
15-888 Computational Game Solving (Fall 2021) Thu, September 16th 2021

Lecture 4

Blackwell approachability and regret minimization on simplex domains

Instructor: Gabriele Farina∗

In Lecture 3 we have seen how no-external-regret dynamics converge to several solution concepts of
interest, including Nash equilibria in two-player zero-sum games, normal-form coarse-correlated equilibria in
multiplayer general-sum games, and more generally convex-concave saddle point problems. Furthermore, we
have seen that no-external-regret dynamics are a fundamental building block for constructing no-Φ-regret
dynamics for general sets Φ of deviation functions.

In this lecture, we start exploring how no-external-regret dynamics have been historically constructed
for action spaces of one-shot decision making problems (that is, probability simplexes). The historical
construction we will present today is not only very elegant, but also it leads to an algorithm that is still
extremely popular in practice today, called regret matching.

We will see other, more modern, techniques to construct no-external-regret dynamics for general convex
and compact domains later on in this course.

1 No-external-regret dynamics for probability simplexes
In this lecture we focus on the task of constructing no-external-regret dynamics for one-shot decision making
problems, that is, from minimizing regret on a simplex domain

∆n =
{

(x1, . . . , xn) ∈ ℝn≥0 : x1 + · · ·+ xn = 1
}
.

As we will see in the next lecture, it will be later possible to “upgrade” any regret minimizer for one-shot
decision making to a regret minimizer for tree-form decision making.

Remember that constructing a regret minimizer for ∆n means that we need to build a mathematical
object that supports two operations:

• NextElement has the effect that the regret minimizer will output an element xt ∈ ∆n;

• ObserveUtility(`t) provides the environment’s feedback to the regret minimizer, in the form of a
linear utility vector `t ∈ ℝn that evaluates how good the last-output point.

Our goal will be to make sure that the (external) regret

RT := max
x̂∈∆n

{
T∑
t=1

(
〈`t, x̂〉 − 〈`t,xt〉

)}
.

grows sublinearly in T no matter the utility vectors `t chosen by the environment.
We will construct a regret minimizer for ∆n by means of an ancient (and very elegant!) construction,

called Blackwell approachability. Blackwell approachability is a precursor of the theory of regret minimization,
and played a fundamental role in the historical development of several efficient online optimization methods.
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In particular, as we will show in a minute, the problem of minimizing regret on a simplex can be rewritten as
a Blackwell approachability game. The solution of the Blackwell approachability game is a regret-minimizing
dynamic called regret matching (RM). As of today, regret matching and its variants are still often some of
the most practical algorithms for learning in games.

1.1 Blackwell approachability game
Blackwell approachability generalizes the problem of playing a repeated two-player game to games whose
utilites are vectors instead of scalars.

Definition 1.1. A Blackwell approachability game is a tuple (X ,Y,u, S), where X ,Y are closed convex
sets, u : X × Y → ℝd is a biaffine function, and S ⊆ ℝd is a closed and convex target set. A Blackwell
approachability game represents a vector-valued repeated game between two players. At each time t, the
two payers interact in this order:

• first, Player 1 selects an action xt ∈ X ;

• then, Player 2 selects an action yt ∈ Y , which can depend adversarially on all the xt output so far;

• finally, Player 1 incurs the vector-valued payoff u(xt,yt) ∈ ℝd, where u is a biaffine function.

Player 1’s objective is to guarantee that the average payoff converges to the target set S. Formally, given
target set S ⊆ ℝd, Player 1’s goal is to pick actions x1,x2, . . . ∈ X such that no matter the actions
y1,y2, . . . ∈ Y played by Player 2,

min
ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt,yt)
∥∥∥∥∥

2

→ 0 as T →∞. (1)

1.2 External regret minimization on the simplex via Blackwell approachability
Hart and Mas-Colell [2000] noted that the construction of a regret minimizer for a simplex domain ∆n can be
reduced to constructing an algorithm for a particular Blackwell approachability game Γ := (∆n,ℝn,u,ℝn≤0)
which we now describe. For all i ∈ {1, . . . , n}, the i-th component of the vector-valued payoff function u
measures the change in regret incurred at time t, compared to always playing the i-th vertex ei of the simplex.
Formally, u : ∆n ×ℝn → ℝn is defined as

u(xt, `t) = `t − 〈`t,xt〉1, (2)

where 1 is the n-dimensional vector whose components are all 1.
The following lemma establishes an important link between Blackwell approachability on Γ and external

regret minimization on the simplex ∆n.

Lemma 1.1. The regret RT = maxx̂∈∆n
1
T

∑T
t=1〈`t, x̂−xt〉 cumulated up to any time T by any sequence

of decisions x1, . . . ,xT ∈ ∆n is related to the distance of the average Blackwell payoff from the target
cone ℝn≤0 as

RT

T
≤ min

ŝ∈ℝn
≤0

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt, `t)
∥∥∥∥∥

2

. (3)

So, a strategy for the Blackwell approachability game Γ is a regret-minimizing strategy for the simplex
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domain ∆n.

Proof. For any x̂ ∈ ∆n, the regret cumulated compared to always playing x̂ satisfies

1
T
RT (x̂) := 1

T

T∑
t=1

(
〈`t, x̂〉 − 〈`t,xt〉

)
= 1
T

T∑
t=1

(
〈`t, x̂〉 − 〈`t,xt〉〈1, x̂〉

)
=
〈

1
T

T∑
t=1

`t − 〈`t,xt〉1, x̂
〉

=
〈

1
T

T∑
t=1

u(xt, `t), x̂
〉

= min
ŝ∈ℝn

≤0

〈
−ŝ+ 1

T

T∑
t=1

u(xt, `t), x̂
〉
, (4)

where we used the fact that x̂ ∈ ∆n in the second equality, and that minŝ∈ℝn
≤0
〈−ŝ, x̂〉 = 0 since x̂ ≥ 0.

Applying the Cauchy-Schwarz inequality to the right-hand side of (4), we obtain

1
T
RT (x̂) ≤ min

ŝ∈ℝn
≤0

∥∥∥∥∥−ŝ+ 1
T

T∑
t=1

u(xt, `t)
∥∥∥∥∥

2

‖x̂‖2.

So, using the fact that ‖x̂‖2 ≤ 1 for any x̂ ∈ ∆n,

1
T
RT (x̂) ≤ min

ŝ∈ℝn
≤0

∥∥∥∥∥−ŝ+ 1
T

T∑
t=1

u(xt, `t)
∥∥∥∥∥

2

.

Taking a max over x̂ ∈ ∆n yields the statement.

1.3 Solving Blackwell games: Blackwell’s algorithm
A central concept in the theory of Blackwell approachability is the following.

Definition 1.2 (Forceable halfspace). Let (X ,Y,u, S) be a Blackwell approachability game and let
H ⊆ ℝd be a halfspace, that is, a set of the form H = {x ∈ ℝd : a>x ≤ b} for some a ∈ ℝd, b ∈ ℝ. The
halfspace H is said to be forceable if there exists a strategy of Player 1 that guarantees that the payoff is
in H no matter the actions played by Player 2, that is, if there exists x∗ ∈ X such that

u(x∗,y) ∈ H ∀y ∈ Y.

When that is the case, we call action x∗ a forcing action for H.

Blackwell’s approachability theorem [Blackwell, 1956] states the following.

Theorem 1.1 (Blackwell’s theorem). Goal (1) can be attained if and only if every halfspace H ⊇ S is
forceable.

We constructively prove the direction that shows how forceability translates into a sequence of strategies
that guarantees that goal (1) is attained. Let (X ,Y,u, S) be the Blackwell game. The method is pretty
simple: at each time step t = 1, 2, . . . operate the following:

1. Compute the average payoff received so far, that is, φt = 1
t

∑t−1
τ=1 u(xτ ,yτ ).
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2. Compute the Euclidean projection ψt of φt onto the target set S.

3. If φt ∈ S (that is, goal (1) has already been met), pick and play any xt ∈ X , observe the opponent’s
action yt, and return.

4. Else, consider the halfspace Ht tangent to S at the projection point ψt, that contains S. In symbols,

Ht := {z ∈ ℝd : (φt −ψt)>z ≤ (φt −ψt)>ψt}.

5. By hypothesis, Ht is forceable. Pick xt to be a forcing action for Ht, observe the opponent’s action yt,
and return.

The above method is summarized in Figure 1.

Ht

S

×

φt

ψt

u(xt,yt)

φt+1

Figure 1: Construction of the approachability strategy described in Section 1.3.

Let’s see how the average payoff φt changes when we play as described above. Clearly,

φt+1 = 1
t

t∑
τ=1

u(xτ ,yτ ) = t− 1
t
φt + 1

t
u(xt,yt).

Hence, denoting with ρt+1 the squared Euclidean distance between φt+1 and the target set, that is,

ρt := min
ŝ∈S

∥∥ŝ− φt∥∥2
2,

we have

ρt+1 ≤
∥∥ψt − φt+1∥∥2

2 =
∥∥∥∥ψt − t− 1

t
φt − 1

t
u(xt,yt)

∥∥∥∥2

2

=
∥∥∥∥ t− 1

t

(
ψt − φt

)
+ 1
t

(
ψt − u(xt,yt)

)∥∥∥∥2

2

= (t− 1)2

t2
ρt + 1

t2
∥∥ψt − u(xt,yt)

∥∥2
2 + 2(t− 1)

t2
〈
ψt − φt,ψt − u(xt,yt)

〉
. (5)

The proof so far does not use any particular assumption about how xt is picked. Here is where that enters
the picture. If φt ∈ S, then ψt = φt and therefore the last inner product is equal to 0. Otherwise, we have
that ψt − φt 6= 0. In that case, xt is constructed by forcing the halfspace Ht, and therefore, no matter how
yt is picked by the opponent we have

u(xt,yt) ∈ Ht ⇐⇒ (φt −ψt)>u(xt,yt) ≥ (φt −ψt)>ψt

⇐⇒
〈
ψt − φt,ψt − u(xt,yt)

〉
≤ 0.

4



Plugging in the last inequality into (5) and bounding ‖ψt−u(xt,yt)‖22 ≤ Ω2 where Ω2 is a diameter parameter
of the game (which only depends on u and S), we obtain

ρt+1 ≤ (t− 1)2

t2
ρt + Ω2

t2
=⇒ t2ρt+1 − (t− 1)2ρt ≤ Ω2 ∀ t = 1, 2, . . . .

Summing the inequality above for t = 0, . . . , T − 1 and removing the telescoping terms, we obtain

T 2ρT+1 ≤ TΩ2 =⇒ ρT+1 ≤ Ω2

T
=⇒ min

ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt,yt)
∥∥∥∥∥

2

≤ Ω√
T
, (6)

which implies that the average payoff in the Blackwell game converges to S at a rate of O(1/
√
T ).

1.4 The regret matching (RM) algorithm
At this point we have all the ingredients necessary to construct the first regret minimizer for simplex domains
of this course: the regret matching (RM) algorithm.

First, recall from Section 1.2 that the external regret minimization on the simplex can be solved via the
Blackwell game Γ := (∆n,ℝn,u,ℝn≤0) where u : ∆n ×ℝn → ℝn is defined as

u(xt, `t) = `t − 〈`t,xt〉1, (7)

where 1 is the n-dimensional vector whose components are all 1. We will solve this Blackwell approachability
game using the strategy explained in Section 1.3.
Computation of ψt (Step 2). Let’s start from looking at how to compute the projection ψt of φt onto
S = ℝ≤0. Projection onto the nonpositive orthant amounts to a component-wise minimum with 0, that is,
ψt = [φt]−. Hence,

φt −ψt = [φt]+ =⇒ (φt −ψt)>ψt = 0.

Halfspace to be forced (Step 4). Following on with Blackwell’s algorithm, when [φt]+ 6= 0, the halfspace
to be forced at each time t is

Ht := {z ∈ ℝn : 〈[φt]+, z〉 ≤ 0}.

Forcing action for Ht (Step 5). We now show that a forcing action for Ht indeed exists. Remember
that by definition, that is an action x∗ ∈ ∆n such that no matter the ` ∈ ℝn, u(x∗, `) ∈ Ht. Expanding the
definition of Ht and u, we are looking for a x∗ ∈ ∆n such that

〈[φt], `− 〈`,x∗〉1〉 ≤ 0 ∀ ` ∈ ℝn ⇐⇒ 〈[φt], `〉 − 〈`,x∗〉〈[φt]+,1〉 ≤ 0 ∀ ` ∈ ℝn

⇐⇒ 〈[φt], `〉 − 〈`,x∗〉‖[φt]+‖1 ≤ 0 ∀ ` ∈ ℝn

⇐⇒
〈
`,

[φt]
‖[φt]+‖1

〉
− 〈`,x∗〉 ≤ 0 ∀ ` ∈ ℝn

⇐⇒
〈
`,

[φt]
‖[φt]+‖1

− x∗
〉
≤ 0 ∀ ` ∈ ℝn.

Note that we are lucky: [φt]+/‖[φt]‖1 is a nonnegative vector whose entries sum to 1. So, the above inequality
can be satisfied with equality for the choice

x∗ = [φt]+
‖[φt]+‖1

∈ ∆n.

In other words, we have that Blackwell’s algorithm in this case picks

xt+1 = [φt]+
‖[φt]+‖1

∈ ∆n ⇐⇒ xt+1 ∝ [φt]+ ∝
[
rt
]+
,where rt :=

t∑
τ=1

`τ − 〈`τ ,xτ 〉1.
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Remark 1.1. The vector rt contains the regret cumulated compared to always playing each of the
available actions with probability 1. Since xt+1 is proportional to rt, effectively the algorithm picks
a distribution over actions that is proportional to the regret cumulated compared each of the actions.
This justifies why this algorithm is known under the name “regret matching”.

We also remark the following useful property of regret matching.

Remark 1.2. One very appealing property of the regret matching algorithm is its lack of hyperparameters.
It just works “out of the box”.

The resulting algorithm is summarized in Algorithm 1. By combining the analysis of the Blackwell approach-

Algorithm 1: Regret matching
1 r0 ← 0 ∈ ℝn, x0 ← 1/n ∈ ∆n

2 function NextStrategy()
3 θt ← [rt−1]+
4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← any point in ∆n

6 function ObserveUtility(`t)
7 rt ← rt−1 + `t − 〈`t,xt〉1

Algorithm 2: Regret matching+

1 z0 ← 0 ∈ ℝn, x0 ← 1/n ∈ ∆n

2 function NextStrategy()
3 θt ← [zt−1]+
4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← any point in ∆n

6 function ObserveUtility(`t)
7 zt ← [zt−1 + `t − 〈`t,xt〉1]+

ability strategy (6) together with Lemma 1.1, we obtain the following result.

Theorem 1.2. The regret matching algorithm (Algorithm 1) is an external regret minimizer, and satisfies
the regret bound RT ≤ Ω

√
T , where Ω is the maximum norm ‖`t − 〈`t,xt〉1‖2 up to time T .

1.5 The regret matching+ (RM+) algorithm
The regret matching+ algorithm was introduced by Tammelin [2014], Tammelin et al. [2015], and is given in
Algorithm 2. It differs from RM only on the last line, where a further thresholding is added. That small
change has the effect that actions with negative cumulated regret (that is, “bad” actions) are treated as
actions with 0 regret. Hence, intuitively, if a bad action were to become good over time, it would take less
time for RM+ to notice and act on that change. Because of that, regret matching+ has stronger practical
performance and is often preferred over regret matching in the game solving literature.

With a simple modification to the analysis in Section 1.3, the same bound as RM can be proven.

Theorem 1.3. The regret matching+ algorithm (Algorithm 2) is an external regret minimizer, and
satisfies the regret bound RT ≤ Ω

√
T , where Ω is the maximum norm ‖`t − 〈`t,xt〉1‖2 up to time T .

We will not get into further details about RM+ in this lecture, but we might touch back on it again later
(probably around Lecture 8), when we will discuss a surprising connection between RM+ and online mirror
descent, probably the most well-studied algorithm in the field of online learning.
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