more dynamic adversaries [6].

Vehicle routing problems involve optimizing routes for vehicles delivering
goods or services. The literature on (robust) routing strategies is extensive, but
the typical sources of uncertainty in these models are costs, demands, time win-
dows, or customers, rather than adversaries [1, 27, 32, 43]. Models involving ad-
versarial elements face similar challenges as those in the logistics literature. They
often assume either simplistic probabilistic models [2, 9] or bi-level models with
a single vehicle, as seen in ambush avoidance or hazardous materials transport
literature [18, 29, 36]. Alternatively, they provide deterministic solutions, as in
routing interdiction problems [8, 13,35].

Game-Theoretic Models Network interdiction games explore optimal arcs in
a network for interdiction purposes, initially studied in [45] and applied in cy-
bersecurity, cyberphysical security, or supply-chain attacks [40,41,44,45]. These
models typically focus on disrupting traversal paths without accounting for the
coordination required among multiple connectors, crucial in logistics scenarios.

Security games have seen practical applications, with defenders choosing dis-
tributions over targets and attackers selecting targets to attack [3, 23, 34, 38].
The simplest versions of such games enjoy polynomial-time solvers, even in the
general-sum case [14, 25]. Many developments have been made to account for
large but structured strategy spaces such as defender target schedules [26] and
repeated interactions [19]. While efficient in many cases, they often simplify
strategies and lack modeling depth for logistics movement and coordination.

Another notable class of games are extensive-form games (EFGs), which are
played on game trees where players decide actions at each information set [39].
Notably these were used to generate superhuman poker AIs [10–12]. For CL
settings, EFGs could be used to model sequential CL problems, though the action
spaces would become potentially prohibitively large. In this paper we focus on
single-shot CL problems, which are easier to model and solve, but sequential CL
problems are an interesting future direction.

3 Contested Logistics

CL games are played on a directed graph whose nodes correspond to different
types of locations—cities, provinces, towns, et cetera. There are several types
of packages (that is, resources) available that may be transported. Some of the
nodes are specially designated as demand, supply, or warehouse nodes. At ware-
houses, packages may be dropped off and stored. To facilitate transportation of
packages, there are several connectors (for instance, trucks, trains, or planes)
which may be used to transport packages between locations; what a connec-
tor can carry, its capacity, and where it can traverse, i.e., edges in the graph,
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are connector-specific. For example, aircraft cannot carry packages that are too
heavy, and while trains have a larger capacity than trucks, they are restricted
to traversing only railroads.

Given these specifications, the game proceeds as follows. Red chooses a set
of edges to interdict, subject to budget constraints. Blue then decides what,
where, when, and how packages are sent from supply to demand nodes using the
connectors available. Blue aims to satisfy as much demand as possible within
a specified time horizon. The game is zero-sum, i.e., Red’s goal is to minimize
demand satisfied. We adopt a two-stage approach for Blue’s logistic plans. In
the routing phase, Blue selects where each connector should be routed without
committing to any loading. The individual routes can (and often are) correlated
across connectors, but are chosen concurrently with Red’s decision of where to
interdict. In the loading phase, Blue observes where Red has chosen to inter-
dict, and uses this information to select a suitable load for connectors, without
changing their routes. Any connector that was interdicted is forbidden from car-
rying loads after the point of interdiction, but may still be utilized prior to that.
This two-phase approach was introduced by [7], and models situations where
unlike routing, loading decisions can be changed easily and on-the-fly. The ap-
proach also allows some level of recourse by Blue, while still having a single-shot
zero-sum game model, which is preferable from a computational standpoint.

Formally, we represent a CL game as a directed physical graph G = (V,E).
The nodes in G represent locations in the physical world Blue traverses. The
edges E can be interdicted by Red, affecting Blue’s ability to enact their logistics.

3.1 Blue’s Strategy Space

On the physical graph G = (V,E), Blue has a subset of nodes W ⊆ V designated
as warehouses, where they can store packages that are currently not being moved
around. We assume there is at most one warehouse in each node. Each warehouse
has an initial (possible zero) supply, given by a non-negative function S : W ×
P → R+

0 , and a demand for packages, given by a function D : W × P → R+
0 .

Moving the packages is done by a set of connectors C. With each connector
c ∈ C there is an associated subset of edges Ec ⊆ E the connector may use to
move across the physical graph, and a function M : C×E→ Z+ determining how
many timesteps does it take the connector to cross an edge. We assume this value
is infinite for the edges the connector cannot use. In addition, each connector
has a designated initial location given by a function L : C → W, and weight
and volume capacities given by functions Wmax : C → R+ and Vmax : C → R+,
respectively. Moreover, Blue has a set of package types P, each with its associated
single unit weight W : P → R+, and single unit volume V : P → R+. Finally, all
movement happens over a finite number of discrete timesteps T = {0, 1, . . . , T}.

For a given connector c ∈ C, based on its initial location L(c), movement
speed M(c, e), accessible edges Ec, and timesteps T , we unroll the physical graph
into individual connector-specific layered directed graphs Gc = (V, Ec), where
V = (Vt)t∈T is a series of copies of the physical nodes spread across time. For an
edge e ∈ E , we denote by V−(e) the tail node of e and V+(e) the head node. The
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Fig. 1: Physical graph G and layered graphs Gc1 ,Gc2 obtained by unrolling G over
3 steps. Connectors c1 and c2 start at A and B, respectively. G has a loop at A
for c1 only, taking 2 steps to cross. All the other edges can be crossed in a single
timestep by either connector. Unreachable nodes are in white.

edges between the individual layers are found by a simple breadth-first search
from the connector’s initial location. We assume that no connector can cross
more than a single edge in the physical graph in one timestep. However, note
that the edges can jump layers, in case it takes the connector more than one
timestep to cross an edge. Note that this unrolling process does not create a
exponentially sized tree but a compact layered DAG (see Figure 1).

Due to the construction, the layered graph edges in general differ across the
connectors, whereas the nodes in the individual layers are the same. Each v ∈ V
corresponds to some node v ∈ V laying in layer t and we denote this copy of
node v as v = vt. For an edge e ∈ Ec, we denote the corresponding edge in the
physical graph as E(e). E(e) is always a singleton. Blue’s action space consists
of paths in these layered graphs, one per each connector, and can be encoded as
solutions to the following feasibility MILP:

1 =
∑

e∈E−
c (L(c)0)

fc(e) ∀c ∈ C

∑
e∈E−

c (vt)

fc(e) =
∑

e∈E+
c (vt)

fc(e) ∀c ∈ C, ∀t ∈ T , ∀v ∈ V

fc(e) ∈ {0, 1} ∀c ∈ C, ∀e ∈ Ec.

(F)

We call a feasible tuple of connector paths a logistics plan and denote it λ ∈ Λ,
with λc = (ec,1, . . . , ec,k) being a path of a connector c. For each logistics plan
we have (potentially many) associated feasible package flows, described by the
following set of constraints R(λ), starting with the initial supply equation

S(w, p) = sw0,p ∀w ∈W, ∀p ∈ P, (R.1)

then the flow conservation constraints, distinguishing between physical locations
that serve or serve not as warehouses

lc,p(ec,i) = lc,p(ec,i+1) ∀c ∈ C, ∀p ∈ P
∀ec,i ∈ λc : V

+(ec,i) ̸∈W (R.2)
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swt,p +
∑

c∈C,e∈λc:V+(e)=wt

lc,p(e) = swt+1,p +
∑

c∈C,e∈λc:V−(e)=wt

lc,p(e) ∀t ∈ T , ∀p ∈ P, ∀w ∈W, (R.3)

and the weight and volume limits of each connector

Wmax(c) ≥
∑
p∈P

W (p)lc,p(e) ∀c ∈ C, ∀e ∈ λc (R.4)

Vmax(c) ≥
∑
p∈P

V (p)lc,p(e) ∀c ∈ C, ∀e ∈ λc (R.5)

lc,p(e) ≥ 0 ∀c ∈ C, ∀p ∈ P, ∀e ∈ λc (R.6)
swt,p ≥ 0 ∀t ∈ T ∪ {T + 1}, ∀p ∈ P, ∀w ∈W, (R.7)

where the l variables encode the package flows, while the s variables record the
amount of packages stored in warehouses.

3.2 Red’s Strategy Space

The strategy space of Red is significantly simpler than Blue’s. Our model is
similar to the classic network interdiction problems, where Red chooses a subset
of edges in the physical graph G to interdict, given a budget B ≥ 0 and a cost
function C : E → R+. Since Red operates on the physical graph instead of any
layered graph, we assume an edge is interdicted over the entire game. Red’s
action space is formed by all feasible solutions of the following MILP:{

y ∈ {0, 1}|E|
∣∣B ≥∑

e∈E

C(e)y(e)

}
. (Y)

We call a feasible set of interdicted edges an interdiction plan and denote it ι ∈ I.

3.3 Utilities

We assume that Blue aims to maximize the (cumulative) Leontief value at each
location with demand D at the final timestep T , given a logistics plan λ and
feasible package flows l and s. The value is defined as

v(λ, s, l) =
∑
w∈W

P (w)max

{
min

p∈P,D(w,p)>0

swT ,p

D(w, p)
, U(w)

}
, (L)

where P (w), U(w) are warehouse-specific payoffs per each unit and maximum
numbers of units, respectively, of satisfied demand.

Motivated by the randomized network interdiction problems [7], we make
the following two assumptions about the effects of Red’s interdiction plan ι on
Blue’s logistics λ. (i) Whenever a connector attempts to cross an interdicted
physical edge, it is destroyed together with its entire package load. Formally, the
interdicted logistics plan is hence a “truncated” plan

λc(ι) =

{
λc if ∀e ∈ λc : E(e) ̸∈ ι

(ec,1, . . . , ec,j) if ∀e ∈ (ec,1, . . . ec,j−1) : E(e) ̸∈ ι and E(ec,j) ∈ ι.
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(ii) While the logistics plan (i.e., the connector paths) is fixed, the package flows
are adaptive, optimizing the Leontief value for the Blue’s truncated plan. For a
pair (λ, ι), the utility u(λ, ι) can hence be described as the following LP3:

u(λ, ι) = max
s,l

v(λ(ι), s, l) such that R(λ(ι)) are satisfied, (U)

where R(·) refers to the set of flow constraints (R.1)-(R.7). Note that players
cannot alter their strategies once they begin moving, making it, indeed, a one-
shot game. We further assume the game is zero-sum, i.e., Red minimizes u.

4 Computing Solutions of Contested Logistics

Our goal is to find a Nash equilibrium (NE), possibly mixed, over Blue’s logis-
tics plans and Red’s interdiction plans. Denote by ∆b and ∆r the probability
simplices over Λ and I respectively. Then, for some distribution over a player’s
plans xi ∈ ∆i, xi(pi) is the probability that pi is played by player i ∈ {r, b}. The
NE problem reduces to solving the bilinear saddle point problem

min
xb∈∆b

max
xr∈∆r

Eλ∼xb,ι∼xr
[u(λ, ι)] = min

xb∈∆b

max
xr∈∆r

∑
λ∈Λ

∑
ι∈I

xb(λ) · xr(ι) · u(λ, ι).

Since ∆b and ∆r are both convex and compact sets, and the objective function is
convex-concave, the minimax theorem [31] guarantees the existence of a unique
value for the game. Nevertheless, determining the NE in CL games is computa-
tionally infeasible, as indicated already by the growth of the number of possible
logistics plans that is double exponential in the problem’s parameters.

Proposition 1. It is NP-hard in terms of |G|, |C|, |P|, and T to find a NE for
a contested logistics game with Leontief utilities given in Formulation U.

Proof. We employ a reduction from the 3-SAT problem. Assume we are given a
CNF having n variables and k clauses, where each clause has at most 3 literals.
We aim to determine the satisfiability of the formula. We construct a CL scenario
featuring a single type of package with unit weight and volume, and k+1 connec-
tors: a single assignment connector constrained to weight and volume limits of k,
and k clause connectors with limits of 1. The physical graph is depicted in Fig-
ure 2. The top layer consists of a single node per each variable xi, and a terminal
node t. The layer below has two nodes per each xi, signifying a positive (T) or
a negative (F) assignment. The bottom layer contains one node per each clause.
Each of the xi nodes is connected to its assignment nodes. Each clause node has
an edge to a corresponding assignment node of every variable included in the
clause. Moreover, the assignment nodes of the variable xi, i < n are connected
to the variable node xi+1. The assignment nodes of xn are connected to t. The
first connector starts at node x1. Other connectors start at their corresponding
3 Note the formulation is indeed an LP because the inner minimization in formula-

tion (L) is easily linearized using an auxiliary variable for each warehouse.
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x1 x2 . . . xn t

T F T F . . . T F

C1 C2 . . . Ck

Fig. 2: The physical graph described in Proposition 1, serving as a game for the
3-SAT problem we aim to reduce from. Each node in the top layer, denoted by
xi, corresponds to a variable xi in the SAT formula, which contains a total of n
variables. The nodes in the layer below signify a positive or negative assignment.
Each assignment node is connected to the clauses it satisfies. For example, in
the depicted graph C1 = x1 ∨ ¬x2, C2 = ¬x1 ∨ x2, and Cn = x2 ∨ xn. Edges
available to the assignment connector starting from x1 are solid, edges of the
clause connectors starting from Cj are dashed. Every path of the assignment
connector of length 2n ending in the terminal node t encodes a full assignment.

clause. Moving across each edge takes one time step. The outgoing edges from
the assignment nodes are not available to the connectors starting at the clause
nodes. The scenario’s time horizon is 2n. There are 2n+ k + 2 warehouses: one
at x1, one at t, and one in every clause and assignment nodes. Only the clause
warehouses supply a single unit of the package each. There is only one demand
node, t, with demand k and both unit payoff and maximum units set to 1. Red
has budget 1, with each edge having a cost of 2, except the loop in t with cost 1.
Red’s action space is hence trivial. In the equilibrium, the assignment connector
collects as many packages from the satisfied clauses as possible. We will show
the value of the equilibrium is 1 if and only if the formula is satisfiable.

→ Suppose there exists a satisfying assignment. Let the satisfying assignment
define the path of the assignment connector. For each clause, there exists a
literal that the assignment makes true. Let these literals define the paths of
the clause connectors. From the definition of the satisfying assignment, the
assignment connector’s path crosses all the paths of the clause connectors,
which enables it to pick up all k packages and bring them to t. The Leontief
utility at t is hence k/k = 1.

← If the value of the equilibrium is 1, then the assignment connector must have
picked up all k packages, meeting with all k clause connectors. Due to the
construction of the physical graph, the assignment connector can visit only
one of the assignment nodes for each variable, effectively encoding a variable
assignment. Because the clause nodes are connected with only those assign-
ment nodes that satisfy the clause, meeting with an assignment connector
corresponds to satisfying the clause. The path of the assignment connector
meeting all k clause connector hence encodes a satisfying assignment.
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4.1 Best Response Complexity and Computation

Recall that Blue’s and Red’s (pure) best responses to fixed strategies xr and xb

are defined as λBR = argmaxλ∈Λ u(λ, xr) and ιBR = argminι∈I u(xb, ι), where
u(xb, ι) = Eλ∼xb

u(λ, ι) and u(λ, xr) = Eι∼xr
u(λ, ι). We note that while best

responses are closely related to NE computation, they are generally distinct
problems. There are classes of games where computing best responses is difficult
but finding a NE is easy, and vice versa [46]. Unfortunately, computing best
responses in CL games is also intractable. Indeed, intractability of Blue’s best
response follows directly from the proof construction of Proposition 1.

Corollary 1. Let Ĩ ⊆ I be of size k (possibly smaller than |I|) and x̃r be a
distribution with support Ĩ. Finding Blue’s best response against x̃r in a CL
problem with Leontief utilities is NP-hard in terms of |G|, |C|, |P|, T , and k.

Computing Blue’s best response can be done via a polynomially sized MILP.
Assume Red plays the interdiction plans ι1, . . . , ιk with probabilities x1

r, . . . , x
k
r .

For each ιi, let us denote the set of Blue’s edges in their layered graph that
are interdicted by ιi as ιic = {e ∈ Ec : E(e) ∈ ιi}. The the best response is
formulated as the following max-max BlueBR formulation:

max
f∈F

max
l,s,g

∑
i∈[k]

∑
w∈W

P (w)xi
rg

i
w

S(w, p) = siw0,p ∀i ∈ [k], ∀w ∈W, ∀p ∈ P∑
e∈E+

c (vt)\ιic

lic,p(e) =
∑

e∈E−
c (vt)

lic,p(e) ∀i ∈ [k], ∀c ∈ C, ∀p ∈ P,

∀t ∈ T \{0, T}, ∀v ̸∈W

lic,p(e) ≤Mfc(e) ∀i ∈ [k], ∀c ∈ C, ∀p ∈ P, ∀e ∈ Ec
Wmax(c) ≥

∑
p∈P

W (p)lic,p(e) ∀i ∈ [k], ∀c ∈ C, ∀e ∈ Ec

Vmax(c) ≥
∑
p∈P

V (p)lic,p(e) ∀i ∈ [k], ∀c ∈ C, ∀e ∈ Ec

siwt,p +
∑

c∈C,e∈E+
c (wt)\ιic

lic,p(e) = siwt+1,p +
∑

c∈C,e∈E−
c (wt)

lic,p(e) ∀i ∈ [k], ∀t ∈ T , ∀p ∈ P, ∀w ∈W

∑
p∈P,t∈T ,w∈W
e′∈E−

c (wt):e⊂e′

lic,p(e
′) ≤M · (1− fc(e)) ∀i ∈ [k], ∀c ∈ C, ∀e ∈ ιic

0 ≤ giw ≤ siwT+1,p/D(w, p) ∀i ∈ [k], ∀w ∈W, ∀p ∈ P : D(w, p) > 0

lic,p(e) ≥ 0 ∀i ∈ [k], ∀c ∈ C, ∀p ∈ P, ∀e ∈ Ec
siwt,p ≥ 0 ∀i ∈ [k], ∀t ∈ T ∪ {T + 1},

∀p ∈ P, ∀w ∈W

giw ≤ U(w) ∀i ∈ [k], ∀w ∈W.
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s

S1

S2

...

Sm

S′
1

S′
2

...

S′
m

t

Fig. 3: The physical graph described in Proposition 2, serving as a game for
the set cover problem we aim to reduce from. The second and third layers are
identical, containing a node for each set Si. Every ui corresponds to a path
going through the edges Sj , S

′
j of all the sets Sj the ui is contained in. Red can

interdict only the forward edges between the second and third layer (depicted in
red color), encoding a selection of sets in the cover.

Note that in this MILP, for each i ∈ [k], we have a different load flow lic,p(e).
To simulate the truncated logistics plans, any potentially positive load on an
interdicted edge is omitted as an incoming load from the conservation constraints
in the following node. Moreover, we need to make sure that if a connector of a
particular logistics plan gets destroyed, its load stays zero for all future time
steps, especially if its path is scheduled to cross a warehouse. This is achieved
by the second, load-cancelling big-M constraint. Here, by e ⊂ e′ we denote for
edges e ̸= e′ ∈ Ec that e′ is reachable in the layered graph from e.

Proposition 2. Let Λ̃ ⊆ Λ be of size k (possibly smaller than |Λ|) and x̃b be a
distribution with support Λ̃. Finding Red’s best response against x̃b in a contested
logistics problem with Leontief utilities is NP-hard in terms of |G|, b, and k.

Proof. We reduce the set cover problem with the universe U = {u1, u2, . . . , un},
a collection of sets S = {S1, S2, . . . , Sm}, and an integer b to a CL scenario.
This scenario features a single package type with unit weight and volume, and
a single connector with weight and volume limits of 1. The connector moves
across a graph with four layers: the first and last contain only nodes s and t,
respectively. The second and third layers are identical, each with one node per
set Sj . Node s connects to each Si in the second layer. The second and third
layers are connected by edges between corresponding nodes Sj and S′

j . Each S′
j

in the third layer connects to every Si in the second layer and to t. Node t has a
loop to itself. The connector starts at s, each edge takes one time step to cross,
and the time horizon is 2n + 1. There are warehouses at nodes s and t, with a
supply of 1 at s and a demand of 1 at t, each with a payoff and maximum of 1.
Red has a budget of b and can interdict only the edges between the second and
third layers, each costing 1. Blue’s mixed strategy is constructed as follows: for
each ui, create Ti = {Sj | ui ∈ Sj}, take an arbitrary enumeration (t1, . . . , tk) of
Ti, and define a path Pi = (s, t1, t

′
1, . . . , tk, t

′
k, t, . . . , t) with 2n− 2|Ti|+ 1 loops

in t at the end, each played with equal probability. Every ui hence corresponds
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to a path going through all the sets ui is contained in, terminated by loops in t.
Note that the order in which the sets in Ti are traversed in Pi does not matter.
The BR value is 0 if and only if there is a set cover of size at most b.

→ If the value is 0, then there exists a best response strategy that interdicts all
n paths. From the construction, the size of this interdiction plan is at most
b, and the selected edges encode a selection of at most b sets from S. Because
every path corresponds to one ui, the selected sets form a set cover.

← is analogous.

In practice, we optimize Red’s utility using the feasibility formulation (Y).
Assume Blue plays the logistic plans λ1, . . . , λk with probabilities x1

b , . . . , x
k
b .

The optimal Red’s interdicting plan ι, encoded via binary indicators y, can be
formulated as the following simple min-max MILP, with the flow constraints (R)
for each logistics plan in the support:

min
y∈Y

max
s,l,g

∑
i∈[k]

∑
w∈W

P (w)xi
bg

i
w−

∑
i∈[k]

∑
c∈C

∑
eic,j∈λi

c

∑
eic,k∈λi

c

k≥j

∑
p∈P

Zy(E(eic,j))l
i
c,p(e

i
c,k)

R(λi) ∀i ∈ [k]

0 ≤ giw ≤ siwT+1,p/D(w, p) ∀i ∈ [k], ∀w ∈W, ∀p ∈ P : D(w, p) > 0

giw ≤ U(w) ∀i ∈ [k], ∀w ∈W.

Note the penalty term in the objective that plays a similar role to the load
cancelling constraint in Blue’s BR. Using penalty terms is less numerically stable
than the big-M constraints. However, using the same approach as in the BlueBR
would result in bilinear terms in the constraints, that are more cumbersome to
linearize, and involve unbounded big-M constants. The constant Z is chosen
to make any potential increase in the Leontief utility that Blue might gain by
sending a positive load over an interdicted edge undesirable due to the incurred
penalty, e.g., Z = maxw∈W P (w). Since the inner problem is an LP, we can
dualize it, which removes the bilinear terms in the objective and gives us the
final RedBR integer formulation. Due to space constraints, we have deferred
the specific details of this dualization to the extended version of the paper.

4.2 Approximating NE Using Strategy Generation

Despite the exponential size of Blue’s strategy space, practical CL scenarios
often exhibit equilibria with relatively small supports. This observation leads us
to employ the double oracle (DO) framework.

The DO algorithm (Algorithm 1) is an iterative, specialized form of concur-
rent column and row generation. It is frequently used to address large saddle-
point problems that have efficient (in practical terms) best-response oracles. The
DO algorithm incrementally constructs a subgame – a subset of pure strategies
for each player – with the intention of excluding strategies that do not contribute
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Algorithm 1 Double Oracle for Contested Logistics Games

1: Λ̃, Ĩ← InitialSubgame(Λ, I)
2: repeat
3: x̃∗

b , x̃
∗
r ← NashEquilibrium(Λ̃, Ĩ)

4: λBR, ιBR ← BlueBR(x̃∗
r),RedBR(x̃∗

b)

5: Λ̃, Ĩ← Λ̃ ∪ {λBR}, Ĩ ∪ {ιBR}
6: until EquilibriumGap(x̃∗

b , x̃
∗
r , λ

BR, ιBR) ≤ ϵ

to the equilibrium. At the conclusion of the algorithm, the subgame (ideally a
small portion of the entire game) contains a NE that mirrors the NE of the
original game. In our context, pure strategies consist of logistic and interdiction
plans, and subgames are defined by subsets Λ̃ ⊆ Λ and Ĩ ⊆ I.

The process begins with a small subgame for each player, Λ̃ and Ĩ. In each
iteration, it calculates the equilibrium (x̃∗

b , x̃
∗
r) within the current subgame, al-

lowing players to choose distributions of plans only from Λ̃ or Ĩ. For each player
i, we determine the best responses λBR and ιBR against their opponent’s sub-
game equilibrium strategy x̃∗

−i, using best-response oracles. These best responses
introduce new plans into the subgame, and the process repeats.

The DO algorithm terminates when the best-response oracles produce re-
sponses that do not enhance any of the player’s utility over the subgame value.
This indicates that the current subgame equilibrium is also an equilibrium in the
full game, and adding more strategies will not yield less exploitable strategies
for either player. In practice, instead of converging to an exact equilibrium, we
calculate the equilibrium gap ∇ = u(x̃∗

b , ι
BR)− u(λBR, x̃∗

r) and terminate when
∇ ≤ ϵ for a predetermined threshold ϵ > 0, returning a 2ϵ-approximate-NE.

In practice, the time needed to determine Blue’s best response significantly
affects the overall runtime. To accelerate the computation, we set a predeter-
mined time limit for solving the MILP, rather than solving it to full completion.
This approach yields an approximate best response that is generally close to the
optimal solution. Periodically, and before the final termination, we solve Blue’s
BR MILP to completion to ensure the equilibrium gap is computed accurately.

5 Empirical Evaluation

Now we move to the experiments on contested logistics scenarios. Our goals are
(i) to explore qualitatively how optimal strategies behave in real-world scenarios,
and (ii) to evaluate the scalability of our proposed double oracle algorithm using
synthetically generated maps.

All experiments were conducted on an Intel Xeon Gold 6226 (2.9Ghz), re-
stricted to 8 threads and equipped with 32GB of RAM. The (MI)LPs were solved
with the Gurobi Optimizer version 10.0.3, build v10.0.3rc0 [21], on a Linux 64-bit
platform. The double oracle algorithm was implemented in Python 3.7.9, using
a tolerance setting of ϵ = 10−2, and 5s time limit for the MILP solver.
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Fig. 4: Computation times of the double oracle algorithm for grid world contested
logistics scenarios with uniform edge interdiction costs.
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Fig. 5: Computation times of the double oracle algorithm for grid world contested
logistics scenarios with randomly assigned edge interdiction costs.

5.1 Quantitative Evaluation on a Synthetic Grid World

First, we evaluate the performance of the DO on simple grid world scenarios. In
these scenarios, the physical graph consists of an N×N grid. Blue designates all
four corners as warehouses, with an additional warehouse located at the center
of the grid. For even values of N , the central warehouse is one of the four central
nodes. Additionally, Blue has two trucks, initially positioned at opposing corners.
These trucks have sufficient weight and volume limits to transport any available
packages, and they can move along any single edge per time step. There are two
types of packages, A and B, each with unit weights and volumes. The warehouse
at the initial location (0, 0) of the first truck holds 4 units of A and 1 unit of
B. The warehouse at the location (N − 1, N − 1) of the other truck holds 1
unit of A and 3 units of B. The central warehouse supplies a single unit of each
package. Only two warehouses have positive demands, located in the remaining
two corners without the trucks. Both warehouses require 3 A units and 2 B units.

To generate random grid world scenarios, each edge is removed with a prob-
ability of 0.1. Each warehouse with a demand is assigned a uniformly random
real payoff from the interval [1, 2]. Unless the edges have a uniform cost, the cost
is selected uniformly from the integer interval [1, 5]. For statistical robustness,
20 instances of each game were constructed and solved, with average results re-
ported alongside standard errors. Examples of the initial setup can be seen in the
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Fig. 6: The physical graphs for two random grid world contested logistics scenar-
ios, and game values as functions of red’s budget and blue’s horizon. Each grid
world has size 5 × 5. Their corresponding game value heat maps (on the right)
have Red’s budget on the horizontal axis and time horizon on the vertical axis.
Lighter color signifies higher game value.

two physical graphs in Figure 6. In these maps, the starting locations of the two
trucks are shown as blue nodes, while the demand nodes are orange. The central
warehouse is purple, and each edge is annotated with its interdiction cost.

Figure 4 shows the average runtimes for the DO to solve grid scenarios of sizes
5×5, 6×6, and 7×7, each with uniform edge interdiction costs of 1. Solving the
game for Red’s budget of 1 (denoted as rb = 1) is clearly the easiest, with higher
budgets presenting similar levels of difficulty. Notably, the game becomes trivial
for a budget of 4, when the trucks can be completely cut off from reaching the
demand nodes. In Figure 5, where interdiction costs are random, the difference
between budget 1 and higher budgets becomes even more pronounced.

To illustrate how the game value changes with Blue’s horizon and Red’s ca-
pabilities, we selected two typical scenarios and depicted the generated physical
graphs, along with the resulting values as heatmaps, in Figure 6. In the first map,
Red is able to completely cut off the connectors with a budget of 4, resulting
in a game value of zero for Blue. In contrast, Red can more efficiently interdict
Blue only if they possess a higher budget, and Blue’s shorter horizon does not
provide enough additional maneuverability to make a difference.

5.2 Qualitative Evaluation on Real-World Maps

We also conducted experiments on 2 different maps around the world simulating
CL scenarios. These are from (i) the United Kingdom (UK) based on railroads
during World War 2, and (ii) Mariupol, a city heavily involved in the ongoing
Russo-Ukrainian conflict. The goal of these experiments is not to evaluate the
efficiency of our DO method, but rather to showcase (a) how real-world red and
blue strategies will look like in practice, (b) the importance of strategic behavior
(i.e., randomization) in both Red and Blue, and (c) the relatively low cost that
blue pays to be robust to adversarial behavior, and conversely the extremely poor
performance when ignoring existence of Red or when using heuristic solutions.
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Fig. 7: NE for Blue in the UK scenario. Each row corresponds to a logistics
plan played with positive probabilities 4/9, 1/9, 5/21, 13/63 respectively. Light
gray lines demarcate boundaries between provinces, numbers denote province
labels: for simplicitly we have only included those encountered by some connector
logistics plan. Each column shows the movement of a single connector, in the
order of Truck 1, Truck 2, Train 1, Train 2, which start at provinces 4, 5, 7,
and 1 respectively. Connector paths are denoted by the solid black line line. Red
crosses at 7 and 12 denote supply nodes, green crosses at 3 and 4 denote demand.
Dotted lines denote railroads.

Contested Logistics in the United Kingdom This scenario is based on the
southern region of the United Kingdom. The region is broken into provinces,
using data from the World War 2 based video game Heart of Iron IV [42].
There are three essentially identical packages: boots, rifles and helmets; each
soldier requires 1 unit of each to be equipped (note that we allow for “fractional
soldiers”). There are 4 connectors, comprising 2 trains and 2 trucks. Trucks can
move between any two adjacent provinces and have a capacity of 5. Trains can
only move between provinces connected by railroads, but enjoy a capacity of
20 (for this scenario, weight and size are identical quantities). There are two
demand and supply nodes. Each supply node contains 20 of each package. There
is unlimited demand for soldiers at each demand node. Red is able to interdict
edges between any two adjacent provinces (recall that these are directed edges)
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Fig. 8: NE for Red in the UK scenario. Each subfigure corresponds to a single in-
terdiction plan played with probabilities 7/18, 1/9, 7/18, 1/9 respectively. Dotted
lines denote railroads and thick red lines edges that are interdicted.

and has a budget of 2. We set a time horizon of 10 for Blue. The equilibrium
strategies for Blue and Red are shown in Figures 7 and 8, which has a Nash
value of 9.259. We discuss the most interesting aspects of the NE.

– In all 4 logistics plans, Train 2 behaves essentially deterministically — first,
collect supply from 12, then deliver it to the demand at 4. Therefore, Red
may interdict anywhere along this path (e.g., edge 16 → 12) and interdict
Train 2 with certainty. Surprisingly, we find that in interdiction plan 3, Red
declines this “freebie”, choosing instead to interdict edges 7→ 6 and 7→ 5.

– Second, we observe that Train 1 coordinates with Trucks in a way such as
to maximize “throughput”. In logistics plan 3 and 4, we observe that Train
1 (which begins at a supply node 7) delivers directly to the demand node
at 4 by moving along the left path comprising 7 → 6 → 2 and backward.
Note that compared to Train 2, the distances between supply and demand
is much shorter, so the throughput here is comparatively much higher. Blue
also diversifies via logistics plan 1, where Train 1 moves to the right along
7 → 5 → 0 instead. It then drops off supplies along the way at province 0,
while allowing Trucks 1 and 2 to complete the “last mile delivery” to province
4. This hedges against Red always interdicting the left path 7→ 6→ 2. This
explain interdiction plan 3: by interdicting 7→ 6 and 6→ 4, Red completely
shuts down the joint operation between Train 1 and the Trucks.

– We again observe hedging behavior in Logistics plan 2. Train 1 first takes the
right path 7→ 5→ 0→ 8, drops off its packages (leaving last mile deliveries
to Trucks), returns to 7 to pick up fresh supplies, and finally takes the left
path 7→ 6→ 4 to satisfy the demand at 4. Interestingly, this exposes Train
1 to interdictions both on the left and right. However, if interdiction is on
the left (e.g., 7 → 6 via interdiction plan 2), then at least the first batch of
supplies would reach demand node 3.

– We point out that because supply and demand nodes are closer at the top
of the region, the “throughput”, i.e., demand satisfied per unit time is po-
tentially much higher. Because of this, interdicting Train 2 all the time is
not necessarily always a good idea, since Train 2 has to take a long trip to
province 12 and finally 4 just for a single batch.

– Finally, we remark that Trucks may also operate independently of Train 1.
Indeed, if this was not the case, then one would expect Blue to be very
brittle. One example of this is seen in Logistics plan 1, Truck 1. Here, Truck
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Fig. 9: The physical graph for the Ukrainian scenario. The train edges are de-
picted in blue, the truck edges in green, and the plane edges in red. On the left,
the optimal logistics plan for 5 time steps and no Red.

1 moves from province 4 to 7, collects supplies, and transports packages to 3.
However, instead of moving directly from 7 to 3, by the path 7→ 5→ 8→ 3,
it takes an detour of 7 → 15 → 11 → 14 → 3. This avoids overlapping with
Train 1’s right path, which contains the segment 7→ 5.

Contested Logistics in Ukraine This scenario was constructed based on
Ukraine’s attack on a key rail bridge connecting the occupied city of Mariupol
with Russia on January 7th, 2024. The destruction of this bridge not only dis-
rupts immediate logistical operations but also poses significant long-term chal-
lenges to Russia’s ability to sustain its military presence in southern Ukraine.
Our experiment simulated this scenario using realistic geographical data com-
bined with hypothetical logistics settings to assess the broader impact.

According to the news report [15], the cities this railway passes through
include Mariupol, Donetsk, Taganrog, and Rostov-on-Don, so we defined the
area of interest as a rectangle containing these cities. We constructed a realistic
map within this area using the Open Street Map (OSM) database, which provides
global geographical data, including information on roads, railways, and airports.
We used the QGIS software to process the OSM data, extracting and visualizing
the nodes and edges to construct accurate transportation networks. The resulting
physical graph, with 17 nodes, is depicted on the right in Figure 9.

Ukraine and Russia are designated as Red and Blue, respectively. Blue em-
ploys three types of connectors: trains, trucks, and planes. To identify the train-
accessible edges, we extracted nodes marked as “train stations” in the OSM data
for the area of interest and selected 17 key stations. These included one station
each in Mariupol (node 1), Donetsk (node 8), Taganrog (node 6), and Rostov-
on-Don (node 17). These stations served as nodes in the train graph. The truck
graph used the same nodes, assuming trucks could travel between any train sta-
tions. For the plane graph, we selected nodes tagged as “aerodrome” in the OSM
data, representing airports, heliports, and airfields. The plane graph had fewer
nodes due to the limited number of airports but included airports in the four
major cities. For illustration, each node in the plane graph was considered the



18 J. Černý et al.

Fig. 10: NE for Blue in the Ukraine scenario. Each subfigure corresponds to a
single logistics plan played with probabilities 0.339, 0.337, 0.093, 0.076 and 0.062,
respectively. Train, Truck and Plane routes are depicted in blue, green and red.

Fig. 11: NE for Red in the Ukraine scenario. Each subfigure corresponds to a
single interdiction plan played with probabilities 0.462, 0.144, 0.131, 0.131 and
0.131, respectively.

same as the closest node in the train and truck graphs, depicted as a single node
in Figure 9. We then defined edges for the connector graphs. For the train graph,
we filtered railway paths in QGIS to connect the 17 stations, depicted in blue in
Figure 9. For the truck graph, we selected roads tagged as primary, secondary, or
tertiary under “highway” in QGIS and identified the shortest paths connecting
the 17 stations, depicted in green in Figure 9. For the plane graph, we assumed
direct flights between airports, defining edges as direct lines between them. We
used QGIS to record the distance of each edge, essential for calculating the time
for a connector to traverse an edge given its speed.

In the experiments, Blue has one connector of each type: a Train, a Truck,
and a Plane, with each time step representing one hour. The Train starts at node
16, moving at 200 km/h, allowing it to traverse any edge in one time step. The
Truck starts at node 6, moving at 100 km/h, taking one time step to cross most
edges and two time steps for eight specific edges. The Plane also starts at node
6, moving at 300 km/h, reaching all destinations in one time step. All connectors
have sufficient capacity for transferring available loads.

The railway-connected cities (nodes 1, 6, 8, 17) were considered warehouses.
With the conflict pushing from the southeast to the northwest, demand locations
were set in the northwest (nodes 1 and 8), and supply locations in the southeast
(nodes 6, 7, and 17). Additional supply nodes included 3, 13, and 16, strategically
chosen for their proximity to the Russian mainland. Supply nodes had packages
of types A and B, with unit weights and volumes. Major supply nodes 6 and 17
had 5 units each of A and B, while nodes 3 and 7 had 3 units of A and 1 of B,
node 13 had 2 units of both A and B, and node 16 had 3 units of both. The
demand was 11 units of A and 13 units of B at node 1, and 14 units of A and 11
units of B at node 8. The payoff per unit was 1.3 at node 1 and 1.1 at node 8.

Consider Blue’s optimal logistics plan for a 5-step horizon, assuming no pres-
ence of Red, as shown on the right side of Figure 9. The Train’s route is marked
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Exp.\True 0 1 2
0 31.7 8.33 0.0
1 25.8 16.7 6.67
2 23.3 15.9 9.26

Exp.\True 0 1 2 3
0 1.60 0.40 0.0 0.0
1 1.60 1.20 0.78 0.38
2 1.44 1.12 1.04 0.64
3 1.32 1.10 0.99 0.89

Table 1: The performance of the computed Blue’s randomized logistics plans
against less or more capable Red in (left) the UK scenario and (right) the Ukraine
scenario. Rows correspond to the expected budget used during the computation.
Columns indicate the true Red’s budget.

in blue, the Truck’s in green, and the Plane’s in red. The Plane delivers supplies
to node 12, which the Train then transports to node 8. Meanwhile, the Truck
collects packages from eastern warehouses and brings them to node 17, where
they are loaded onto the Plane and flown to node 1. The value of this plan is
1.5956, but it is highly exploitable. Red can easily reduce the payoff to 0 by
interdicting any two critical edges and cutting off deliveries to nodes 1 and 8.

To address this vulnerability, the equilibrium of the corresponding CL game,
where Red can interdict any two edges, introduces randomization. Figure 10 de-
picts Blue’s mixed strategy, showing the probabilities of playing each of the five
logistics plans. The paths are more randomized, and even the connectors respon-
sible for final deliveries to demand nodes may change. For example, the Truck
only follows its original route from the no-Red scenario in the least frequently
played plan. More often, it delivers supplies directly to nodes 8 or 1. Similarly,
Figure 11 shows Red’s randomized interdiction strategy. As expected, Red con-
sistently targets the Train, which is vulnerable due to movement constraints,
and frequently interdicts the route between the region’s key cities, which serve
as major transport hubs. In other cases, Red attempts to intercept the Plane.
The value of this equilibrium is 1.0401, about 65% of the optimal no-Red logistics
value, but it is significantly more robust against adversarial actions.

Price of Robustness It is natural to ask: what if Blue does not know Red’s
budget? What happens if Blue assumes Red has a high interdiction budget when,
in fact, it has none, or vice versa? This leads to a discussion about the Price of
Robustness, which refers to the amount Blue sacrifices to be robust against Red.
We present our findings in Table 1 for both the UK and Mariupol scenarios.
It is evident in both cases that underestimating Red’s capabilities results in a
significant drop in utility. For example, when Blue devises a logistics plan without
considering Red (i.e., the first row of each table), its utility drops to zero with
just a Red budget of 2. Conversely, adopting a more conservative logistics plan
(i.e., assuming Red has a higher budget) leads to a relatively smaller drop in
utility. For instance, in the UK scenario, the Price of Robustness is just 31.7-
23.3, which is approximately one-quarter of the expected utility. A similar trend
is observed in the Ukraine scenario.
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k \ # str 3 4 5 6 7
10 1.11 1.67 1.33 1.94 1.67
20 3.89 2.92 3.33 2.50 4.29
30 2.22 3.33 2.33 2.22 3.10

k \ # str 5 10 15 20 25
1.2 0.720 0.410 0.627 0.730 0.641
1.3 0.517 0.496 0.570 0.676 0.577
1.4 0.439 0.588 0.553 0.584 0.648
1.5 0.517 0.496 0.344 0.576 0.637

Table 2: Exploitability of the min-overlap heuristic strategies in (left) the UK
scenario and (right) the Ukraine scenario.

Comparisons Against a Non-Game-Theoretic Alternative We now com-
pare our game-theoretic approach to a simple heuristic that does not explicitly
account for Red. Consider the min-overlap heuristic, which involves two hyper-
parameters: k, the minimum target payoff, and # str, the number of logistics
plans played with positive probability. The min-overlap heuristic identifies # str
logistics plans, each required to achieve a utility of k under the assumption that
Red does not exist, while minimizing the maximum overlap across edges. Here,
overlap on a given physical edge is the total number of connectors using that
edge, summed across all # str logistics plans. Blue then randomizes uniformly
over these # str logistics plans. The rationale is that by minimizing overlap
among “good” logistics plans, no single edge will be excessively used by con-
nectors across the logistics plans. We tested this min-overlap heuristic strategy
against a best-responding Red and found that it performs poorly, as shown in
Table 2. For instance, in the UK scenario, none of the instances achieve more
than half of the true Nash value (9.259). In the Ukraine scenario, the best-
performing instance reached only 69% of the Nash value. This suggests that
seemingly reasonable heuristics may actually perform poorly in practice, and
that counter-intuitive logistics plans may be necessary for optimal performance.

6 Conclusion

In this paper, we introduced Contested Logistics games, a complex logistics prob-
lem that incorporates adversarial disruptions. Our model, formulated as a large
two-player zero-sum one-shot game on a graph, identifies optimal logistics plans
via a (randomized) Nash equilibrium. We demonstrated the computational com-
plexity of finding these equilibria and proposed a practical double-oracle solver
using best-response mixed-integer linear programs. Our experiments, conducted
on both synthetic and real-world maps, confirm the scalability of our method
for reasonably large games. Additionally, our ablation studies underscore the
critical importance of explicitly modeling adversarial capabilities, rather than
relying solely on heuristic-based logistics plans.
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