15-888 Computational Game Solving (Fall 2021)

Tue, Oct 5th 2021

Lecture 9

Predictive regret matching and regret matching⁺

Instructor: Gabriele Farina^{*}

1 Predictive Blackwell approachability for simplex domains

In Lecture 8 we saw that a Blackwell approachability game with a conic target set can be solved by means of an external regret minimization algorithm whose domain is the polar of the cone, using a construction by Abernethy et al. [2011].

In this lecture, we will specialize that algorithm in the particular Blackwell game $\Gamma = (\Delta^n, \mathbb{R}^n, \boldsymbol{u}, S \coloneqq \mathbb{R}^n_{\leq 0})$ we introduced in Lecture 4, where the bilinear Blackwell utility of the game was defined as

$$oldsymbol{u}(oldsymbol{x},oldsymbol{\ell})\coloneqqoldsymbol{\ell}-ig\langleoldsymbol{\ell},oldsymbol{x}
angle\,\mathbf{1}\in\mathbb{R}^n.$$

As we showed back then, any solution to Γ —that is, any algorithm that picks strategies $x^t \in \Delta^n$ so that the average Blackwell payoff is close to the target set $S = \mathbb{R}^n_{\leq 0}$ —is a regret minimizer for Δ^n . In particular, recall that the external regret

$$R^T \coloneqq \max_{\hat{\boldsymbol{x}} \in \Delta^n} \sum_{t=1}^T (\boldsymbol{\ell}^t)^\top \hat{\boldsymbol{x}} - \sum_{t=1}^T (\boldsymbol{\ell}^t)^\top \boldsymbol{x}^t$$

cumulated by strategies x^t with respect to any sequence of utilities ℓ^t satisfies the inquality.

$$\frac{R^T}{T} \le \min_{\hat{\boldsymbol{s}} \in \mathbb{R}^n_{\le 0}} \left\| \hat{\boldsymbol{s}} - \frac{1}{T} \sum_{t=1}^T \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{\ell}^t) \right\|_2.$$
(1)

As we already mentioned, we are interested in solving the Blackwell game Γ by means of the general framework introduced in Lecture 8, which for the particular case of target set $\mathbb{R}^n_{\leq 0}$ boils down to Algorithm 1.

Algorithm 1: (Predictive) Blackwell approachability for simplex domain
Data: \mathcal{R}_S (predictive) regret minimizer for $\mathbb{R}^n_{\geq 0}$
1 function NEXTSTRATEGY(v^t) $[\triangleright \text{ Set } v^t = 0 \text{ for the non-predictive version}]$ 2 $\theta^t \leftarrow \mathcal{R}_S.\text{NEXTSTRATEGY}(v^t)$ 3 $\mathbf{if } \theta^t \neq 0 \text{ then return } x^t \leftarrow \theta^t / \ \theta^t\ _1 \in \Delta^n$
4 else return an arbitrary point $\boldsymbol{x}^t \in \Delta^n$
5 function ReceivePayoff $(oldsymbol{u}(oldsymbol{x}^t,oldsymbol{\ell}^t))$
$_{6} \mid \mathcal{R}_{S}. \mathrm{OBSERVELOSS}(oldsymbol{u}(oldsymbol{x}^{t},oldsymbol{\ell}^{t}))$
*Computer Science Department, Carnegie Mellon University. 🗹 gfarina@cs.cmu.edu.

Algorithm 1 gives a way to solve Γ starting from *any* regret minimizer \mathcal{R}_S for the nonpositive orthant $\mathbb{R}^n_{\geq 0}$. In the rest of the lecture we will explore what happens when \mathcal{R}_S is set to FTRL and OMD, as well as their predictive variants.

2 Recovering regret matching (RM) and regret matching plus (RM⁺)

In this section we show that when the Blackwell game Γ is solved by means of Algorithm 1 instantiated with \mathcal{R}_S set to FTRL, the regret matching (RM) algorithm is recovered [Farina et al., 2021]. Even more surprising, when \mathcal{R}_S is set to OMD the regret matching plus (RM⁺) algorithm is recovered instead. We will use these connections for two purposes:

- The fact that RM^+ can be recovered from Algorithm 1 (which was proven sound for every choice of regret minimizer \mathcal{R}_S in Lecture 8) immediately implies correctness of RM^+ . Even better, the connections between FTRL, OMD and RM, RM^+ will enable us to quickly give a regret bound for RM and RM^+ starting from the known regret bounds for FTRL and OMD seen in Lecture 7. We do so in Section 2.3.
- The connections suggest that if we started instead from the *predictive* versions of FTRL and OMD, we could hope to arrive to predictive versions of RM and RM⁺, respectively. We will show that that is indeed the case in Section 3.

Algorithm 2: Regret matching	Algorithm 3: Regret matching ⁺
1 $oldsymbol{r}^0 \leftarrow oldsymbol{0} \in \mathbb{R}^n, \hspace{0.2cm} oldsymbol{x}^0 \leftarrow oldsymbol{1}/n \in \Delta^n$	1 $\boldsymbol{z}^0 \leftarrow \boldsymbol{0} \in \mathbb{R}^n, \ \boldsymbol{x}^0 \leftarrow \boldsymbol{1}/n \in \Delta^n$
2 function NEXTSTRATEGY() 3 if $\theta^t \neq 0$ return $x^t \leftarrow \theta^t / \ \theta^t\ _1$ 4 else return $x^t \leftarrow$ any point in Δ^n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 function OBSERVEUTILITY(ℓ^*) 6 $\left \theta^{t+1} \leftarrow \theta^t + \ell^t - \langle \ell^t, x^t \rangle 1 \right $	$\begin{array}{c c} 5 \text{function OBSERVEUTILITY}(\boldsymbol{\ell}^{t}) \\ 6 \left \boldsymbol{\theta}^{t+1} \leftarrow [\boldsymbol{\theta}^{t} + \boldsymbol{\ell}^{t} - \langle \boldsymbol{\ell}^{t}, \boldsymbol{x}^{t} \rangle 1]^{+} \end{array} \right.$

2.1 FTRL leads to regret matching (RM)

The regret minimizer \mathcal{R}_S is used in Algorithm 1 to pick the next vector $\boldsymbol{\theta}^t \in \mathbb{R}^n_{\geq 0}$ to force observes utilities $\boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{\ell}^t) = \boldsymbol{\ell}^t - \langle \boldsymbol{\ell}^t, \boldsymbol{x}^t \rangle \mathbf{1}$. Consider now \mathcal{R}_S to be the FTRL algorithm with regularizer $\varphi = \frac{1}{2} \| \cdot \|_2^2$ and step size $\eta > 0$ (recalled in Algorithm 4). In that case, the vector $\boldsymbol{\theta}^t$ (Line 2 in Algorithm 1) has the closed-form solution

$$\boldsymbol{\theta}^{t} = \operatorname*{arg\,max}_{\hat{\boldsymbol{\theta}} \in \mathbb{R}^{n}_{\geq 0}} \left\{ \left(\sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{\ell}^{t}) \right)^{\mathsf{T}} \hat{\boldsymbol{\theta}} - \frac{\|\hat{\boldsymbol{\theta}}\|_{2}^{2}}{2\eta} \right\} = \eta \left[\sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{\ell}^{t}) \right]^{\mathsf{T}} = \eta \left[\sum_{t=1}^{T} \boldsymbol{\ell}^{t} - \langle \boldsymbol{\ell}^{t}, \boldsymbol{x}^{t} \rangle \mathbf{1} \right]^{\mathsf{T}}$$

Since the forcing action $\theta^t / \|\theta^t\|_1$ is invariant to positive constants, we see that the action x^t picked by ?? (Line 3) is the same for all values of $\eta > 0$ and is computed as

$$\boldsymbol{x}^{t} = \frac{\left[\sum_{t=1}^{T} \boldsymbol{\ell}^{t} - \langle \boldsymbol{\ell}^{t}, \boldsymbol{x}^{t} \rangle \boldsymbol{1}\right]^{+}}{\left\| \left[\sum_{t=1}^{T} \boldsymbol{\ell}^{t} - \langle \boldsymbol{\ell}^{t}, \boldsymbol{x}^{t} \rangle \boldsymbol{1}\right]^{+} \right\|_{1}}.$$
(2)

provided $\theta^t \neq 0$, and is an arbitrary vector $x^t \in \Delta^n$ otherwise. These iterates coincide at all times t with the iterates produced by the regret matching algorithm seen in Lecture 4 and recalled in Algorithm 2.

Algorithm 4: (Predictive) FTRL	Algorithm 5: (Predictive) OMD
Data: $\mathcal{X} \subseteq \mathbb{R}^n$ convex and compact set $\varphi : \mathcal{X} \to \mathbb{R}_{\geq 0}$ strongly convex regularizer $\eta > 0$ step-size parameter	Data: $\mathcal{X} \subseteq \mathbb{R}^n$ convex and compact set $\varphi : \mathcal{X} \to \mathbb{R}_{\geq 0}$ strongly convex regularizer $\eta > 0$ step-size parameter
1 $\boldsymbol{L}^0 \leftarrow \boldsymbol{0} \in \mathbb{R}^n$	1 $oldsymbol{z}^0 \in \mathcal{X}$ such that $ abla arphi(oldsymbol{z}^0) = oldsymbol{0}$
2 function NEXTSTRATEGY(\boldsymbol{m}^{t}) 3 $\begin{vmatrix} [\triangleright \text{ Set } \boldsymbol{m}^{t} = \boldsymbol{0} \text{ for non-predictive version} \end{vmatrix}$ 4 $\mathbf{return} \underset{\hat{\boldsymbol{x}} \in \mathcal{X}}{\operatorname{arg max}} \left\{ (\boldsymbol{L}^{t-1} + \boldsymbol{m}^{t})^{\top} \hat{\boldsymbol{x}} - \frac{1}{\eta} \varphi(\hat{\boldsymbol{x}}) \right\}$	2 function NEXTSTRATEGY(\boldsymbol{m}^{t}) $ \triangleright \text{ Set } \boldsymbol{m}^{t} = \boldsymbol{0} \text{ for non-predictive version} $ 3 return $\underset{\hat{\boldsymbol{x}} \in \mathcal{X}}{\operatorname{arg max}} \left\{ (\boldsymbol{m}^{t})^{\top} \hat{\boldsymbol{x}} - \frac{1}{\eta} D_{\varphi}(\hat{\boldsymbol{x}} \parallel \boldsymbol{z}^{t-1}) \right\}$
4 function ObserveUtility(ℓ^t)	4 function OBSERVEUTILITY(ℓ^t)
5 $\left \boldsymbol{L}^t \leftarrow \boldsymbol{L}^{t-1} + \boldsymbol{\ell}^t \right $	$_{5} \left \boldsymbol{z}^{t} \leftarrow \operatorname*{argmax}_{\boldsymbol{\hat{z}} \in \mathcal{X}} \left\{ (\boldsymbol{\ell}^{t})^{\top} \boldsymbol{\hat{z}} - \frac{1}{\eta} D_{\varphi}(\boldsymbol{\hat{z}} \ \boldsymbol{z}^{t-1}) \right\} \right.$

2.2 OMD corresponds to regret matching plus (RM⁺)

Consider now \mathcal{R}_S to be the OMD algorithm with the regularizer $\varphi = \frac{1}{2} \| \cdot \|_2^2$ and step size $\eta > 0$ (recalled in Algorithm 5). In that case, the vector θ^t (Line 2 in Algorithm 1) has the closed-form solution

$$\boldsymbol{\theta}^{t} = \underset{\boldsymbol{\hat{\theta}} \in \mathbb{R}^{n}_{\geq 0}}{\operatorname{arg\,max}} \left\{ \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{\ell}^{t})^{\top} \boldsymbol{\hat{\theta}} - \frac{\|\boldsymbol{\hat{\theta}} - \boldsymbol{\theta}^{t-1}\|_{2}^{2}}{2\eta} \right\} = \left[\boldsymbol{\theta}^{t-1} + \eta \, \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{\ell}^{t})\right]^{+}.$$
(3)

Since (3) is homogeneous in $\eta > 0$ (that is, the only effect of η is to rescale all θ^t by the same constant) and the forcing action $\theta^t / \|\theta^t\|_1$ is invariant to positive rescaling of θ^t , we see that Algorithm 1 outputs the same iterates no matter the choice of stepsize parameter $\eta > 0$. In particular, we can assume without loss of generality that $\eta = 1$. In that case, Equation (3) corresponds exactly to Line 6 in RM⁺ (Algorithm 3).

2.3 Regret Analysis

The connectsion between regret matching (RM), regret matching plus (RM⁺) and FTRL, OMD we uncovered in Sections 2.1 and 2.2 can help us establish regret bounds for RM and RM⁺ starting from the regret bounds for FTRL and OMD. To do so, let's start from recalling the relationship—seen in Lecture 8—between the regret of \mathcal{R}_S and the distance of the average Blackwell payoff to the target set, that is,

$$\min_{\hat{\boldsymbol{s}} \in \mathbb{R}^n_{\leq 0}} \left\| -\hat{\boldsymbol{s}} + \frac{1}{T} \sum_{t=1}^T \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{\ell}^t) \right\|_2 \leq \frac{1}{T} \max_{\hat{\boldsymbol{\theta}} \in \mathbb{R}^n_{\geq 0} \cap \mathbb{B}^n_2} R_S^T(\hat{\boldsymbol{\theta}}).$$
(4)

Combining (4) with (1), we obtain that the regret cumulated by the sequence of strategies x^t produced by Algorithm 1 with respect to any sequence of utilities ℓ^t satisfies

$$\frac{1}{T}R^T \le \frac{1}{T} \max_{\hat{\boldsymbol{\theta}} \in \mathbb{R}^n_{\ge 0} \cap \mathbb{B}^n_2} R^T_S(\hat{\boldsymbol{\theta}}) \implies R^T \le \max_{\hat{\boldsymbol{\theta}} \in \mathbb{R}^n_{\ge 0} \cap \mathbb{B}^n_2} R^T_S(\hat{\boldsymbol{\theta}}), \tag{5}$$

where R_S^T is the regret cumulated by the regret minimizer \mathcal{R}_S oracle used in Algorithm 1. As we know from Lecture 7, both FTRL and OMD with regularizer $\varphi = \frac{1}{2} \| \cdot \|_2^2$ and step size $\eta > 0$ guarantee that

$$R_{S}^{T}(\hat{\theta}) \leq \frac{\|\hat{\theta}\|_{2}^{2}}{2\eta} + \eta \sum_{t=1}^{T} \|\boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{\ell}^{t})\|_{2}^{2} \implies \max_{\hat{\theta} \in \mathbb{R}_{\geq 0}^{n} \cap \mathbb{B}_{2}^{n}} R_{S}^{T}(\hat{\theta}) \leq \frac{1}{2\eta} + \eta \sum_{t=1}^{T} \|\boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{\ell}^{t})\|_{2}^{2}, \tag{6}$$

where we used the fact that $\hat{\theta} \in \mathbb{B}_2^n$ on the right side of the implication. So, plugging (6) into (5), we have

$$R^T \leq \frac{1}{2\eta} + \eta \sum_{t=1}^T \|\boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{\ell}^t)\|_2^2.$$

Since we have shown above that the iterates produced by regret matching (Section 2.1) and regret matching plus (Section 2.2) are independent of $\eta > 0$, we can minimize the right-hand side over $\eta > 0$, obtaining the bound

$$R^T \leq \sqrt{2\sum_{t=1}^T \left\|oldsymbol{u}(oldsymbol{x}^t,oldsymbol{\ell}^t)
ight\|_2^2},$$

Finally, expanding the definition of $u(x^t, \ell^t) \coloneqq \langle \ell^t, x^t \rangle \mathbf{1} - \ell^t$, we obtain the following statement.

Theorem 2.1. At every time T, the regret cumulated by the regret matching (Algorithm 2) and regret matching plus algorithms (Algorithm 3) satisfy the regret bound

$$R^T \leq \sqrt{2\sum_{t=1}^T \left\| \boldsymbol{\ell}^t - \langle \boldsymbol{\ell}^t, \boldsymbol{x}^t
angle \mathbf{1}
ight\|_2^2}$$

3 Predictive regret matching and regret matching plus

We can repeat the same analysis we did in Section 2.1 (which used FTRL) and Section 2.2 (which used OMD) using the *predictive* versions of FTRL and OMD. The resulting algorithms are again independent on the stepsize parameter, and are given in Algorithm 6 and Algorithm 7.

Algorithm 6: (Predictive) regret matching	Α
1 $\boldsymbol{r}^0 \leftarrow \boldsymbol{0} \in \mathbb{R}^n, \ \boldsymbol{x}^0 \leftarrow \boldsymbol{1}/n \in \Delta^n$	1 2
2 function NEXTSTRATEGY(m^t)	2 f
\triangleright Set $m^t = 0$ for non-predictive version	
3 $\boldsymbol{ heta}^t \leftarrow [\boldsymbol{r}^{t-1} + \langle \boldsymbol{m}^t, \boldsymbol{x}^{t-1} \rangle 1 - \boldsymbol{m}^t]^+$	3
$_{4} \text{ if } \boldsymbol{\theta}^{t} \neq 0 \text{ return } \boldsymbol{x}^{t} \leftarrow \boldsymbol{\theta}^{t} \; / \; \ \boldsymbol{\theta}^{t}\ _{1}$	4
5 else return $x^t \leftarrow$ arbitrary point in Δ^n	5
6 function ObserveLoss(ℓ^t)	6 f
7 $\left \begin{array}{c} \boldsymbol{r}^t \leftarrow \boldsymbol{r}^{t-1} + \langle \boldsymbol{\ell}^t, \boldsymbol{x}^t \rangle 1 - \boldsymbol{\ell}^t \end{array} \right $	7

-	Algorithm 7: (Predictive) regret matching $^+$
1	$oldsymbol{z}^0 \leftarrow oldsymbol{0} \in \mathbb{R}^n, \hspace{0.2cm} oldsymbol{x}^0 \leftarrow oldsymbol{1}/n \in \Delta^n$
2	function NEXTSTRATEGY (\boldsymbol{m}^t)
	\triangleright Set $m^t = 0$ for non-predictive version
3	$oldsymbol{ heta}^t \leftarrow [oldsymbol{z}^{t-1} + \langle oldsymbol{m}^t, oldsymbol{x}^{t-1} angle oldsymbol{1} - oldsymbol{m}^t]^+$
4	$ \text{if} \boldsymbol{\theta}^t \neq 0 \mathbf{return} \boldsymbol{x}^t \leftarrow \boldsymbol{\theta}^t / \ \boldsymbol{\theta}^t\ _1$
5	else return $x^t \leftarrow$ arbitrary point in Δ^n
6	function $OBSERVELOSS(\ell^t)$
7	$ig egin{array}{c} oldsymbol{z}^t \leftarrow [oldsymbol{z}^{t-1}+\langle oldsymbol{\ell}^t,oldsymbol{x}^t angle oldsymbol{1}-oldsymbol{\ell}^t]^+ \end{array}$

The same regret analysis of Section 2.3 holds verbatim. In particular, we have the following.

Theorem 3.1. At every time T, the regret cumulated by the predictive regret matching (Algorithm 6) and predictive regret matching plus algorithms (Algorithm 7) satisfy the regret bound

$$R^T \leq \sqrt{2\sum_{t=1}^T \left\| (\boldsymbol{\ell}^t - \boldsymbol{m}^t) - \langle \boldsymbol{\ell}^t - \boldsymbol{m}^t, \boldsymbol{x}^t \rangle \mathbf{1} \right\|_2^2}$$

References

- Jacob Abernethy, Peter L Bartlett, and Elad Hazan. Blackwell approachability and no-regret learning are equivalent. In *Proceedings of the Conference on Learning Theory (COLT)*, pages 27–46, 2011.
- Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive Blackwell approachability: Connecting regret matching and mirror descent. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2021.