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Abstract

Recent advances in DNA microarray technologies are enabling researchers to measure the
expression levels of thousands of genes simultaneously, with time-series data offering par-
ticularly rich opportunities for understanding dynamic biological processes. Unfortunately,
DNA microarray data is plagued by quality issues including noise and missing data points.
Expression time-series data introduce additional complications, including sampling rate dif-
ferences between experiments and variations in the timing of biological processes.

In this thesis, a probabilistic framework is presented for making gene expression time-
series data from different experiments directly comparable. This method addresses the issues
of DNA microarray data noise, missing values, different sampling rates between experiments,
and variability in the timing of biological processes. Gene expression time-series data are
represented as a set of continuous spline curves (piecewise polynomials) using a linear mixed-
effects model, a statistical method that allows for a fixed or group effect as well as a
random or individual effect. The model constrains a gene’s expression curve to be generally
similar to those of co-expressed genes, while still allowing for gene specific variations. A
continuous alignment algorithm is then introduced in which a search is performed for a
function that transforms the time-scale of one gene expression process into that of another,
while minimizing a measure of error between expression profiles in the two processes.

Three applications are then presented of the continuous representation/alignment al-
gorithm to DNA microarray expression data, which yield biologically meaningful results.
First, it is shown that the linear mixed-effects spline model can effectively predict missing
data values, achieving lower error for cases of one or two consecutive missing values than
the best method previously reported in the literature. Second, it is demonstrated that
the alignment algorithm can produce stable low-error alignments, allowing data from three
different yeast cell cycle experiments (with period and phase differences) to be combined.
Finally, it is shown that the alignment algorithm can be used to identify genes that behave
differently in normal versus genetically modified cells.

Thesis Supervisor: David K. Gifford
Title: Professor of Electrical Engineering and Computer Science
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A Note on Notation

An effort has been made to use consistent notation throughout this thesis. Scalars will be
denoted with italic Roman or Greek lower-case letters such as x and y or µ. All vectors will
be column vectors and denoted with bold italic Roman or Greek lower-case letters such as
x and y or µ. Matrices will be denoted with bold italic Roman or Greek upper-case letters
such as A and B or Γ. Sets will be denoted with upper-case Roman italic letters such as
C and T . Random variables will be denoted by fonts without serifs such as x and y for
random scalars and x and y for random vectors. Unfortunately, lower-case Greek letters are
also used for random variables but the sans serif style is not available. In these cases, the
intention should be clear from the context.
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Chapter 1

Introduction

1.1 Problem Description

Recent advances in DNA microarray technologies are enabling researchers to measure the
expression levels of thousands of genes simultaneously. These technologies are proving
invaluable in functional genomics, a developing field in which investigators ultimately seek
to understand genetic activity at the level of an organism’s entire collection of genes [25].
Time-series expression data, the focus of this thesis, offer particularly rich opportunities
for understanding dynamic biological processes such as the cell cycle, development, and
immune response [51, 57, 38].

Two common analytical objectives in functional genomics are, 1) identifying genes that
behave differently under alternate experimental conditions and, 2) building networks of
genetic interactions. In the first case, researchers may be interested in determining which
genes are affected by an experimental intervention such as a gene knockout [60], or they may
want to identify genes whose expression patterns are altered during a natural pathological
process such as cancer [4]. The goal in such experiments is to identify significant differences
between gene expression in a “normal” versus an alternate condition. In the second type of
analysis, researchers seek to construct networks of genetic interactions and to understand
complexities of these system, such as the role of combinatorial regulation or feedback loops.
Given the scale and the complexity of the biological systems being studied, sophisticated
computational techniques such as Bayesian Networks have been employed [19, 21, 22].

Unfortunately, DNA microarray data are plagued with quality issues that make both of
the above mentioned analyses challenging. Large amounts of noise may be introduced dur-
ing the many steps of sample preparation, hybridization, and detection. Further, in some
experiments expression data points for a given gene may be “missing”, due to practical
difficulties such as detergent bubbles on glass slides or manufacturing defects in the mi-
croarray [23]. For these reasons, a large literature has developed describing computational
and experimental methods for dealing with the noise inherent in DNA microarray data (see
for instance [26, 54, 12, 29, 13]). However, few of these methods address the specific features
of temporal microarray data.

On the one hand, gene expression time-series data provide information lacking in static
data that can be useful in overcoming noise and missing value problems. For instance, it
should be possible to exploit the reasonable assumptions that adjacent time points will be
statistically dependent on one another, and that expression values will vary fairly smoothly
with time. On the other hand, gene expression time-series data introduce two complications
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not present in static analyses: lack of standard sampling rates and variability in the timing
of biological processes.

The first issue is a practical one: since DNA microarrays are expensive and time-series
experiments are often technically challenging to perform, biologists want to sample a min-
imum number of time-points. Unfortunately, there is a dearth of empirical or theoretical
information on appropriate sampling rates, since large-scale gene expression time-series ex-
periments are a relatively new phenomena. This has resulted in published DNA microarray
studies of the same or similar biological processes sampled at very different time-points.
Non-uniform sampling or coverage of different portions of the process add to the difficulties
in comparing data sets.

The second issue is a biological one: the rate at which similar underlying processes unfold
can be expected to differ across organisms, genetic variants and environmental conditions.
For instance, extensive gene expression time-series data has been collected to study the
yeast cell cycle [51]. In these experiments, different methods have been used to synchronize
the cells, and these have resulted in variations in growth rates and other aspects of the
cell cycle. Thus, while the data sets collected capture the same fundamental process, the
phases and periods of the expression levels of cell cycle genes differ markedly between the
experiments.

When analyzing time-series data for the objectives of identifying differentially expressed
genes and building genetic networks, one must address both the issue of different sampling
rates between experiments and that of biological variability in the timing of processes. In
the case of identifying differentially expressed genes, one would like to analyze data from
the two conditions on the same time-scale so that direct comparisons can be made. For
the second objective of building genetic networks, the statistical models often used require
large amounts of data. One would like to combine as much data measuring the same or
similar biological processes as possible. Thus, for both analytical objectives one would
like a computational method for making gene expression time-series data from different
experiments directly comparable. Further, the method should exploit the special structure
of time-series data to deal with the general problems of DNA microarray data — noise and
missing data points.

1.2 Solution Overview

In this thesis, a probabilistic framework will be presented for making gene expression time-
series data from different experiments directly comparable. This method addresses the issues
of DNA microarray data noise, missing values, different sampling rates between experiments,
and variability in the timing of biological processes. Gene expression time-series data are
represented as a set of continuous curves whose time-scales can be smoothly warped so as to
align different data sets. Splines or piecewise polynomials are a natural tool for estimating
such smooth curves. However, given the noise and missing value problems inherent in DNA
microarray data, fitting an independent spline to each gene’s expression pattern can be
problematic. Fortunately, biology can help: it has been demonstrated that genes involved
in similar processes often do not behave independently [15]. Such genes are said to be co-
expressed, and can be identified using previous biological knowledge or clustering algorithms.
The expression profiles of co-expressed genes can be assumed to be statistically dependent
on one another, but aren’t expected to be identical. For instance, co-expressed genes might
be expected to peak at approximately the same time, but the magnitudes of the peaks could
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differ somewhat.
The statistical model presented in this thesis uses co-expression information to constrain

the shape of a gene’s expression profile (spline) to be generally similar to those of co-
expressed genes, while still allowing for gene specific variations. Further, these similarity
constraints are lessened when more information is available, i.e., there are a large number
of data points for a gene’s expression time-series. The type of model used is a linear mixed-
effects model, which assumes that observations of a given random variable can be explained
as a combination of a fixed or group effect, as well as an individual or random effect [30, 27].
Due to the presence of the random effects variables and shared parameters, the parameters
of the linear mixed-effects model cannot be estimated using a closed form solution. However,
the structure of the model makes the problem amenable to approximate solution using the
Expectation-Maximization (EM) algorithm.

A method for aligning sets of continuous gene expression profiles from two different ex-
periments is then presented. The core idea behind this method is to search for a function
that transforms the time-scale of one gene expression process into that of another, while
minimizing a measure of error between expression profiles in the two processes. Because
a parameterized function is used, the allowed number of degrees of freedom is explicitly
specified, which is helpful in avoiding overfitting. The problem of finding the parameters
that minimize the alignment error measure is in general a non-linear constrained optimiza-
tion problem and numerical methods must be used. Since the alignment algorithm may
need to handle a large number of genes, a stochastic optimization method that can reduce
the computation time is presented. Further, a closed-form solution that can speed up the
alignment algorithm in a special case is also described.

1.3 Thesis Roadmap

The remainder of this thesis will be organized as follows. In the next section of this chapter,
related work will be discussed.

The probabilistic model for estimating gene expression time-series data with continuous
curves will then be presented in Chapter 2, along with necessary background information
including an overview of linear mixed-effects models, the Expectation-Maximization (EM)
algorithm, and splines.

In Chapter 3 the framework for aligning continuous gene expression time-series profiles
will be presented. The algorithm used to search for minimizing parameters in the alignment
will also be discussed, as well as some methods for speeding up the alignment algorithm on
large data sets.

In Chapter 4, three applications of the continuous representation/alignment algorithms
to DNA microarray expression data will be presented. In the first application, it will be
shown that the linear mixed-effects spline model introduced in Chapter 2 can effectively pre-
dict missing data values, achieving lower error for cases of one or two consecutive missing
values than the best method previously reported in the literature. Second, it will be demon-
strated that the alignment algorithm can produce stable low-error alignments, allowing data
from three different yeast cell cycle experiments (with period and phase differences) to be
combined. Finally, it will be shown that the alignment algorithm can be used to identify
genes that behave differently in normal versus genetically modified cells.

In Chapter 5, a brief summary of this thesis will be presented as well as some ideas for
future work. Those unfamiliar with biology and microarrays may want to read Appendices A
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and B before proceeding with the rest of this thesis. In Appendix A, the basics of molecular
genetics are reviewed and in Appendix B, DNA microarrays and some of the limitations of
these technologies are discussed. Finally, in Appendix C derivations are provided of some of
the formulas related to the linear mixed-effects spline model for gene expression time-series
data.

1.4 Related Work

Much of this work was previously published in a conference paper that I co-authored [6].
This thesis focuses on my particular contributions to this earlier work, and provides con-
siderably more detail on the background and computational methods used.

There is a considerable statistical literature in which mixed-effects spline models are
applied to non-uniformly sampled time-series data. James and Hastie [27] presented a
reduced rank model that was used for classifying medical time-series data. The spline model
presented in this thesis is based on their work. However, since this thesis deals with the
alignment of gene expression time-series data, the focus is on predicting individual spline
curves for genes rather than determining an underlying class profile as in [27]. Another
difference between this work and theirs is that a reduced rank approach is not necessary,
since gene expression data sets contain information about thousands of “cases” (genes).

D’haeseleer [11] used spline interpolation on expression time-series data for individual
genes to estimate missing values. As shown in section 4.2, this technique cannot approximate
the expression levels of a gene well, especially if there are several consecutive missing values.

Several recent papers have dealt with modelling and analyzing gene expression time-
series data. Zhao et al [59] analyze yeast cell cycle data, fitting a statistical model to
gene expression profiles that is custom-tailored for periodic data. Ramoni et al [43] model
gene expression time-series as autoregressive processes and apply a Bayesian framework for
clustering genes. Both Zhao et al and Ramoni et al do not deal with alignment, and their
methods are less general than the one presented here, since they make strong assumptions
about underlying statistical models. Further, it is unclear how data sampled at different
rates could be compared within their frameworks.

Reis et al [46] use the first-order difference (slope) vector of gene expression time-series
to build correlation based relevance networks. Their method does not deal with alignment
or present a statistical model, but rather defines a distance measure that they use for finding
associations between gene pairs.

Aach et al [1] presented a method for aligning gene expression time-series data that is
based on Dynamic Time Warping, a discrete method that uses dynamic programming and
is conceptually similar to sequence alignment algorithms. Unlike with the method presented
in this thesis, the allowed degrees of freedom of the warp operation in Aach et al depends
on the number of data points in the time-series. Their algorithm also allows mapping of
multiple time-points to a single point, thus “stopping time” in one of the data sets. In
contrast, the algorithm presented in this thesis avoids temporal discontinuities by using a
continuous warping representation.

Qian et al [42] use a discrete sequence alignment-type algorithm similar to that in Aach
et al. Their goal is to define a distance measure that allows for a phase difference between
genes’ expression patterns and to use this for clustering. They align individual genes rather
than sets, which may lead to low quality alignments. Further, their method allows only for
phase shifts and all genes must be sampled at the same time-points.
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There is a substantial body of work from the speech recognition and computer vision
community that deals with data alignment. For instance, non-stationary Hidden Markov
models with warping parameters have been used for alignment of speech data [10], and
mutual information based methods have been used for registering medical images [55].
However, these methods generally assume data are of high resolution, which is not the case
with available gene expression data sets.

Ramsay and Li [45] present a continuous alignment framework that is conceptually
similar to the one in this thesis, but theirs is not applied to gene expression data and there
is no underlying statistical model used to fit discrete data. Also, with their method, curves
must begin and end at the same point, which does not allow for partial overlaps as does the
method presented here. Further, they do not describe methods for differential weighting of
alignment errors, or for speeding up the algorithm so that it operates efficiently on large
data sets.
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Chapter 2

A Probabilistic Model for
Estimating Gene Expression
Time-Series Data with Continuous
Curves

The purpose of this chapter is to develop the necessary background, and then to present a
statistical model for representing gene expression time-series data with continuous curves.
The appropriateness of a continuous model rests on two key assumptions: adjacent gene
expression time-points are statistically dependent on one another, and that expression values
vary fairly smoothly with time. The first assumption of statistical dependence is unlikely to
be controversial, since time-series experiments are essentially designed with this objective
in mind. The second assumption of smooth variation of expression data across time is
more difficult to verify empirically, due to quality issues inherent in DNA microarray data.
But, the argument can be made on more theoretical grounds. The most important point
is that DNA microarrays measure mRNA levels of populations of cells. Thus, while it is
true that gene expression is a stochastic process involving individual molecules [5], current
microarray technologies only allow us to see an effect averaged over a large number of
cells. This averaging can be reasonably expected to smooth out any dramatic variations in
expression of a single gene over a short time scale.

Splines or piecewise polynomials are frequently used for fitting smooth curves to discrete
observations [16]. However, noise and missing value problems inherent in DNA microarray
data make fitting an independent spline to each gene’s expression pattern problematic.
Fortunately, biology can help: it has been demonstrated that genes involved in similar
processes often do not behave independently [15]. Such genes are said to be co-expressed,
and can be identified using previous biological knowledge or clustering algorithms. The
expression profiles of co-expressed genes can be assumed to be statistically dependent on
one another, but aren’t expected to be identical. For instance, co-expressed genes might be
expected to peak at approximately the same time, but the magnitudes of the peaks could
differ somewhat.

An appropriate statistical framework for capturing this type of behavior is a linear
mixed-effects model. With such a model, it is possible to constrain the shape of a gene’s
expression profile to be generally similar to those of co-expressed genes, while still allowing
for gene specific variations. Further, these similarity constraints are lessened when more
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information is available, i.e., there are a large number of data points for a gene’s expression
time-series.

The remainder of this chapter is organized as follows. First, background information
on linear mixed-effects models is presented. Next, parameter estimation for these models
using the Expectation-Maximization (EM) Algorithm is discussed. Then, a brief overview of
splines is given. Finally, the linear mixed-effects spline model for gene expression time-series
data is presented.

2.1 Linear Mixed-Effects Models

A linear mixed-effects model is a statistical model that assumes that observations of a given
random variable can be explained as a combination of a fixed or group effect as well as
an individual or random effect [30, 28, 27]. As a concrete example, suppose a study is
conducted in which the body temperatures of a group of boys are measured weekly for a
year. Further suppose that these boys live together in a group home, and are of similar
ages and come from the same ethnic background. Given this experimental set-up, one
would expect that at any particular time, the boys would have similar temperatures. Their
temperatures might even be expected to fluctuate together, e.g., to be higher during flu
season. However, we would also expect that some boys would have systematically higher
or lower temperatures, due to individual differences such as genetics or immunity acquired
from prior exposure to infections. Gene expression time-series data also has these features:
co-expressed genes are expected to share some commonalities, but individual genes may
show systematic expression differences.

A linear mixed-effects model can be described formally as follows. Suppose we have a set
of m-dimensional random vectors each denoted by yi, where i = 1 . . . n, e.g., n individuals
each observed at m time-points. Let γi denote a random effects variable for each individual
i, where each γi is a q-dimensional normally distributed random vector with mean zero and
covariance matrix Γ. Let µ denote a q-dimensional vector of the fixed effects parameters.
Denote by Ai and Bi the m by q (pre-determined) parameter matrices for each individual
i. Finally, let εi be a “noise” term, an m-dimensional normally distributed random vector
with mean zero and covariance matrix σ2ImXm. Note that the parameters µ, Γ and σ are
shared by all individuals. We can then write the linear mixed-effects model as:

yi = Aiµ + Biγi + εi (2.1)

For convenience, let Ψ = (µ,Γ, σ)T denote a vector of all the parameters that we will
estimate. It will also be assumed that variables yi are independent given the parameters
Ψ, i.e., p(yi,yj ;Ψ) = p(yi;Ψ)p(yj ;Ψ) for i 6= j. The same assumption will also be made
about the random effects variables, i.e., p(γi,γj ; Ψ) = p(γi;Ψ)p(γj ;Ψ) for i 6= j. This
essentially means that we are assuming that measurements of the variables pertaining to
the n “individuals” were obtained independently. While this is clearly not entirely realistic,
more complex dependencies are difficult to model and disambiguate, and may represent
mostly secondary effects.

As can be seen from equation 2.1, each yi is explained by a combination of a shared
fixed effect µ, an individual-specific random effect γi, and an additive noise term εi. Each
yi can be seen to be normally distributed with mean Aiµ and variance that depends on
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both the random effect and noise term:

var(yi) = E[(yi −Aiµ)(yi −Aiµ)T ] =
E[(Biγi + εi)(Biγi + εi)T ] = BiΓBT

i + σ2I

Note that the conditional distribution of yi given γi is particularly simple:

yi|γi ∼ N(Aiµ + Biγi, σ
2I)

That is, yi|γi is a normally distributed variable with a mean combining the fixed and random
effect and variance dependent only on the noise term.

A common objective with a linear mixed-effects model is to predict the random effect
for each variable conditioned on available observed data [30]. For instance, in the previous
example of measuring boys’ temperatures, one might like to estimate how much systemat-
ically higher or lower a given boy’s temperature is than that of others in the group. If we
use just the temperature measurements for that particular boy, we are throwing potential
knowledge away — we are discarding information common to all the boys such as seasonal
temperature variations due to illnesses, or noise in the measurements due to thermometer
inaccuracy. Intuitively, we would somehow like to use all the data to make our prediction.

To be more precise, suppose we have observed an m-dimensional data vector di for each
random variable yi. It can be proved that the best predictor of a random effects variable1,
denoted γ̂i, can be written as (see [58] for details):

γ̂i = EΨ[γi|yi] =
∫

γip(γi|yi = di;Ψ)dγi

Note that since the random variables are linked through a common group mean, covariance,
and noise parameters, each random effects predictor γ̂i will make use of all the available data.
A closed form expression can be derived for the random effects predictor (see section C.1
for details):

γ̂i = ΓBT
i (BiΓBT

i + σ2I)−1(di −Aiµ) (2.2)

Equation 2.2 has a nice intuitive interpretation. Since the prior distribution of γi is
N(0,Γ), our prediction for the random effect in the absence of data is simply E[γi] = 0.
The term (di − Aiµ) in equation 2.2 can be interpreted as the difference between the
observation vector di and the best prior prediction of this vector (E[yi] = Aiµ). The
matrix ΓBT

i (BiΓBT
i +σ2I)−1 can be interpreted as a gain matrix that controls the weight

of the new information obtained from the observation versus the prior information. As the
covariance matrix Γ increases (in the sense of its trace), we are less certain about the prior
information about γi and the gain matrix weights up the observed data. The reverse occurs
as the covariance matrix decreases and the prior information becomes stronger.

In order to use equation 2.2, we will need to estimate the parameters µ, Γ, and σ. A
standard approach to this type of problem is to maximize the likelihood of the data with
respect to the unknown parameters. That is, let y denote a random vector concatenating
all the yi’s. Thus, if p(y;Ψ) is the probability density function (p.d.f) for y we can form
the data likelihood L(Ψ) = p(y;Ψ) and our objective is to find:

Ψ̂ = arg max
Ψ

{L(Ψ)} (2.3)

1This is sometimes called the best linear unbiased predictor (BLUP).
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Due to the presence of the random effects variables and the shared parameters, this problem
cannot be solved in closed form. Fortunately, the structure of the linear mixed-effects
model makes it amenable to approximate solution using the Expectation-Maximization
(EM) algorithm.

2.2 The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm is a general method for iteratively com-
puting maximum likelihood (ML) estimates. There is an extensive applied and theoretical
literature on this topic. See the text by McLachlan and Krishnan for a good overview [35].
The discussion here will be restricted to the essentials needed to solve the ML problem for
the linear mixed-effects model as discussion in section 2.1.

The EM algorithm exploits the idea that certain types of maximum likelihood estimation
problems could be solved readily if additional data were available. To be more precise, let
y denote a random vector from which a vector of observed data d has been sampled. Let
p(y;Ψ) denote the p.d.f for y, and L(Ψ) = p(y;Ψ) denote the data likelihood function,
where Ψ is a vector of parameters. Now, let z denote a random vector of unobserved or
“missing” data, and x = (y, z) be the augmented or “complete” data vector. Denote the
p.d.f for x by pc(x;Ψ), and the complete data likelihood function by Lc(Ψ) = pc(x;Ψ).

It is in cases in which it is easier to find the maximum likelihood estimate for Lc(Ψ)
than it is for L(Ψ) that the EM algorithm is appropriate. However, since the “missing
data” is only a convenient fiction that of course cannot be observed, one cannot simply
maximize Lc(Ψ). Intuitively, one can think of the EM algorithm as solving the problem of
the “missing data” by “filling in” these values with their expectation with respect to the
observed data and a current estimate of the parameters. One then proceeds iteratively,
re-estimating the parameters and “filling in” the data.

To be precise, in the expectation (E-step) of the EM algorithm we form a kth estimating
function for the likelihood by calculating an expectation as follows:

Q(k)(Ψ) = E
Ψ̂(k) [logLc(Ψ)|y] =

∫
pc(y = d,z;Ψ)p(z|y = d; Ψ̂(k))dz (2.4)

In the maximization (M-step) of the EM algorithm, we then find a value Ψ̂(k+1) that
maximizes the function Q(k)(Ψ). Since the EM algorithm is intended to be applied to
problems for which the maximization of the complete data likelihood is computationally
tractable, this step is generally straight-forward. For many problems, closed form solutions
may be used. However, in other cases one may have to resort to numerical methods.

The E- and M-steps are repeated in turn until some stopping criteria is met. A typical
criteria is that the difference L(Ψ̂(k+1)) − L(Ψ̂(k)) changes by only a small amount. See
figure 2-1 for pseudo-code for the algorithm.

The crucial feature of the EM algorithm is that the “incomplete data” likelihood function
L(Ψ) is monotonically non-decreasing after each iteration in most reasonable situations
(see [35] for a proof of this). That is, it can be shown that:

L(Ψ̂(k+1)) ≥ L(Ψ̂(k))

Hence, if the “incomplete data” L(Ψ) likelihood function is bounded, the EM algorithm will
converge. In general, convergence can be slow and a global maximum is by no means assured.
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However, for estimating the parameters of linear mixed-effects models when a sufficient
amount of data has been collected, these problems are usually not significant [30, 27].

Note that if the complete data log likelihood function log Lc(Ψ) is linear in the “missing
data,” one can generate Q(k)(Ψ) in a particularly straight-forward manner. One simply
calculates the expected value of the “missing data” z conditioned on the observed data
(and using the Ψ̂(k) parameter estimate):

ẑ(k) = E
Ψ̂(k) [z|y] =

∫
zp(z|y = d; Ψ̂(k))dz

This estimate of the “missing data” is then “plugged in” to Lc(Ψ) along with the observed
data. However, in cases in which the complete data log likelihood function is not linear in
the “missing data,” one will need to compute higher moments and possibly interaction terms
between the random variables. The linear mixed-effects model as discussion in section 2.1
is such a case; Appendix C.2 provides more complete details on how to estimate the model
parameters using the EM algorithm.

EM Algorithm
k ← 0
Ψ(0) ← initial guess
do

E-step: construct likelihood approximation Q(k)(Ψ) = E
Ψ̂(k) [logLc(Ψ)|y]

M-step: Ψ̂(k+1) ← arg maxΨ{Q(k)(Ψ)}
k ← k + 1

while L(Ψ̂(k+1))− L(Ψ̂(k)) > ε

Figure 2-1: Pseudo-code for the Expectation-Maximization (EM) algorithm, a general
method for iteratively computing maximum likelihood (ML) estimates. Here, Ψ is a vector
of parameters to be estimated, L(Ψ) is the data likelihood function, Lc(Ψ) is the complete
data likelihood function, and ε is a small numerical tolerance threshold. The algorithm
proceeds by forming an estimate of the data likelihood function, by taking the conditional
expectation of the complete data likelihood function with respect to the observed data and
the current estimates of the parameter values (E-step). In the M-step, new parameter esti-
mates are obtained by maximizing the likelihood of the estimated data likelihood function
obtained in the previous E-step.

2.3 Splines

Splines are piecewise polynomials with boundary continuity and smoothness constraints.
They are widely used in fields such as computer-aided design, image processing and statis-
tics [7, 56, 16, 27]. A typical application involves using splines to generate a smooth curve
that interpolates or approximates the shape of a discrete set of data points. The use of piece-
wise low-degree polynomials helps to avoid problems of overfitting, numerical instability,
and oscillations that arise if single high-degree polynomials were used.

Although higher order splines are useful in some applications, in this thesis only cubic
splines will be used and so the subsequent discussion will be restricted to this case. Cubic
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splines have a number of desirable properties. For instance, cubic polynomials are the
lowest degree polynomials that allow for a point of inflection. It can also be shown that
cubic splines are a good mathematical model for a physical system consisting of a thin
elastic beam, which produces “fair” curves when bent into different shapes [48].

A more formal justification for using cubic splines is as follows. Suppose observations
are made at m time points t1 . . . tm giving a vector d = (d1, . . . , dm)T of data points.
The typical parametric regression problem in statistics involves finding parameters θ̂ for a
function y(t;θ) that minimize the sum of squared error terms:

θ̂ = arg min
θ
{

m∑
i=1

[di − y(ti;θ)]2} (2.5)

Now, suppose that instead of seeking parameters for a fixed function y(t;θ), we perform the
minimization in equation 2.5 over all possible functions from a set F of twice differentiable
functions. The solution would not be unique, since any function that interpolates the data
exactly would yield zero error. Further, there is nothing to prevent these functions from
oscillating wildly around the data points. One approach to this problem is to introduce
a penalty for the “roughness” or local variation of a function. The penalized regression
problem can then be formulated as:

ŷ(t) = arg min
y∈F

{
m∑

i=1

[di − y(ti)]2 + λ

∫ tm

t1
[y′′(t)]2dt} (2.6)

Here, λ > 0 is a pre-specified value called the smoothing parameter, and the integral of the
squared second derivative of the function acts as a penalty on its local variation. It can be
proved that equation 2.6 has a unique solution, which is a cubic spline (see [16] for details).
A key to this proof is the fact that cubic splines exhibit the minimal curvature property.
This means that if y(t) is a cubic spline, for any other f(t) ∈ F such that y(ti) = f(ti), then∫ tm
t1

[y′′(t)]2 ≤
∫ tm
t1

[f ′′(t)]2. Thus, in some sense cubic splines are the “smoothest” curves
capable of interpolating the data.

A cubic spline can be represented with the following equation:

y(t) =
q∑

i=1

cisi(t) tmin ≤ t < tmax (2.7)

Here, t is a parameter (e.g., time), si(t) are polynomials, and ci are the coefficients. The
typical way to represent a piecewise cubic curve is simply:

s4j+l(t) =

{
tl−1, xj ≤ t ≤ xj+1

0 otherwise
(2.8)

Here, l = 1 . . . 4, j = 0 . . . q/4 − 1 and the xj ’s denote the break-points of the piece-
wise polynomials. Thus, we have q/4 cubic polynomials that can be denoted pj(t) =∑4

l=1 c4j+lt
l−1. In order to determine the coefficients of these polynomials, q equations

are required. If one specifies a value dj plus continuity constraints up to the second deriva-
tive for the piecewise polynomial at each break-point xj for j = 1 . . . q/4−1, four equations
are obtained for each of the q/4− 1 internal break-points:

pj(xj) = dj
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pj(xj) = pj−1(xj)
p′j(xj) = p′j−1(xj)
p′′j (xj) = p′′j−1(xj)

Additionally, specifying values for the end-points p0(x0) = d0 and pq/4−1(xq/4) = dq/4 yields
a total of q − 2 equations. Thus, in order to solve for the spline coefficients, an additional
two equations are needed. Typically, these equations are obtained by specifying the first or
second derivatives at the two end-points. Note that since one explicitly specifies the values
pj(xj) at the break-points, the formulation in equation 2.8 is particularly useful for defining
interpolating splines.

2.3.1 B-splines

While the method discussed so far for defining cubic splines is easy to understand, it is
not the most flexible or mathematically convenient formulation for many applications. Al-
ternately, one can write a cubic polynomial p(t) = a3t

3 + a2t
2 + a1t + a0 in terms of a

normalized set of four normalized basis functions:

p(t) = c3b3(t) + c2b2(t) + c1b1(t) + c0b0(t)

Here, each bi(t) is also a cubic polynomial and
∑3

i=0 bi(t) = 1 for any t. In fact, there is no
unique representation for a given cubic polynomial, since it can be written in terms of an
arbitrary basis.

A very popular basis is the B-spline basis, which has a number of desirable properties.
The texts by Rogers and Adams [48] and Bartels et al [7] give a full treatment of this
topic. Once again, the discussion here will be limited to features relevant to this thesis.
Most significantly for the application of fitting curves to gene expression time-series data,
it is quite convenient with the B-spline basis to obtain approximating or smoothing splines
rather than interpolating splines. Smoothing splines use fewer basis coefficients than there
are observed data points, which is helpful in avoiding overfitting. In this regard, the basis
coefficients ci can be interpreted geometrically as control points, or the vertices of a polygon
that control the shape of the spline but are not interpolated by the curve. It can be shown
that the curve lies entirely within the convex hull of this controlling polygon. Further, each
vertex exerts only a local influence on the curve, and by varying the vector of control points
and another vector of knot points (discussed below), one can easily change continuity and
other properties of the curve.

The normalized B-spline basis can be calculated using the Cox-deBoor recursion for-
mula [48]:

bi,1(t) =

{
1, xi ≤ t < xi+1

0 otherwise
(2.9)

bi,k(t) =
(t− xi)bi,k−1(t)

xi+k−1 − xi
+

(xi+k − t)bi+1,k−1(t)
xi+k − xi+1

(2.10)

Here, k is the order of the basis polynomials (degree k − 1) and 2 ≤ k ≤ q. As with any
basis,

∑q
i=1 bi,k(t) = 1 for any t. Each basis function is also non-negative for any t.

The values xi are called knots, where i = 1 . . . q + k. A uniform knot vector is one in
which the entries are evenly spaced, i.e., x = (0, 1, 2, 3, 4, 5, 6, 7)T . If a uniform knot vector
is used, the resulting B-spline is called periodic since the basis functions will be translates
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of each other, i.e., bi,k(t) = bi−1,k(t− 1) = bi+1,k(t + 1). See figure 2-2 for an example. For
a periodic cubic B-spline (k = 4), the equation specifying the curve can be written as:

y(t) =
q∑

i=1

cibi,4(t) for x4 ≤ t ≤ xq+1 (2.11)

Notice that the spline is not defined over the entire range of knots xj . The reason for
this can be seen from inspecting the Cox-deBoor recursion formula in equations 2.9 and 2.10
and the spline equation 2.11: any point t on the spline curve y(t) is always a combination
of three basis function. Figure 2-2 shows this effect. In practice, this means that one must
add three additional points (outside the range the spline will actually be defined on) to each
end of the knot vector.

The B-spline basis allows one to write a particularly simple matrix equation when fitting
splines to a set of data points. Suppose observations are made at m time points t1 . . . tm
giving a vector d = (d1, . . . , dm)T of data points. We can then write the matrix equation
d = Sc, where c is the vector of q control points and S is a m by q matrix where [S]ij =
bj,4(ti). If q = m (the number of control points equals the number of data points), then
S is square and the equation may be solved by matrix inversion, yielding an interpolating
spline. However, as discussed this may lead to overfitting and it is often desirable to
use fewer control points than data points to obtain a smoothing or approximating spline.
In this case, the matrix equation must be solved in the least-squares sense, which yields
c = (ST S)−1ST d.

Figure 2-2: The B-spline basis functions are periodic (translates of one another) when a
uniform knot vector is used. Shown here is the normalized cubic B-spline basis (k = 4)
with knot vector x = (0, 1, 2, 3, 4, 5, 6, 7)T . Note that the B-spline will only be defined in
the shaded region 3 ≤ t ≤ 4, where all four basis functions overlap.
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2.4 Gene Expression Time-Series Linear Mixed-Effects Spline
Model

Now that the necessary background material has been presented, the model for representing
gene expression time-series data as a set of continuous curves will be described. The core
idea behind the model is that cubic B-splines are used to fit a gene’s expression profile,
while the spline control points are simultaneously constrained based on co-expressed genes’
profiles. That is, splines’ control points are modelled as linear combinations of random
(gene specific) and fixed (shared by co-expressed genes) effects.

The model can be described formally as follows. Assume that DNA microarray time-
series data has been collected for nG genes where time-points are chosen from a set of nT

possible times denoted T = {t1 . . . tnT }. Each gene i’s expression values may be sampled at
different time-points from T , and we will denote these nTi time-points by Ti where Ti ⊆ T .
Let dit be the expression measurement for the ith gene at time-point t ∈ Ti and denote
the nTi-dimensional vector of such measurements by di. We will call a set of co-expressed
genes a class, and denote it by Cj where there are nC classes each containing nCj genes.
Cubic B-splines with q control points will be used to represent expression patterns. Let
s(t) denote a q-dimensional vector of cubic B-spline basis functions defined on T , i.e.,
s(t) = (b1,4(t), . . . , bq,4(t))T . Let Si denote a nTi by q matrix, in which each row consists of
[s(t)]T evaluated at each t ∈ Ti.

Let yi denote the nTi-dimensional random vector of expression levels of gene i at the
time-points t ∈ Ti. Denote by µj a q-dimensional vector that represents a fixed effect or
common mean of spline control points for genes in class j. Let γi be a q-dimensional random
vector that represents the gene specific spline control points (random effect), for gene i in
class j. Assume that γi is normally distributed with mean zero and a q by q covariance
matrix Γj . Finally, we will let εi be an additive noise term, a nTi-dimensional normally
distributed random variable with mean zero and variance σ2I. A linear mixed-effects model
for a gene’s expression values can then be written:

yi = Si(µj + γi) + εi (2.12)

For convenience of notation, let Ψ = (µ1, . . . ,µnC ,Γ1, . . . ΓnC , σ)T denote a vector of all
the parameters. Note that µj and Γj are parameters common to genes in the same class,
and σ is a noise variance parameter shared by all genes. The model presented here is
almost identical to the general linear mixed-effects model presented in section 2.1, if we let
Si = Ai = Bi and consider the separate class means and covariance matrices.

Our objective is then to use the model described in this section to predict a spline curve
based on the data. As discussed in section 2.1, the random effects predictor can be written
as:

γ̂i = ΓjS
T
i (SiΓjS

T
i + σ2I)−1(di − Siµj)

We can then generate a predictor spline that can be evaluated at any time t ∈ T :

ŷi(t) = [s(t)]T (µj + γ̂i) (2.13)

The spline predictor can be expanded in a form that can yield some additional intuition
(see Appendix C.3 for the derivation):

ŷi(t) = [s(t)]T {[I − (ST
i Si + σ2Γ−1

j )−1ST
i Si]µj + (ST

i Si + σ2Γ−1
j )−1ST

i di} (2.14)
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Equation 2.14 suggests the affect on the gene’s predicted spline curve of varying the number
of observed time-points nTi , the noise variance σ, and the covariance Γj of spline control
points of genes in the same class.

Consider the case in which Γj is large (i.e., in the sense of the trace of the matrix), indi-
cating that the spline control points of genes in the same class are not very similar. Further,
suppose that σ is small, implying that there is low additive noise. Finally, assume that nTi

is large, which means that ST
i Si will be large since the B-spline basis functions are always

non-negative. Thus, (ST
i Si + σ2Γ−1

j )−1 ≈ (ST
i Si)−1. Substituting this approximation into

equation 2.14 gives us ŷi(t) ≈ [s(t)]T S−1
i di. The interpretation of this is that if there is a

lot of data, the noise is low, and genes in the same class do not have very similar spline
control points, then the estimate of a gene’s spline curve will be based largely on the data.

Consider the alternate case in which Γj is small, σ is large, and nTi is small, which gives
us:

ŷi(t) ≈ [s(t)]T [(I − ΓjS
T
i Si/σ2)µj + ΓjS

T
i di/σ2] ≈ [s(t)]T µj

Thus, if there is little data, high noise, and the genes in the same class have similar spline
control points, the class mean µj will be what is mostly used in predicting a gene’s spline
curve.

In order to evaluate the predictor given in equation 2.13, the unknown parameters of the
model must be estimated. This can be accomplished using the EM algorithm as described
in section 2.2. The only difference is that now we must estimate parameters µj and Γj for
each class Cj . Note, however, that the estimations cannot be performed separately, as the
classes are tied to each other through the common σ parameter. See Appendix C.2.1 for
details on the solution.

The time-complexity of each iteration of the EM algorithm for estimating the parameters
can be derived as follows. For each of the nG genes, the γ̂i predictor must be calculated. This
is an O(q3) calculation (recall that q is the number of spline control points), since it involves
matrix multiplications and inversions of q by q matrices2. Calculating the parameters for
the nC classes will also require O(q3) calculations. Thus, the running time of each iteration
of the EM algorithm is O((nC + nG)q3). In practice, since nG � nC and q is small, the
running time is essentially linear in the number of genes nG.

2There are matrix inversion and multiplication algorithms that run faster than O(q3), but these are
usually only practically faster if q is large. Since q is relatively small in this problem, the O(q3) assumption
is reasonable.
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Chapter 3

Aligning Continuous Gene
Expression Time-Series Profiles

In this chapter, a framework for aligning continuous gene expression time-series profiles will
be presented. The core idea behind this method is to search for a function that transforms
the time-scale of one gene expression process into that of another, while minimizing a mea-
sure of error between expression profiles in the two processes. A number of error measures
are possible, but in general measures that operate on sets of genes will be more robust to
noise and other problems inherent in DNA microarray data. Thus, in order to apply the
method outlined below, a set of genes must first be chosen whose members are expected
to show the same general temporal alterations across the two processes being studied. In
some cases this set might include all expressed genes, although in other circumstances one
might choose a subset of genes known to be participating in a particular process (e.g., cell
cycle regulated genes).

An error measure that operates on sets of genes only over the overlapping parts of
expression curves will then be introduced. An alternate measure will also be described
that is useful in some cases for comparing wild-type with knock-out expression data. Next,
the algorithm used to search for minimizing parameters will be discussed. Finally, some
methods will be introduced for speeding up the alignment algorithm on large data sets.

3.1 Alignment Framework

The alignment method can be formalized as follows. Suppose a time-series of gene expression
data has been collected for a set C of n genes throughout two experiments. The first
experiment shall be referred to as the reference experiment, and the second shall be called
the warped experiment for reasons soon to become obvious. Let ŷj

i (t) denote the predicted
spline for gene i’s expression levels in experiment j, where t ∈ T j = [tjmin, tjmax] for j ∈ {1, 2}
and i = 1 . . . n.

Let h(t;θ) : T 1 7→ T 2 be a parameterized time-warping function with parameter vector
θ. Further, assume that h(t;θ) is monotonically increasing and hence invertible. Thus,
h(t;θ) is a function that maps a time-point in the first experiment to a point in the second
(and h−1(t;θ) does the opposite). One choice is a linear time-warping function, which can
be written as:

h(t;θ) = (t− θ2)/θ1 (3.1)
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Here, θ2 is the translation parameter, and θ1 is the stretch/squash parameter. The linear
time-warping function will be used in the applications portion of this thesis (Chapter 4).

In general, our goal will be to find parameters θ̂ for the warping function h(t;θ) that
minimize an error function over the set of genes C. We will also usually want to constrain
the parameter choices in some way. For instance, for the linear time-warping function
in equation 3.1, we must have θ1 > 0 to avoid a “time-reversal” effect. The constrained
minimization problem can be stated generally as:

θ̂ = arg max
θ∈Ω

{EC(θ)} (3.2)

Here, Ω denotes the set of possible parameter values (i.e., those that satisfy specified con-
straints). This set is often constructed implicitly, by specifying m (non)-linear inequality
constraints of the form gk(θ) ≤ 0, where k = 1 . . .m. EC(θ) in equation 3.2 is an error
measure over the set of genes C. A particular choice for this error measure will be described
in the following section.

3.2 Alignment Error Measure

It is natural to begin constructing the alignment error measure EC(θ) by considering the
squared error between values of the predicted splines for genes in the reference and warped
experiments:

δ2
i (t;θ) = [ŷ1

i (t)− ŷ2
i (h(t;θ))]2

So far we have a point-wise error measure, and we’d like a global measure that somehow “av-
erages” the alignment error over the entirety of the expression curves. In practice, though,
the biological processes being studied in two experiments to be aligned can be expected to
overlap, but not necessarily to begin and end during the same parts of the process. Thus,
a measure that is “global” but only over the overlapping parts of the expression curves will
be introduced.

Denote the starting point of the overlap by α(θ) = max{t1min, h−1(t2min;θ)} and the
ending point by β(θ) = min{t1max, h−1(t2max;θ)}. We then define the alignment error e2

i (θ)
for each gene as:

e2
i (θ) =

∫ β(θ)
α(θ) δ2

i (t;θ)dt

β(θ)− α(θ)
(3.3)

In words, the alignment error for each gene is equal to the squared distance between the
gene’s curve in the reference experiment and that in the warped experiment, averaged over
the duration of overlap between the two curves. Note that the term in the denominator
of equation 3.3, β(θ) − α(θ), is the length of the interval of overlap. This term effectively
penalizes small overlaps, and prevents the warped curve from “shifting away” or “shrinking”
excessively.

Our error measure is still not complete in general, since as discussed it is best to minimize
the error for a set of genes. So, we define the complete measure as a weighted sum of the
individual errors:

EC(θ) =
n∑

i=1

wie
2
i (θ) (3.4)

The wi’s are weighting coefficients that sum to one. In many applications, uniform weighting
with wi = 1/n is most appropriate. However, in other cases we may want to use an alternate
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weighting such as that described in the sub-section below.

3.2.1 Alternate Weighting for the Error Measure for Knockout Experi-
ments

Use of non-uniform weights in equation 3.4 may be appropriate in the following circum-
stance. In some knockout experiments, the majority of genes’ expression patterns would
not be expected to change as compared to the wildtype case. However, a subset of genes
may be highly affected. In this case, we may want to down-weight the contribution of the
highly affected genes, since their knockout and wildtype expression profiles would not be
expected to align well. One way of achieving this is to require that the product wie

2
i (θ)

be the same for all genes, i.e., the weight will be inversely proportional to the error. This
assumption then allows us to derive an alternate expression for the error EC(θ):

wie
2
i (θ) = K ⇒

EC(θ) =
n∑

i=1

wie
2
i (θ) = nK

wi =
K

e2
i (θ)

⇒

n∑
i=1

wi = 1 =
n∑

i=1

K

e2
i (θ)

⇒

K =
1∑n

i=1 1/e2
i (θ)

⇒

EC(θ) =
n∑n

i=1 1/e2
i (θ)

As before, the objective is to minimize EC(θ), or in this case equivalently to maximize∑n
i=1 1/e2

i (θ).

3.3 Minimizing the Alignment Error Measure

The problem of finding the parameters θ̂ that minimize EC(θ) subject to constraints as
described in equation 3.2, is in general a constrained non-linear optimization problem. Even
for the case of a linear time-warping function h(t;θ) as in equation 3.1, the error function
EC(θ) will be a seventh degree polynomial in the parameters. Additionally, in this case the
constraints α(θ)− β(θ) < 0 and −θ1 < 0 are necessary.

Since closed form solutions for the constrained non-linear optimization problem de-
scribed are not possible, numerical methods must be used. For the applications presented
in this thesis, both the Matlab Optimization Toolbox [33] and the publicly available package
CFSQP (C code for Feasible Sequential Quadratic Programming) [31] were found to perform
well. A full discussion of the numerical optimization methods used by these programs is be-
yond the scope of this thesis. Thus, only the key conceptual points will be presented. Also,
only CFSQP will be discussed; the Matlab Optimization routines are similar in principle.

The basic idea behind the CFSQP algorithm is to take steps toward a minimizing
solution for equation 3.2, by iteratively solving the easier problem of finding a minimum
of a quadratic approximation of the objective function. This approach is called Sequential
Quadratic Programming (SQP), which is essentially a generalization of Newton’s method
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and can achieve super-linear convergence. CFSQP additionally ensures that feasible iterates
(i.e., those satisfying the constraints) are generated during the search.

A high-level overview of the steps of the CFSQP algorithm are as follows. First, the
Lagrangian is formed (i.e., the constraints are incorporated with Lagrange multipliers):

L(θ,λ) = EC(θ) +
m∑

j=1

λjgj(θ)

Next, the objective function is replaced by a quadratic approximation:

Q(d) = ∇EC(θ)T d +
1
2
dT H̃(θ∗,λ∗)d

Here, H̃(θ∗,λ∗) is a positive definite approximation of the Hessian (matrix of second deriva-
tives) of L(θ,λ) evaluated at a feasible point (θ∗,λ∗). This approximation method is similar
to using the lower order terms from a Taylor expansion to form a local estimate of a function.
The constraint functions gj(θ) are then replaced with linear approximations:

g̃j(d) = gj(θ∗) +∇gj(θ∗)T d

The problem then becomes one of solving a quadratic program:

d0 = arg min
d
{Q(d)}

Where the minimization problem is subject to the constraints g̃j(d) ≤ 0 for j = 1 . . .m.
Note that since H̃(θ∗,λ∗) is a positive definite matrix, Q(d) will be convex and thus a
minimum point must exist. The vector d0 gives a direction of greatest descent for our
approximation Q(d) of the objective function EC(θ). Using this direction, one could then
perform a line search along d0, i.e., minimize the one-dimensional function f(ρ) = EC((1−
ρ)d0 + θ∗ρ). Two complications arise. First, moving along d0 may go outside the feasible
reason. Second, moving in the direction d0 may not guarantee super-linear convergence.
The CFSQP algorithm addresses both problems by computing a new descent direction that
is a combination of d0, a strictly feasible direction, and a second-order correction term.
This direction ensures local feasible iterates and under certain fairly general conditions,
super-linear convergence can be guaranteed. See [31, 40] for more complete details.

3.4 Approaches for Speeding Up the Alignment Algorithm

As the use of a numerical optimization method, such as that described in section 3.3, does
not guarantee convergence to a global minimum, multiple re-starts with different initial
parameter settings may be necessary. Since the number of genes being aligned can be large,
a stochastic version of the alignment algorithm can be used to reduce the computation time.
The algorithm begins by choosing a random subset of nR genes from the total set C of genes
and random initial settings for the warping parameters from a uniform distribution. The
minimization procedure as described in section 3.3 is then carried out and this process is
repeated a fixed number of times, r, with a new random choice of initial warping parameters
each time. Upon termination, the alignment parameters that corresponded to the lowest
error are chosen. These parameters are then used as the starting conditions for the error
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minimization procedure using the full set of genes. Figure 3-1 provides pseudo-code for
this algorithm. See section 4.3 for empirical results of how this improvement reduced the
running time without affecting convergence of the parameter values.

It is also possible to speed up the calculation of e2
i (θ) in the case in which h(θ, t) is linear

(see equation 3.1). In this case, for a fixed θ the integral in e2
i (θ) can be solved in closed

form. This involves finding all the spline segments that overlap. To be more precise, let xj

denote a q-dimensional vector of break-points, and denote by f j
k(t) the piecewise polynomial

defined on [xj
k, x

j
k+1] for the predictor spline in experiment j. Then the alignment error term

for a gene can be evaluated as:

e2(θ) =
1

β(θ)− α(θ)
{

q∑
k=1

∫ x1+
k+1

(θ)

x1−
k

(θ)
[f1

k (t)]2dt +
q∑

k=1

∫ x
′2+
k+1

(θ)

x
′2−
k

(θ)
[f2

k (h(t;θ))]2dt (3.5)

−2
q∑

k=1

q∑
l=1

∫ z+
kl

(θ)

z−
kl

(θ)
f1

k (t)f2
l (h(t;θ))dt}

The limits of integration are defined as follows:

x1−
k (θ) = max{x1

k, α(θ)}
x1+

k (θ) = min{x1
k, β(θ)}

x
′2−
k (θ) = max{h−1(x2

k;θ)), α(θ)}
x
′2+
k (θ) = min{h−1(x2

k;θ)), β(θ)}
z−kl(θ) = max{x1−

k (θ), x
′2−
l (θ)}

z+
kl(θ) = min{x1+

k (θ), x
′2+
l (θ)}

In equation 3.5, the convention is adopted that an integral is zero if its lower limit is greater
than its upper limit. Note that since most of the spline segments will not overlap, most
of the terms in the double summation will be zero. Since each term to be integrated is a
polynomial in t, the entire integral can be solved in closed form. Note that this is true for
fixed θ, since the overlap of the spline segments depends on θ.

If the stochastic version of the alignment algorithm is used, h(t;θ) is linear in θ, and
the closed form solution in equation 3.5 is used, the alignment algorithm has running time
O(klq2(rnR+n). Here, k is the running time for each iteration of the non-linear optimization
routine, and l is the number of iterations necessary for convergence of the optimization
routine. Each iteration of this routine must compute the error function, which requires
O(q2) computations using equation 3.5, where q is the number of spline control points used
for each gene’s curve. Recall that r denotes the number of random re-starts used in the
stochastic version of the alignment algorithm, nR is the number of genes picked randomly
in each iteration, and n is the total number of genes being aligned.
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Stochastic version of the alignment algorithm
for i← 1 to r

θ(i) ← randomly selected parameters
Ci ← a randomly selected subset of nR genes from the set C

θ̂(i) ← nonlinop(ECi(θ),θ(i))
j ← arg mini=1,...,r{ECi(θ̂

(i))}
θ̂(r+1) ← nonlinop(EC(θ), θ̂(j))

Figure 3-1: Pseudo-code for the stochastic version of the alignment algorithm, which is
useful for reducing the running time of the alignment algorithm when a large number of
genes are being processed. Here, r is a pre-specified number of random re-starts, θ is a
warping parameter vector, EC(θ) is an alignment error function over a set of genes C, and
nonlinop(·, ·) is a numerical constrained non-linear optimization routine, where the second
argument is the starting “guess” for the parameter vector. The algorithm begins by choosing
a random subset of nR genes from the total set C of genes and random initial settings for the
warping parameters from a uniform distribution. The minimization procedure as described
in section 3.3 is then carried out and this process is repeated a fixed number of times, r,
with a new random choice of initial warping parameters each time. Upon termination, the
alignment parameters that corresponded to the lowest error are chosen. These parameters
are then used as the starting values for the error minimization procedure using the full set
of genes.
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Chapter 4

Applications

In this section three applications of the continuous representation/alignment algorithms to
DNA microarray expression data are presented. In the first application, it is shown that the
linear mixed-effects spline model can effectively predict missing data values, achieving lower
error for cases of one or two consecutive missing values than the best method previously
reported in the literature. Second, it is demonstrated that the alignment algorithm can
produce stable low-error alignments, allowing data from three different yeast cell cycle
experiments (with period and phase differences) to be combined. Finally, it is shown that
the alignment algorithm can be used to identify genes that behave differently in normal
versus genetically modified cells.

4.1 Description of Data Sets Analyzed

The data sets analyzed consist of four publicly available DNA microarray time-series studies
pertaining to the yeast Saccharomyces cerevisiae cell cycle [51, 60]. In these experiments,
yeast cells were synchronized, which involved blocking progression of cells through the
cycle and then releasing all cells from the block simultaneously. Several methods exist
for synchronization, many involving the use of different carbon sources and incubation
temperatures, which affect the growth rate of the yeast cells and hence the period of the
cell cycles. Further, alternate synchronization methods arrest the cells during different
phases of the cycle. Thus, while the data sets represent measurements of the same basic
underlying biological process, the cell cycles observed can be expected to have different
phases and periods.

Three of the data sets analyzed are from the work of Spellman et al [51], in which
yeast cells were synchronized using three different methods and mRNA was collected for
microarray analysis at various time-points. These three data sets will be identified by
their synchronization method: alpha mating factor (alphaDS), cdc15 temperature sensi-
tive mutant (cdc15DS), and cdc28 temperature sensitive mutant (cdc28DS). The sampling
intervals and rates for these three experiments differ; see table 4.1 for a summary. The
alphaDS and cdc15DS were obtained using printed cDNA microarrays. For these data sets,
the control sample labelled with a second fluorescent dye consisted of time-series of gene
expression data obtained from unsynchronized yeast cells. The cdc28DS was obtained using
Affymetrix oligonucleotide microarrays.

Spellman et al processed the raw data as follows. For the data obtained using printed
cDNA arrays, ratios of measurements from the two fluorescent channels were log2 trans-
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formed, and normalized so that the mean of the series of values for each gene was equal to
zero. The cdc28DS was converted to ratio form by dividing each expression value by the
average of all expression time-point values for the gene. The ratios were then log2 trans-
formed and normalized in the same manner as were the data sets obtained using printed
cDNA microarrays.

Spellman et al then identified approximately 800 genes as cell cycle regulated and as-
signed these genes to five groups G1, S, S/G2, G2/M, and M/G1, corresponding to phases
of the cell cycle. For this identification and assignment, they used an empirical method
that relied on prior biological knowledge. First they calculated the Fourier transform of the
time-series for each gene:

aj
i =

1
mj

mj∑
l=1

nTi∑
k=1

sin(ωj
l tk + φj)dik (4.1)

bj
i =

1
mj

mj∑
l=1

nTi∑
k=1

cos(ωj
l tk + φj)dik (4.2)

(ρj
i )

2 = (aj
i )

2 + (bj
i )

2 (4.3)

Here, aj
i and bj

i are the coefficients for gene i in experiment j, which are obtained by
averaging over a range of mj periods ωj

l , where j ∈ {alpha, cdc15, cdc28} and l = 1, . . . ,mj .
The range of periods was determined empirically by observing the division time for the
growing yeast cells in each experiment. The scalar dik is the log2 transformed expression
value of gene i at the kth measured time-point, and φj is the phase value for experiment j.
An aggregate “cycling score” ci was then calculated for each gene:

ci =

√
0.49(ρalpha

i )2 + 0.49(ρcdc15
i )2 + (ρcdc28

i )2 (4.4)

The phase φj was set to zero for the alpha experiment, and for the other two experiments
it was set to the value that maximized the sum of the (ρj

i )
2 scores for all genes.

A small number of genes known to be cycling from prior biological experiments was then
selected. These genes were assigned to one of five phase classes, G1, S, S/G2, G2/M, or
M/G1, based on biological knowledge about the phase of their peak activities. The average
expression profile (concatenating all three experiments) was then calculated for the known
genes in each phase class. A cut-off value for the cycling score ci was then chosen, so that
91% of the known cycling genes exceeded this score. Unknown genes were classified as
cycling if their scores exceeded this threshold.

For each unknown gene identified as cycling, correlation coefficients were computed
with the gene’s expression profiles (concatenating all three experiments) and the average
expression profile of known genes in each of the five phase classes. An unknown gene was
assigned to the phase class for which its expression profile exhibited the highest correlation.
See Spellman et al [51] for complete details.

The fourth data set analyzed came from a study by Zhu et al [60], in which the genes
fkh1 and fkh2 that encode transcriptional regulators were knocked out, and a time-series
of expression values was measured in alpha mating factor synchronized cells. This data
set was obtained using printed cDNA microarrays. The controls and data normalization
method used were similar to those described above for the Spellman et al data sets.
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data set method of arrest start end sampling
alphaDS alpha mating factor 0m 119m every 7m
cdc15DS temperature sensitive

cdc15 mutant
10m 290m every 20m for 1 hr, every 10m

for 3 hr, every 20m for final hr
cdc28DS temperature sensitive

cdc28 mutant
0m 160m every 10m

Fkh1/2DS alpha mating factor 0m 210m every 15m until 165m, then af-
ter 45m

Table 4.1: Summary of the four publicly available gene expression time-series data sets
analyzed in this thesis. The first three data sets are from the work of Spellman et al [51],
in which yeast cells were synchronized using three different methods. The fourth data set is
from a study by Zhu et al [60], in which the genes fkh1 and fkh2, encoding transcriptional
regulators, were knocked out.

4.2 Prediction of Missing Values

The goal of this section is to demonstrate that the linear mixed-effects spline model pre-
sented in section 2.4 works well for real gene expression time-series data. While inspection
of plots of the original data and the predicted splines show a “good” fit, an objective quality
criteria is not obvious. Simply using the error between the predicted splines and the ob-
served data is problematic, because such a measure would encourage overfitting. A second
complication is that in the data sets analyzed, expression measurements were not replicated.
So, it is not possible to estimate the experimental variance accurately.

Given these issues, the perspective taken in this thesis is a practical one: to demonstrate
that the linear mixed-effects spline model can predict missing data points at least as well,
or better than several other methods previously described in the DNA microarray analysis
literature. The validation method can be described as follows. A gene’s expression vector
was picked at random and one, two, and three consecutive points were removed from the
vector. Values for these points were then estimated using all remaining data (including
that from all other genes). This process was repeated 100 times. A mean error was then
computed for each case of one, two, or three consecutive missing data points:

err(m) =
1

nm

n∑
i=1

m∑
j=1

|dgitij − ŝ′gi
(tij)| (4.5)

Here, n = 100 is the number of trials, m is the number of removed values, gi is the index of
the gene selected in the ith trial, tij is the jth time-point removed in the ith trial, and ŝ′gi

(t)
is the spline estimated for the gene selected in the ith trial with m time-points removed.
Note that if the selected gene was actually missing expression values at the m time-points
to be removed, another gene was chosen.

In addition to the linear mixed-effects spline method presented in this thesis, three
others previously described in the literature were used to estimate missing values: linear
interpolation [1], spline interpolation using individual genes [11], and K -nearest neighbors
(KNN) with k = 20 [53]. Results using the cdc15DS only are reported here, since this was
the largest data set available and is thus expected to yield the most meaningful statistics1.

1Qualitatively similar results were obtained using the other data sets.
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Uniform B-splines with seven segments were used, as this produced the best results across
all the data sets. Genes were assigned to five classes as described in section 4.1.

The linear mixed-effects spline method outperformed linear and standard spline inter-
polation in all cases, and was superior to K -nearest neighbors for the cases of one and two
consecutive missing values. K -nearest neighbors performed slightly better in the case of
three consecutive missing values, but this case is fairly extreme and probably not likely
to occur often in practice. Figure 4-1 shows these results. Note that the significance of
differences between the errors achieved by the various methods is unclear, since an estimate
of the experimental variance in the data was not available. Thus, it is only meaningful to
consider observed trends in the relative performances of the measures.

Figure 4-1: For predicting missing expression values, the linear mixed-effects spline method
outperformed linear and standard spline interpolation in all cases, and was superior to
K -nearest neighbors for the cases of one and two consecutive missing values. K -nearest
neighbors (KNN) performed slightly better in the case of three consecutive missing values,
but this case is fairly extreme and probably not likely to occur often in practice. The
validation involved picking a gene at random from the data set and then removing one,
two, and three consecutive time-points. Values for these time-points were then estimated
using all remaining data and this process was repeated 100 times. A mean error was then
computed for each case of one, two, or three consecutive missing data points. The errors
shown were normalized by the largest error (linear interpolation with three consecutive
missing values). The results shown were obtained using the cdc15DS.
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4.3 Aligning Similar Biological Processes

In this section, the alignment algorithm is successfully applied to register three cell cycle
data sets, cdc15DS, cdc28DS, and alphaDS, in which cells were synchronized using three
different methods and thus exhibit different periods and phases. These data sets were
also sampled at different rates and over different durations. As described in section 1.1,
alignment of data sets can be generally useful for combining information from multiple
experiments so that a sufficient amount of data is available for automated network discovery
algorithms. Additionally, for the specific data sets analyzed here, the estimated alignment
parameters may provide insights into the differences among the cell cycle synchronization
methods.

The cdc15DS was used as a reference set and the alphaDS and cdc28DS were aligned
against it using a linear warping h(t;θ) = (t− θ2)/θ1, and the full set of approximately 800
genes identified as cell cycle regulated as described in section 4.1. Uniform B-splines with
seven segments were used for the reasons described in section 4.2.

For the cdc28DS, parameter estimates θ̂1 = 1.42 and θ̂2 = 2.25 were obtained with
EC(θ̂) = 0.1850. These results indicate that the cdc28DS cell cycle runs at approximately
1.4 times the speed of the cdc15DS cycle and starts approximately 5.5 minutes before2. For
the alphaDS, parameter estimates θ̂1 = 1.95 and θ̂2 = −5.89 were obtained with EC(θ̂) =
0.1812. These results indicate that the alphaDS cell-cycle runs at approximately 2 times the
speed of the cdc15DS cycle and starts approximately 8 minutes before. Figure 4-2 provides
a visual depiction of the cdc28DS to cdc15DS alignment.

Alignment for each data set took approximately 5.5 minutes on a 1 GHz Pentium III
machine with 512 Mb of RAM, using the alignment algorithm with the improvements dis-
cussed in section 3.4; data set alignments took approximately 45 minutes without these
improvements.

The estimated alignment parameters are biologically reasonable. Both the cdc15DS and
cdc28DS were obtained using temperature sensitive mutant yeast, in which the cells are
subjected to heat shock to achieve cell cycle arrest, and then placed at a lower temperature
to resume the cycle. Such heat shock is known to reduce subsequent growth rates [51].
This is in contrast to the alphaDS, in which arrest was achieved through the addition
of a chemical and no temperature shift occurred. Thus, the fact that the alphaDS has
the shortest estimated period is biologically quite reasonable. The fact that the cdc28DS
exhibits a somewhat shorter period than the cdc15DS may be explained by the fact that
the subsequent release/growth temperature used for the cdc28DS was slightly higher, or
that different strains of yeast were used. The fact that both the alphaDS and cdc28DS were
estimated to begin before the cdc15DS is also reasonable. The synchronization method used
for both the alphaDS and cdc28DS arrests cells during the G1 phase, whereas that used for
the cdc15DS arrests cells in the M phase.

To validate the quality of these alignments two randomized analyses were performed:
1) alignments of the alphaDS to the cdc15DS with gene identity of expression profiles in
the cdc15DS randomly permuted, and 2) alignments of the alphaDS to the cdc15DS using
only subsets of randomly chosen genes. Only the alphaDS was used in these analyses;
this data set was chosen because it is the smallest and presumably demonstrates worst-
case results. The first analysis was designed to determine the quality of the alignment
score EC(θ̂). Essentially. we’d like to know the probability that the observed alignment

2This is obtained by calculating h(10; θ̂) = 5.5, since the cdc15DS starts at 10 minutes.

43



# genes θ̂1 std θ̂1 θ̂2 std θ̂2

5 1.80 0.42 -7.70 16.41
10 1.89 0.21 -5.06 21.5
25 1.93 0.10 -4.99 7.07
50 1.93 0.13 -5.13 9.03
100 1.96 0.03 -6.86 2.42
200 1.95 0.02 -6.38 1.76
400 1.96 0.02 -6.12 1.30

Table 4.2: The estimated alignment parameters for the alphaDS to cdc15DS registration
exhibit low variances even when fairly small sets of genes are used. Shown are the results of
experiments in which random subsets of fixed size were sampled 100 times and alignment of
the alphaDS to the cdc15DS was performed, using a linear warping function. The columns
are as follows: number of genes used, stretch/squash parameter, standard deviation of this
parameter, translation parameter, and standard deviation of this parameter. Note that the
variance in the parameters decreases as more genes are used and there is convergence to
the θ̂1 = 1.95 and θ̂2 = −5.89 settings found using the full set of genes.

score or lower could occur by chance, i.e., through alignment of random data sampled
from the appropriate distribution. Since the underlying distribution of the expression data
is difficult to model, a reasonable approach is to permute the available data. Rather than
permuting the time-points, which would disrupt time-series dependencies and thus give poor
alignments, the more stringent approach of permuting only the gene identities was used.
The second analysis was designed to determine the sensitivity of the alignment parameters
to the number of genes used.

For the first analysis, 200 trials were performed yielding EC(θ̂) scores between 0.2562
and 0.3554, with 50% of the scores lying between 0.2780 and 0.3129. These results suggest
that the actual alphaDS to cdc15DS EC(θ̂) score of 0.1812 would not arise by chance.

For the second analysis, subsets of between 5 and 400 genes were sampled 100 times
from the full set of cell cycle regulated genes (see table 4.2). As expected, the variance in
the parameters decreases as more genes are used and there is convergence to the θ̂1 and θ̂2

estimates obtained using the full set of genes. Importantly, the variance in the parameters
is low for even relatively small numbers of genes.

Thus, these analyses give evidence that the method presented in this thesis can be used
to reliably align the three cell cycle data sets. These results compare favorably with those
in Aach et al [1] that use the same data. In their case, they found that their actual align-
ment score was not at a low percentile when compared against alignments using randomized
data (time-points permuted). Further, they indicate that poor results were obtained when
small sets of genes were aligned (an analysis over a wide range of gene set sizes was not
presented in their paper). The fact that the method presented in this thesis uses a con-
tinuous representation and fits only two parameters to all the genes, helps to explain its
good performance on the cell cycle data. However, one must be careful in extrapolating
conclusions from these results, since they are clearly dependent on the underlying data set.
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4.4 Identifying Differentially Expressed Genes

In this section, the alignment method is used to help discover genes that are regulated by
the Fkh2 yeast transcription factor. Fkh2 is a DNA binding protein known to be involved
in regulating genes during the yeast cell cycle [50]. However, its precise role and which
genes it regulates remain an open question. In a recent work, Simon et al [50] used a
microarray based DNA-binding assay to identify genes in wildtype yeast that are bound
by Fkh2. Unfortunately, binding of a protein to DNA near a gene in this assay provides
only suggestive evidence that the protein regulates the gene’s expression. One issue is that
the large-scale binding assay used by Simon et al is known to produce many false-positives.
Additionally, even if a protein does actually bind near a gene, the protein may be carrying
out some function other than regulating that gene.

However, if DNA near a gene is bound by a protein and the gene’s expression changes
in an experiment in which the DNA-binding protein has been “knocked out,” this is much
stronger evidence for regulation. Zhu et al performed an experiment in which the two
yeast transcriptional factors, Fkh1 and Fkh23, were knocked out and a time-series of gene
expression levels was measured in alpha mating factor synchronized cells [60]. It is of interest
to try to use this data source, along with Spellman et al ’s gene expression time-series data
from wildtype yeast and the DNA-binding data from Simon et al, to try to discover genes
regulated by Fkh2. That is, by combining information from these data sources, one could
examine genes determined to be bound by Fkh2 in wildtype yeast to see if these genes’
expression patterns differ in the wildtype versus the mutant (knockout) yeast. However,
direct comparison of the knockout data from Zhu et al [60] and the wildtype data from
Spellman et al [51] is problematic, because the time-series were sampled at different rates,
and also evidently have different periods and phases.

To study differential expression of genes between the wildtype and knockout experi-
ments, the Fkh1/2DS was used as the reference set and the alphaDS was aligned with it.
The non-uniform weighting version of the alignment algorithm described in section 3.2.1
was used to align the data sets. All of the approximately 800 genes identified to be cell
cycle regulated as described in section 4.1 were used in the alignment.

The fifty-six genes determined to be bound by Fkh2 in Simon et al ’s DNA-binding assay
were then ranked according to the alignment error score e2

i (θ̂). Figure 4-3 shows a plot of
the spline expression profiles of the top four genes with the worst alignment scores and the
top four with the best scores. A poor alignment score indicates that a gene is behaving
differently in the knockout than it is in the wildtype experiment.

The ranking produced by the algorithm is biologically meaningful, highlighting which
genes are likely to be regulated by Fkh2, versus those that are merely bound by it4. For
instance, all of the genes shown with the worst alignment scores were determined to be bound
by both Fkh1 and Fkh2 in [50], whereas all of the best aligning genes were determined to be
bound by Fkh2 only. This corresponds to biological knowledge indicating that both Fkh1
and Fkh2 are required for regulation of a number of genes. It is also interesting that among
the genes shown with good alignment scores, three of the four are bound also by Swi6 and
either Mbp1 or Swi4, factors that are likely to work independently of the Fkh1/2 proteins.
Further, all the genes shown with poor alignment scores are bound by the factors Ndd1 and
Mcm1 or Ace2 and/or Swi5. Mcm1/Ndd1 are known to work with the Fkh1/2 proteins

3Fkh1 is a transcription factor with strong similarity to Fkh2, and the two are apparently partially
redundant. So, unless both are knocked out, many effects of interest are not observed.

4The biological interpretation that follows is based on a personal communication from Dr. Itamar Simon.
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and are not sufficient to regulate expression without Fkh1/2. Ace2 and Swi5 apparently
can bind and regulate independently of the Fkh1/2 proteins, but their expression is Fkh1/2
dependent.
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Figure 4-2: With the alignment algorithm it was estimated that the cdc28DS cell cycle runs
at ≈ 1.4 times the speed of the cdc15DS cycle and starts ≈ 5.5 minutes before, a biologically
reasonable result. Linear warping was used with the full set of approximately 800 cell cycle
regulated genes. The left-hand side shows averages of unaligned expression values for genes
in one of two phase classes. The right-hand side shows averages of the aligned predicted
spline curves (and averages of the expression data values) for genes in one of two phase
classes. The top row shows the G1 phase class (186 genes), and the bottom row the S/G2
phase class (283 genes).
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Figure 4-3: Genes that are regulated by Fkh2 can be identified by first aligning the Fkh1/2
knockout and the wildtype alpha mating factor synchronized data sets, and then ranking
genes determined to be bound by Fkh2 (in a DNA-binding assay) according to their align-
ment error scores. Shown are the genes with the four worst (top row) and best (bottom
row) alignment scores. A poor alignment score indicates that a gene is behaving differently
in the knockout than it is in the wildtype experiment. See text for biological interpretation
of these results.

48



Chapter 5

Conclusion

In this thesis, a probabilistic framework for continuous alignment of gene expression time-
series data was presented. Gene expression time-series data were represented as a set of
continuous spline curves (piecewise polynomials) using a linear mixed-effects model. This
model constrains a gene’s expression curve to be generally similar to those of co-expressed
genes, while still allowing for gene specific variations. Estimation of the parameters of this
model using the Expectation-Maximization (EM) algorithm was described. A continuous
alignment technique was then introduced in which a search is performed for a function
that transforms the time-scale of one gene expression process into that of another, while
minimizing a measure of error between expression profiles in the two processes. Several
improvements were then described for speeding up the alignment algorithm on large data
sets.

Three applications were then presented of the continuous representation/alignment al-
gorithm to DNA microarray expression data, which yielded biologically meaningful results.
In the first application, it was shown that the linear mixed-effects spline model can effec-
tively predict missing data values, achieving lower error for cases of one or two consecutive
missing values than the best method previously reported in the literature. Second, it was
demonstrated that the alignment algorithm can produce stable low-error alignments, allow-
ing data from three different yeast cell cycle experiments (with period and phase differences)
to be combined. Finally, it was shown that the alignment algorithm can be used to identify
genes that behave differently in normal versus genetically modified cells.

5.1 Future Work

As more gene expression time-series data becomes available, I believe that the use of sta-
tistically principled continuous representation and alignment approaches such as the one
presented in this thesis will become increasingly important, in order to understand dynamic
genetic processes.

There are a number of interesting extensions that could be made to this work. For
instance, it would seem natural to extend the statistical model so that class assignments
can be learned automatically. In this thesis, classes for genes in the data sets analyzed were
determined by using the method of Spellman et al [51], which uses prior biological knowledge
for class assignments. In fact, it is possible to formulate a mixture model that can learn
class assignments and obtain good results on the yeast cell cycle data set as demonstrated
in the conference paper I co-authored [6]. However, for reasons of brevity and because the
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alignment work was my primary contribution, I did not present these results in this thesis.
Another obvious extension would involve using non-linear warping functions, such as

the monotone splines developed by Ramsay et al [44]. However, it should be noted that
using more parameters increases the danger of overfitting, and currently available data sets
have too few time-points to justify the use of non-linear warping.

Another extension would involve using different alignment error functions. The align-
ment error measure described in this thesis takes into account the difference in amplitude
between the expression curves in the two experiments. In applications in which the ampli-
tudes of the curves are quite different, another measure may be more appropriate, such as a
continuous version of linear correlation that focuses more on similarity between the shapes
of the curves.

Also, the random distribution of the spline coefficients could be considered in the align-
ment algorithm. Currently, the predicted spline curves are used. Instead, the curves could
be treated as random variables and the alignment error measure could use an expectation
of a function of these variables.

A method could also be developed for determining the significance of alignment er-
rors so that differentially expressed genes could be automatically detected. Currently, the
alignment errors are just used to rank genes and there is no specific criteria for determin-
ing differential expression. However, defining an appropriate distribution of the alignment
errors remains an open question.

Finally, a different type of application could be explored in which genes exhibiting
similar kinetic changes across experiments would be grouped together. That is, a clustering
algorithm could be developed so that time-series of two different experiments measuring
the same gene would be aligned and those genes that align best using similar warping
parameters would be clustered together.
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Appendix A

Overview of Molecular Genetics

This appendix will discuss the bare essentials of molecular genetics for those unfamiliar
with the subject. For more information, consult a text such as Strachan and Read [52].

A.1 Essential Molecules For Life: DNA, RNA and Proteins

Much of cellular behavior arises from the interactions between three types of molecules:
DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and proteins. The so-called central-
dogma of biology states that there is a one-way flow of biological information from DNA to
RNA to proteins.

DNA may be thought of as the primary long-term information storage molecule in the
cell. Often likened to the “blue-print” for the cell, DNA consists of a long backbone of alter-
nating sugar and phosphate residues. Attached to each sugar residue is one of four nitrogen
containing bases: adenine (A), cytosine (C), guanine (G) and thymine (T). It is the linear
ordering or sequence of these bases in the DNA molecule that encodes information. Non-
covalent bonds between hydrogen atoms in adenine/thymine and cytosine/guanine allow
these bases to form stable pairs. The bases that form such pairs are said to be comple-
mentary. It is this base-pairing that allows DNA to exist as a double-stranded molecule
in most normal physiological situations. The two strands encode the same information but
use complementary bases.

While RNA also serves in an information carrying role in the cell, these molecules act in
a more transitory manner than do DNA molecules. RNA is quite similar to DNA chemically,
differing only in the type of sugar used (ribose instead of deoxyribose) and the use of the
base uracil (U) instead of thymine. Unlike DNA, RNA molecules primarily exist in a single-
stranded form, which is less stable and subject to cellular degradation. A primary function
of cellular RNA is to act as the messenger molecules that carry information copied from
DNA. This process of copying DNA to RNA is called transcription, and is carried out
by pieces of cellular “machinery” called RNA polymerases. The single-stranded copies are
called mRNA (messenger RNA) and serve to amplify the original DNA “signal.” In keeping
with the “blue-print” analogy, the RNA molecules are like working prints that have been
photocopied from the original DNA plans.

Many mRNA copies are produced from the DNA, and the information encoded in these
copies is then translated into proteins by elaborate pieces of cellular “machinery” called
ribosomes. If mRNA copies are not made from a gene, then no protein will be produced
and the gene is said to be silent or inactive. When the gene is transcribed into RNA copies,
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the mRNA is said to be expressed.

Proteins are the primary “work-horses” of the cell, serving in a wide variety of roles
including formation of physical structures, communication with other cells, and catalysis
of metabolic reactions. In keeping with the “blue-print” analogy, proteins are the wood,
walls, windows, doors, and even hammers and cranes used for constructing the building!
Proteins consist of chains of amino acids, and the sequence of these amino acids and subse-
quent molecular modifications enable the protein to fold into a complex three-dimensional
structure. While only four different nucleic acids are used to encode information at the
DNA or mRNA level, proteins use twenty different amino acids. A triplet genetic code is
used, in which three nucleotides, called a codon, specify a single amino acid. Since there are
four types of nucleotides used in DNA, there are 43 = 64 possible codons. This allows for
a degenerate genetic code, in which a single amino acid can be specified by any of several
codons.

A.2 Genes and Regulation

Because proteins play such a fundamental role in the life of a cell, biologists are extremely
interested in identifying those regions of DNA called genes that ultimately lead to functional
proteins. The complete set of genes in an organism is called its genome. A variety of compu-
tational and experimental techniques have been used to identify genes [52]. Surprisingly, in
more advanced organisms, much DNA is never transcribed and even more mRNA is never
translated. The explanations for this are complex and still not fully understood [47, 52]. For
these and other reasons, discovering genes is by no means a straight-forward or error-free
process. Further, even the definition of a gene is rather controversial and has been subject
to revision in recent years [52]. Fortunately, there are organizations such as the National
Center for Biotechnology Information that seek to compile databases of the latest consensus
genetic data. Currently, information is publicly available for over four hundred organisms,
including bacteria, yeast, worms, plants, rodents, and humans [37].

Genetic regulation — the control over when and where genes are active in the cell —
is critical in all organisms. Since the ultimate products of genes are proteins that carry
out an extremely diverse set of cellular tasks, lack of control of genetic activity can have
disastrous consequences. For instance, in animals many genes code for proteins involved in
cellular growth and division. If these genes are inappropriately regulated, cellular growth
may go unchecked leading to malignant tumors. Since genetic regulation is so critical, its
study comprises a large part of the field of molecular genetics.

The process of genetic regulation is very complex, and is not yet completely understood
for even simple organisms such as bacterial viruses [41, 5]. On the most basic level, genetic
regulation is carried out by transcriptional factors (specialized proteins) that act either
to inhibit or activate transcription of genes. Many transcription factors bind to regions
of DNA near the genes they regulate. In reality, the process of regulation is much more
complicated, especially in more advanced organisms such as humans. Genetic regulation is
known to involve combinatorial interactions among transcriptional factors, alterations of the
three-dimensional structure of DNA, control of the rates of transcription and translation,
and many other mechanisms [39, 34, 36, 18, 47, 41].
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A.3 The “New Era” of Genomics

Classic molecular genetics tended to focus on the understanding of individual genes, which
often involved years of painstaking experimental work for each gene [49]. It has only been
in the last several years, with the advent of new automated technologies, that biologists
have begun to take a more holistic approach. This approach is sometimes called systems
biology, or more specifically genomics, when the goal is to understand organisms at the
level of their genomes. This field is generally divided into two sub-disciplines: structural
and functional genomics. Structural genomics is primarily concerned with elucidating the
sequences of genes (order of nucleotides) and their positions relative to one another. The
definition of functional genomics is a bit less clear, but an article on the topic by Philip
Hieter and Mark Boguski [25] provides a useful viewpoint:

“. . . functional genomics refers to the development and application of global
(genome-wide or system-wide) experimental approaches to assess gene func-
tion by making use of the information and reagents provided by structural
genomics. It is characterized by high throughput or large-scale experimental
methodologies combined with statistical and computational analysis of the re-
sults . . . Computational biology will perform a critical and expanding role in this
area: whereas structural genomics has been characterized by data management,
functional genomics will be characterized by mining the data sets for particularly
valuable information.”
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Appendix B

DNA Microarrays

One of the most valuable tools in functional genomics is the DNA microarray, which allows
researchers to measure the expression levels of thousands of mRNAs simultaneously. Al-
though there are a variety of DNA microarray technologies in use, all operate on the basic
principle that complementary strands of nucleic acids can “recognize” or hybridize with
each other with high specificity through base-pairing.

DNA microarrays consist of a large number of different DNA molecules, called “probes,”
which are immobilized on a solid surface in an ordered matrix. The positions of the DNA
molecules on the array are predetermined, and the different arrayed pieces of DNA usually
correspond to portions of genes. Messenger RNA from a group of cells is then worked
up to produce a sample of nucleic acid “targets,” some of which will hybridize with the
DNA probes on the microarray [49]. Various methods, usually involving either fluorescence
or radioactivity, can be used to detect the degree of hybridization that occurs and thus
quantify the expression levels of mRNAs present. The two most popular DNA microarray
technologies differ principally in the probes or arrayed material used: either short sequences
of DNA (oligonucleotides) [32, 3, 2] or complementary DNA (cDNA) [14, 9].

B.1 Photolithographic Oligonucleotide Arrays

One of the main producers of oligonucleotide arrays is the company Affymetrix, which uses
a photolithographic process borrowed from semiconductor manufacturing [2]. An emerging
alternative to the Affymetrix process uses ink-jet technology to deposit pre-synthesized
oligonucleotides onto glass slides [24]. However, since this technology is not yet widely used
it will not be discussed further in this thesis.

Affymetrix’s photolithographic process begins with a quartz wafer that is coated with
silane molecules, forming a uniform matrix. Nucleotides are then attached to this matrix via
linker molecules. A photolithographic mask determines what area of the wafer will receive
nucleotides. The mask has windows of 18 to 20 microns in size, and when ultraviolet
light is shined through the windows, the exposed linkers become chemically “de-protected,”
allowing coupling to added nucleotides. The added nucleotides also have chemical groups
at a particular position that are removed when exposed to ultraviolet light.

By using a sequence of different masks, and adding nucleotides in the appropriate order,
a large number of oligonucleotides of chosen sequences may be synthesized directly on
the quartz wafer. Current Affymetrix GeneChips c© have over 500,000 spatially distinct
“features” (oligonucleotides of different sequences) on a single 1.28 square centimeter array.
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Each oligonucleotide is typically about 25 bases long.
Generally, 11 to 16 oligonucleotide probes are carefully chosen to represent a given

gene transcript. Computational and empirical methods are used to choose the probes, in
order to maximize sensitivity and specificity. For each probe selected, a mismatch probe is
constructed that differs from the probe by one nucleotide near the center of the sequence.
These mismatch probes serve as controls for non-specific hybridization. Thus, a total of 22
to 32 (match plus mismatch) probes are used for each gene. The state-of-the-art Affymetrix
Human Genome U133 GeneChips c© Set consists of two arrays that contain over one million
unique oligonucleotide features corresponding to over 33,000 genes [2].

The sample or target is prepared by collecting mRNA from a population of cells and then
using a viral enzyme, reverse transcriptase, to produce a DNA copy (cDNA) of the RNA1.
The cDNA is then transcribed back into RNA in vitro using a source of ribonucleotides
with attached biotin molecules. Biotin is a small molecule that binds very tightly to the
protein streptavidin, which is used later in the microarray assay. The purpose of these steps
is to amplify the amount of starting mRNA and to label the material. The labelled RNA
is then hybridized to the microarray, and a fluorescent molecule attached to strepavadin is
added. After several more staining and washing steps, the result is that areas on the chip
will fluoresce proportionately to the concentration of hybridized RNA present [3].

A laser is used to excite the fluorescing molecules, and an optical scanner captures the
emissions. Image processing algorithms are then used to correct for background noise and
other optical effects [2]. The final output is a set of numbers that are related to the level of
mRNA present for each gene.

B.2 Printed cDNA Arrays

In contrast to oligonucleotide arrays, cDNA arrays typically use much longer pieces of
DNA (often a few hundred nucleotides in length [14, 9]). The DNA attached to these
arrays is typically obtained from cDNA libraries. These libraries are usually constructed by
making cDNA copies (with reverse transcriptase) of mRNA from particular cell types [14]
(e.g., cells from different tissue sources). Once a set of cDNA probes has been selected,
the typical procedure is to amplify the cDNA using the polymerase chain reaction (PCR)
and then “print” it onto a glass microscope slide. Printing is done using a variety of
technologies, although a typical setup uses a robotic arm that spots the DNA onto the slide
using a pen-like apparatus [9]. Arrays have been constructed with this technique using over
30,000 different cDNAs [49]. The cDNA array technique is very flexible, since DNA from
almost any source may be used. Specialized arrays have been constructed with cDNAs
from human lymphocytes and other tissues, fruit flies, yeast, bacteria, and many other
sources [4, 57, 51, 17].

As with the procedure for RNA preparation used for oligonucleotide arrays described
above, the target material to be hybridized to a cDNA array consists of a sample of mRNA
prepared from a population of cells. However, in the case of cDNA arrays, labelling is done
during the reverse transcription to cDNA step. The in vitro transcription step is skipped,
and the cDNA is hybridized directly to the microarray.

These is another important difference in target preparation that arises from the some-
what inexact printing process. Since inconsistent amounts of cDNA can be deposited at a
given spot, direct comparisons across different arrays may be inaccurate. Thus, a method

1Yes, this does violate the central dogma, but biology is full of exceptions!
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of competitive hybridization is used in which two separate samples labelled with different
fluorescent dyes are simultaneously hybridized to the array.

The remaining laser excitation and scanning processes for cDNA arrays are also similar
to those used for oligonucleotide arrays. One difference is that two lasers of different wave-
lengths are used, so that the intensity of fluorescence of the two samples can be measured
separately. A ratio is then reported, giving the fold difference in expression between the
two samples. Thus, with this technique the expression levels are always reported as ratios
relative to one sample.

B.3 Comparison of Photolithographic Oligonucleotide and
Printed cDNA Arrays

Both photolithographic oligonucleotide and printed cDNA microarrays are widely used,
and have been applied to similar problems such as detecting genes involved in cancer or
immune response [4, 20, 38, 8]. There are, however, a number of important differences
between the two platforms. One technical concern is that using short segments of DNA
can result in significant non-specific hybridization. However, the use of multiple probes
covering different regions of a gene, mismatch probes, and recent work on using longer pre-
synthesized oligonucleotides (50-100mers) [29], mitigate this problem to a large degree. A
second technical concern is that oligonucleotide arrays require knowledge of a gene’s DNA
sequence. As an increasing amount of sequence information becomes available, this is likely
to be less of an issue. But, there are certainly applications in which the flexibility of being
able to use long pieces of DNA of unknown sequence could be useful.

However, probably the most important difference between the two platforms is not a
technological one. Photolithographic oligonucleotide microarray production is much more
costly and less flexible, in part due to the fact that manufacture is dominated by a single
company, Affymetrix. In contrast, as mentioned above, printed cDNA microarrays have
been manufactured in many different academic laboratories for diverse applications. In the
future, as more competitors enter the arena, it is possible that mass-produced, low-cost,
and highly accurate arrays will become commercially available.

B.4 Limitations of DNA Microarrays

Although DNA microarrays are an extremely important tool in functional genomics, they
have a number of significant limitations. These limitations arise not only from the tech-
nologies, but also from inherent biological factors.

On a technical level, DNA microarray data is extremely noisy. Noise is introduced
during the many steps of array manufacture, sample preparation, hybridization, and de-
tection [23]. For instance, pipette error, temperature fluctuations, and reagent quality can
introduce variation in mRNA amplification and the efficiency of fluorescent tagging. The
variability of all these factors — from chip-to-chip, laboratory-to-laboratory, and even biol-
ogy graduate student-to-graduate student — makes it challenging to compare results or to
quantify precisely the detection limits of microarrays. For this reason, a large literature has
developed presenting computational and experimental methods for reducing the effective
noise level of microarrays (see for example the references [26, 54, 12, 29, 13]). A discussion of
much of this literature is beyond the scope of this thesis, although some relevant references
are mentioned in section 1.4.
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From a biological perspective, an inherent limitation of using DNA microarrays to try
to understand genetic function is that mRNA levels do not tell the whole story. Clearly,
mRNA levels do provide some important information on the activity of a gene, since a gene
must be transcribed into mRNA before it can be translated into a protein. However, the
converse is not true: just because a gene is expressed does not mean that its ultimate protein
product is active. Moreover, there may be a considerable time-lag between expression of a
gene and the activity of its protein product. Additionally, the activity of proteins is further
affected by chemical modifications and the binding of small molecules such as metabolites.

Thus, in order to understand more completely the cellular picture, we would need to
measure many types of molecules engaged in numerous complex processes. Unfortunately,
such an approach is limited by current technologies. Moreover, it is inherently more difficult
to measure the levels of protein than it is to measure those of mRNAs, due to the complex
structures of proteins. New technologies do provide some hope. For instance, researchers
have recently used variants on DNA microarrays to measure the binding of proteins to
regions of DNA [50] and levels of a limited number of proteins [61].
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Appendix C

Derivations

C.1 Random Effects Predictor for the Linear Mixed-Effects
Model

Suppose that we have two jointly Gaussian random vectors x and y. It can be shown that
the conditional distribution x|y is a Gaussian [58], and it can be written in terms of the
statistics of the two random vectors. Denote the mean of the conditional distribution by
mx|y(y) and the variance of this distribution by Λx|y. We can then write the statistics of
the conditional distribution as:

mx|y(y) = mx + ΛxyΛ−1
y (y −my) (C.1)

Λx|y = Λx −ΛxyΛ−1
y ΛT

xy (C.2)

Now, for the linear mixed-effects model described in section 2.1, we have that yi ∼
N(Aiµ,BiΓBT

i + σ2I) and γi ∼ N(0,Γ). We can then derive the cross-covariance matrix
Λγiyi

as follows:

Λγiyi
= E[(γi −mγi)(yi −myi

)T ] = E[γi(yi −Aiµ)T ] = (C.3)

E[γiγ
T
i BT

i + γiε
T
i ] =

E[γiγ
T
i BT

i ] = ΓBT
i

In the above, we used the fact that E[γi] = 0 and that γi is uncorrelated with εi. Then,
using equations C.1 and C.3 we can write the predictor as:

γ̂i(yi) = mγi(yi) = ΓBT
i (BiΓBT

i + σ2I)−1(yi −Aiµ) (C.4)

Finally, it can be shown that the conditional covariance matrix is:

var(γi|yi) = Λγi|yi
= (Γ−1 + BT

i Bi/σ2)−1 (C.5)

This follows from equations C.2 and C.3:

Λγi|yi
= Λγi

−Λγiyi
Λ−1

yi
ΛT

γiyi
=

Γ− ΓBT
i (BiΓBT

i + σ2I)−1BiΓT =
{Γ(BiΓ)−1(BiΓBT

i + σ2I)− ΓBT
i }{(BiΓBT

i + σ2I)−1BiΓ} =
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(σ2B−1
i )(BiΓBT

i + σ2I)−1BiΓ =
(σ2B−1

i )[(Γ−1B−1
i )(BiΓBT

i + σ2I)]−1 =
σ2[(BT

i + σ2Γ−1B−1
i )Bi]−1 =

(Γ−1 + BT
i Bi/σ2)−1

C.2 Estimating Parameters of the Linear Mixed-Effects Model
Using the EM Algorithm

This section follows the method outlined in [6, 27, 28], but gives a more detailed derivation.
Note that using the penalized least squares method yields an identical solution (see [28] for
details).

The EM algorithm is initialized with a parameter vector Ψ̂(0) = (µ(0),Γ(0), σ(0))T .
Random values could be used, or other possibilities such as the mean of the observed data
for µ(0), the identity matrix for Γ(0) and unity for σ(0).

For the linear mixed-effects model described in section 2.1, the complete data likelihood
can be factored in a convenient way:

Lc(Ψ) = p(γ1, . . . ,γn,y1, . . . ,yn;Ψ) =
p(γ1, . . . ,γn;Ψ)p(y1, . . . ,yn|γ1, . . . ,γn;Ψ)

As was noted in section 2.1, yi|γi ∼ N(Aiµ + Biγi, σ
2I) and γi ∼ (0,Γ). Hence, the

complete data likelihood is:

Lc(Ψ) =
n∏

i=1

1
(2π)m/2σm

×

exp[− 1
2σ2

(yi −Aiµ−Biγi)T (yi −Aiµ−Biγi)]×
1

(2π)m/2[det(Γ)]1/2
exp[−1

2
γT

i Γ−1γi]

Taking the logarithm of this equation yields:

log Lc(Ψ) = −nm log σ − 1
2σ2

n∑
i=1

‖yi −Aiµ−Biγi‖2 (C.6)

−n

2
log det(Γ)− 1

2

n∑
i=1

γT
i Γ−1γi + C

Here, C is a constant that does not depend on any of the parameters or random variables.
For the E-step, the expectation of the log Lc(Ψ) function is taken with respect to the γi

random variables conditioned on the observed data. Inspection of equation C.6 reveals that
there are terms linear in γi, as well as the quadratic terms: γT

i BT
i Biγi/σ2 and γT

i Γ−1γi.
For the linear terms, we can simply replace γi with the conditional expectation γ̂i as derived
in section C.1. For the quadratic terms, we will make use of a general formula. Suppose F
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is a square q by q matrix. Then we can write:

E[γT
i Fγi|yi] =

q∑
j=1

q∑
l=1

[F ]jlE{[γi]j [γi]l|yi} =

γ̂T
i F γ̂i +

q∑
j=1

q∑
l=1

[F ]jl[Λγi|yi
]jl =

γ̂T
i F γ̂i + trace(Λγi|yi

F )

Using the fact that EΨ(k) [γiγ
T
i |yi] = γ

(k)
i (γ(k)

i )T + Λk
γi|yi

= γ
(k)
i (γ(k)

i )T + ((Γk)−1 +

BT
i Bi/(σ(k))2)−1 from section C.1 and the above formula, we can calculate the expectations

for the quadratic terms:

EΨ(k) [γT
i BT

i Biγi/σ2|yi] = (C.7)

(γ̂(k)
i )T BT

i Biγ̂
(k)
i /σ2 + trace(Λ(k)

γi|yi
BT

i Bi)/σ2

EΨ(k) [γT
i Γ−1γi|yi] = (γ̂(k)

i )TΓ−1γ̂
(k)
i + trace(Λ(k)

γi|yi
Γ−1) (C.8)

These results allow us to calculate the conditional expectation of the complete log likelihood
in the kth E-step as:

E
Ψ̂(k) [log Lc(Ψ)|y] = −nm log σ − 1

2σ2

n∑
i=1

‖yi −Aiµ−Biγ̂
(k)
i ‖

2

−n

2
log det(Γ)− 1

2

n∑
i=1

(γ̂(k)
i )TΓ−1γ̂

(k)
i

− 1
2σ2

n∑
i=1

trace(Λ(k)
γi|yi

BT
i Bi)

−1
2

n∑
i=1

trace(Λ(k)
γi|yi

Γ−1) + C

The parameters can now be maximized in the (k +1)th M-step by taking partial deriva-
tives and equating them to zero. The solutions are as follows:

µ(k+1) = (
n∑

i=1

AT
i Ai)−1[

n∑
i=1

AT
i (di −Biγ̂

k
i )] (C.9)

(σ(k+1))2 =
1

nm

n∑
i=1

‖di −Aiµ
(k+1) −Biγ̂

(k)
i ‖

2 + (C.10)

1
nm

n∑
i=1

trace(Λ(k)
γi|yi

BT
i Bi)

Γ(k+1) =
1
n

n∑
i=1

[γ̂(k)
i (γ̂(k)

i )T + Λ(k)
γi|yi

] (C.11)

Notice that maximizing the parameters amounts almost just to “plugging” the predicted
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values γ̂i into the typical maximum likelihood (ML) estimation formulas for a multivariate
Gaussian. However, the formulas for σ and Γ have “correction” terms added. Intuitively,
one can think of these terms as correcting for the additional uncertainty in the predictions
γ̂i.

C.2.1 Modifications Necessary for the Gene Expression Time-Series Lin-
ear Mixed-Effects Spline Model

The E- and M-steps for estimating parameters of the model presented in section 2.4 are
almost identical to those discussed above. The only real difference is that we change nota-
tion, letting Si = Ai = Bi and we now must estimate parameters µj and Γj for each class
Cj . The complete data likelihood for the model presented in section 2.4 factors as follows:

Lc(Ψ) = p(γ1, . . . ,γnG ,y1, . . . ,ynG ;Ψ) =
p(γ1, . . . ,γnG ;Ψ)p(y1, . . . ,ynG |γ1, . . . ,γnG ;Ψ) =

nG∏
i=1

p(γi;Ψ)p(yi|γi;Ψ) =

nC∏
j=1

∏
i∈Cj

p(γi;µj ,Γj , σ)p(yi|γi;µj ,Γj , σ)

Plugging in the distributions of the random variables, we get:

Lc(Ψ) =
nC∏
j=1

∏
i∈Cj

1
(2π)nTi

/2σnTi

×

exp[− 1
2σ2

(yi − Siµj − Siγi)T (yi − Siµj − Siγi)]×
1

(2π)nTi
/2[det(Γj)]1/2

exp[−1
2
γT

i Γ−1
j γi]

Taking the logarithm of this equation yields:

log Lc(Ψ) = −
nC∑
j=1

∑
i∈Cj

nTi log σ − 1
2σ2

nC∑
j=1

∑
i∈Cj

‖yi − Siµj − Siγi‖2 (C.12)

−1
2

nC∑
j=1

nCj log det(Γj)−
1
2

nC∑
j=1

∑
i∈Cj

γT
i Γ−1

j γi + C

As before, the parameters are maximized in the (k + 1)th M-step by taking partial
derivatives and equating them to zero. The solutions are as follows:

µ
(k+1)
j = (

∑
i∈Cj

ST
i Si)−1[

∑
i∈Cj

ST
i (di − Siγ̂

k
i )] (C.13)

(σ(k+1))2 =
1∑nC

j=1

∑
i∈Cj

nTi

nC∑
j=1

∑
i∈Cj

{‖di − Siµ
(k+1)
j − Siγ̂

(k)
i ‖

2 + (C.14)
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trace((Λ(k)
γi|yi

)jS
T
i Si)}

Γ(k+1)
j =

1
nCj

∑
i∈Cj

[γ̂(k)
i (γ̂(k)

i )T + (Λ(k)
γi|yi

)j ] (C.15)

C.3 Expanded Form of the Spline Predictor

The spline predictor in section 2.4 is given as:

ŷi(t) = [s(t)]T (µj + γ̂i) (C.16)

Using the fact that γ̂i(di) = ΓjS
T
i (SiΓjS

T
i +σ2I)−1(di−Siµj) we can expand equation C.16

to get:

ŷi(t) = [s(t)]T [µj + ΓjS
T
i (SiΓjS

T
i + σ2I)−1(di − Siµj)] =

[s(t)]T {[I − ΓjS
T
i (SiΓj + ST

i )−1Si]µj + ΓjS
T
i (SiΓjS

T
i + σ2I)−1di} =

[s(t)]T {[I − (ST
i Si + σ2Γ−1

j )−1ST
i Si]µj + (ST

i Si + σ2Γ−1
j )−1ST

i di}
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