
15-888 Computational Game Solving (Fall 2021) Tue, Oct 5th 2021

Lecture 9

Predictive regret matching and regret matching+

Instructor: Gabriele Farina∗

1 Predictive Blackwell approachability for simplex domains
In Lecture 8 we saw that a Blackwell approachability game with a conic target set can be solved by means
of an external regret minimization algorithm whose domain is the polar of the cone, using a construction
by Abernethy et al. [2011].

In this lecture, we will specialize that algorithm in the particular Blackwell game Γ = (∆n,ℝn,u, S := ℝn
≤0)

we introduced in Lecture 4, where the bilinear Blackwell utility of the game was defined as

u(x, `) := `− 〈`,x〉1 ∈ ℝn.

As we showed back then, any solution to Γ—that is, any algorithm that picks strategies xt ∈ ∆n so that
the average Blackwell payoff is close to the target set S = ℝn

≤0—is a regret minimizer for ∆n. In particular,
recall that the external regret

RT := max
x̂∈∆n

T∑
t=1

(`t)>x̂−
T∑

t=1
(`t)>xt

cumulated by strategies xt with respect to any sequence of utilities `t satisfies the inquality.

RT

T
≤ min
ŝ∈ℝn

≤0

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt, `t)
∥∥∥∥∥

2

. (1)

As we already mentioned, we are interested in solving the Blackwell game Γ by means of the general
framework introduced in Lecture 8, which for the particular case of target set ℝn

≤0 boils down to Algorithm 1.

Algorithm 1: (Predictive) Blackwell approachability for simplex domain
Data: RS (predictive) regret minimizer for ℝn

≥0

1 function NextStrategy(vt)
[. Set vt = 0 for the non-predictive version)]

2 θt ← RS.NextStrategy(vt)
3 if θt 6= 0 then return xt ← θt/‖θt‖1 ∈ ∆n

4 else return an arbitrary point xt ∈ ∆n

5 function ReceivePayoff(u(xt, `t))
6 RS.ObserveLoss(u(xt, `t))
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Algorithm 1 gives a way to solve Γ starting from any regret minimizer RS for the nonpositive orthant
ℝn
≥0. In the rest of the lecture we will explore what happens when RS is set to FTRL and OMD, as well as

their predictive variants.

2 Recovering regret matching (RM) and regret matching plus (RM+)
In this section we show that when the Blackwell game Γ is solved by means of Algorithm 1 instantiated
with RS set to FTRL, the regret matching (RM) algorithm is recovered [Farina et al., 2021]. Even more
surprising, when RS is set to OMD the regret matching plus (RM+) algorithm is recovered instead. We will
use these connections for two purposes:

• The fact that RM+ can be recovered from Algorithm 1 (which was proven sound for every choice of
regret minimizer RS in Lecture 8) immediately implies correctness of RM+.Even better, the connections
between FTRL, OMD and RM, RM+ will enable us to quickly give a regret bound for RM and RM+

starting from the known regret bounds for FTRL and OMD seen in Lecture 7. We do so in Section 2.3.

• The connections suggest that if we started instead from the predictive versions of FTRL and OMD, we
could hope to arrive to predictive versions of RM and RM+, respectively. We will show that that is
indeed the case in Section 3.

Algorithm 2: Regret matching
1 r0 ← 0 ∈ ℝn, x0 ← 1/n ∈ ∆n

2 function NextStrategy()
3 if θt 6= 0 return xt ← θt / ‖θt‖1
4 else return xt ← any point in ∆n

5 function ObserveUtility(`t)
6 θt+1 ← θt + `t − 〈`t,xt〉1

Algorithm 3: Regret matching+

1 z0 ← 0 ∈ ℝn, x0 ← 1/n ∈ ∆n

2 function NextStrategy()
3 if θt 6= 0 return xt ← θt / ‖θt‖1
4 else return xt ← any point in ∆n

5 function ObserveUtility(`t)
6 θt+1 ← [θt + `t − 〈`t,xt〉1]+

2.1 FTRL leads to regret matching (RM)
The regret minimizer RS is used in Algorithm 1 to pick the next vector θt ∈ ℝn

≥0 to force observes utilities
u(xt, `t) = `t − 〈`t,xt〉1. Consider now RS to be the FTRL algorithm with regularizer ϕ = 1

2‖ · ‖
2
2 and step

size η > 0 (recalled in Algorithm 4). In that case, the vector θt (Line 2 in Algorithm 1) has the closed-form
solution

θt = arg max
θ̂∈ℝn

≥0


(

T∑
t=1

u(xt, `t)
)>
θ̂ − ‖θ̂‖

2
2

2η

 = η

[
T∑

t=1
u(xt, `t)

]+

= η

[
T∑

t=1
`t − 〈`t,xt〉1

]+

.

Since the forcing action θt/‖θt‖1 is invariant to positive constants, we see that the action xt picked by ??
(Line 3) is the same for all values of η > 0 and is computed as

xt =

[∑T
t=1 `

t − 〈`t,xt〉1
]+∥∥∥∥[∑T

t=1 `
t − 〈`t,xt〉1

]+∥∥∥∥
1

. (2)

provided θt 6= 0, and is an arbitrary vector xt ∈ ∆n otherwise. These iterates coincide at all times t with the
iterates produced by the regret matching algorithm seen in Lecture 4 and recalled in Algorithm 2.
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Algorithm 4: (Predictive) FTRL
Data: X ⊆ ℝn convex and compact set

ϕ : X → ℝ≥0 strongly convex regularizer
η > 0 step-size parameter

1 L0 ← 0 ∈ ℝn

2 function NextStrategy(mt)
[. Set mt = 0 for non-predictive version]

3 return arg max
x̂∈X

{
(Lt−1 +mt)>x̂− 1

η
ϕ(x̂)

}
4 function ObserveUtility(`t)
5 Lt ← Lt−1 + `t

Algorithm 5: (Predictive) OMD
Data: X ⊆ ℝn convex and compact set

ϕ : X → ℝ≥0 strongly convex regularizer
η > 0 step-size parameter

1 z0 ∈ X such that ∇ϕ(z0) = 0

2 function NextStrategy(mt)
[. Set mt = 0 for non-predictive version]

3 return arg max
x̂∈X

{
(mt)>x̂− 1

η
Dϕ(x̂ ‖ zt−1)

}
4 function ObserveUtility(`t)

5 zt ← arg max
ẑ∈X

{
(`t)>ẑ − 1

η
Dϕ(ẑ ‖ zt−1)

}

2.2 OMD corresponds to regret matching plus (RM+)
Consider now RS to be the OMD algorithm with the regularizer ϕ = 1

2‖ · ‖
2
2 and step size η > 0 (recalled in

Algorithm 5). In that case, the vector θt (Line 2 in Algorithm 1) has the closed-form solution

θt = arg max
θ̂∈ℝn

≥0

{
u(xt, `t)>θ̂ − ‖θ̂ − θ

t−1‖22
2η

}
=
[
θt−1 + ηu(xt, `t)

]+
. (3)

Since (3) is homogeneous in η > 0 (that is, the only effect of η is to rescale all θt by the same constant)
and the forcing action θt/‖θt‖1 is invariant to positive rescaling of θt, we see that Algorithm 1 outputs the
same iterates no matter the choice of stepsize parameter η > 0. In particular, we can assume without loss of
generality that η = 1. In that case, Equation (3) corresponds exactly to Line 6 in RM+ (Algorithm 3).

2.3 Regret Analysis
The connectsion between regret matching (RM), regret matching plus (RM+) and FTRL, OMD we uncovered
in Sections 2.1 and 2.2 can help us establish regret bounds for RM and RM+ starting from the regret bounds
for FTRL and OMD. To do so, let’s start from recalling the relationship—seen in Lecture 8—between the
regret of RS and the distance of the average Blackwell payoff to the target set, that is,

min
ŝ∈ℝn

≤0

∥∥∥∥∥−ŝ+ 1
T

T∑
t=1

u(xt, `t)
∥∥∥∥∥

2

≤ 1
T

max
θ̂∈ℝn

≥0∩B
n
2

RT
S (θ̂). (4)

Combining (4) with (1), we obtain that the regret cumulated by the sequence of strategies xt produced by
Algorithm 1 with respect to any sequence of utilities `t satisfies

1
T
RT ≤ 1

T
max

θ̂∈ℝn
≥0∩B

n
2

RT
S (θ̂) =⇒ RT ≤ max

θ̂∈ℝn
≥0∩B

n
2

RT
S (θ̂), (5)

where RT
S is the regret cumulated by the regret minimizer RS oracle used in Algorithm 1. As we know from

Lecture 7, both FTRL and OMD with regularizer ϕ = 1
2‖ · ‖

2
2 and step size η > 0 guarantee that

RT
S (θ̂) ≤ ‖θ̂‖

2
2

2η + η

T∑
t=1
‖u(xt, `t)‖22 =⇒ max

θ̂∈ℝn
≥0∩B

n
2

RT
S (θ̂) ≤ 1

2η + η

T∑
t=1
‖u(xt, `t)‖22, (6)
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where we used the fact that θ̂ ∈ Bn
2 on the right side of the implication. So, plugging (6) into (5), we have

RT ≤ 1
2η + η

T∑
t=1
‖u(xt, `t)‖22.

Since we have shown above that the iterates produced by regret matching (Section 2.1) and regret matching
plus (Section 2.2) are independent of η > 0, we can minimize the right-hand side over η > 0, obtaining the
bound

RT ≤

√√√√2
T∑

t=1

∥∥∥u(xt, `t)
∥∥∥2

2
.

Finally, expanding the definition of u(xt, `t) := 〈`t,xt〉1− `t, we obtain the following statement.

Theorem 2.1. At every time T , the regret cumulated by the regret matching (Algorithm 2) and regret
matching plus algorithms (Algorithm 3) satisfy the regret bound

RT ≤

√√√√2
T∑

t=1

∥∥∥`t − 〈`t,xt〉1
∥∥∥2

2
.

3 Predictive regret matching and regret matching plus
We can repeat the same analysis we did in Section 2.1 (which used FTRL) and Section 2.2 (which used OMD)
using the predictive versions of FTRL and OMD. The resulting algorithms are again independent on the
stepsize parameter, and are given in Algorithm 6 and Algorithm 7.

Algorithm 6: (Predictive) regret matching
1 r0 ← 0 ∈ ℝn, x0 ← 1/n ∈ ∆n

2 function NextStrategy(mt)
[. Set mt = 0 for non-predictive version

3 θt ← [rt−1 + 〈mt,xt−1〉1−mt]+
4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← arbitrary point in ∆n

6 function ObserveLoss(`t)
7 rt ← rt−1 + 〈`t,xt〉1− `t

Algorithm 7: (Predictive) regret matching+

1 z0 ← 0 ∈ ℝn, x0 ← 1/n ∈ ∆n

2 function NextStrategy(mt)
[. Set mt = 0 for non-predictive version

3 θt ← [zt−1 + 〈mt,xt−1〉1−mt]+
4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← arbitrary point in ∆n

6 function ObserveLoss(`t)
7 zt ← [zt−1 + 〈`t,xt〉1− `t]+

The same regret analysis of Section 2.3 holds verbatim. In particular, we have the following.

Theorem 3.1. At every time T , the regret cumulated by the predictive regret matching (Algorithm 6)
and predictive regret matching plus algorithms (Algorithm 7) satisfy the regret bound

RT ≤

√√√√2
T∑

t=1

∥∥∥(`t −mt)− 〈`t −mt,xt〉1
∥∥∥2

2
.
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