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Abstract 

Background. Over the past two decades, high false alarm (FA) rates have remained 

an important yet unresolved concern in the Intensive Care Unit (ICU). High FA rates 

lead to desensitization of the attending staff to such warnings, with associated 

slowing in response times and detrimental decreases in the quality of care for the 

patient. False arrhythmia alarms are commonly due to single channel ECG artifacts 

and low voltage signals, and therefore it is likely that the FA rates may be reduced if 

information from other independent signals is used to form a more robust hypothesis 

of the alarm's etiology.  

Methods. A large multi-parameter ICU database (PhysioNet's MIMIC II database) 

was used to investigate the frequency of five categories of false critical (“red” or 

“life-threatening”) ECG arrhythmia alarms produced by a commercial ICU 

monitoring system, namely: asystole, extreme bradycardia, extreme tachycardia, 

ventricular tachycardia and ventricular fibrillation/tachycardia. Non-critical 

(“yellow”) arrhythmia alarms were not considered in this study. Multiple expert 

reviews of 5,386 critical ECG arrhythmia alarms from a total of 447 adult patient 

records in the MIMIC II database were made using the associated 41,301 hours of 

simultaneous ECG and arterial blood pressure (ABP) waveforms. An algorithm to 

suppress false critical ECG arrhythmia alarms using morphological and timing 

information derived from the ABP signal was then tested. 

Results. An average of 42.7% of the critical ECG arrhythmia alarms were found to 

be false, with each of the five alarm categories having FA rates between 23.1% and 

90.7%. The FA suppression algorithm developed was able to suppress 59.7% of the 

false alarms, with FA reduction rates as high as 93.5% for asystole and 81.0% for 

extreme bradycardia. FA reduction rates were lowest for extreme tachycardia 

(63.7%) and ventricular-related alarms (58.2% for ventricular fibrillation/tachycardia 
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and 33.0% for ventricular tachycardia). True alarm (TA) reduction rates were all 0%, 

except for ventricular tachycardia alarms (9.4%). 

Conclusions. The FA suppression algorithm reduced the incidence of false critical 

ECG arrhythmia alarms from 42.7% to 17.2%, where simultaneous ECG and ABP 

data were available. The present algorithm demonstrated the potential of data fusion 

to reduce false ECG arrhythmia alarms in a clinical setting, but the non-zero TA 

reduction rate for ventricular tachycardia indicates the need for further refinement of 

the suppression strategy. To avoid suppressing any true alarms, the algorithm could 

be implemented for all alarms except ventricular tachycardia. Under these conditions 

the FA rate would be reduced from 42.7% to 22.7%. This implementation of the 

algorithm should be considered for prospective clinical evaluation. The public 

availability of a real-world ICU database of multiparameter physiologic waveforms, 

together with their associated annotated alarms is a new and valuable research 

resource for algorithm developers. 

 

Keywords: annotated database; blood pressure; false alarms; false alarm reduction; 

intensive care unit; life-threatening alarms; signal quality 
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1. Introduction 

False alarms in the Intensive Care Unit (ICU) can lead to a disruption of care, 

impacting both the patient and the clinical staff through noise disturbances, 

desensitization to warnings and slowing of response times [1], leading to decreased 

quality of care [2,3]. ICU alarms produce sound intensities above 80 dB that can 

lead to sleep deprivation [1,4,5], inferior sleep structure [6,7,8], stress for both 

patients and staff [9,10,11,12,13] and depressed immune systems [14]. There are 

also indications that the incidence of re-hospitalization is lower if disruptive noise 

levels are decreased during a patient’s stay [15].  Furthermore, such disruptions have 

been shown to have an important effect on recovery and length of stay [2,10]. In 

particular, cortisol levels have been shown to be elevated (reflecting increased 

stress) [12,13], and sleep disruption has been shown to lead to longer stays in the 

ICU [5]. ICU false alarm (FA) rates as high as 86% have been reported, with 

between 6% and 40% of ICU alarms having been shown to be true but clinically 

insignificant (requiring no immediate action) [16]. In fact, only 2% to 9% of alarms 

have been found to be important for patient management [17].  

Previous investigations into reducing false alarms in data recorded from 

critically ill patients are relatively few, and were performed on small data sets. 

Mäkivirta et al. [18] implemented a recursive two-stage median filter for heart rate 

trends which provided improved smoothing at the expense of increased error in heart 

rate estimation. The first (3-point, 15 s) filter removed only brief transients, and the 

second longer (15-point) filter removed more persistent artifacts. Makivirta's 

approach reduced FA frequency from 88% to 51% in data from 10 post-cardiac 

surgery patients. Sittig and Factor [19] developed a multi-state Kalman filter 

approach to identifying artifacts and reducing alarms, but only tested the system on 

simulated data.  Koski et al [20] used 134 hours of data from 15 patients to develop 

a knowledge-based system for reducing false alarms on post-operative patients, 
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achieving an increase in specificity from 20% to 74%.  However, none of these 

studies used a large, representative database for training or testing. GE Medical 

(Waukesha, WI) is currently awaiting FDA 510(k) approval for their ‘Intellirate’ 

algorithm, which uses a range of simultaneously available pulsatile signals in the 

ICU (such as the pulse oximeter and arterial blood pressure waveforms) to help 

verify electrocardiogram (ECG)-based alarms. However, little has been published 

concerning the Intellirate algorithm, including details of the relatively small set of 

data on which the algorithm was tested. Schapira and Van Ruiswyk, in a poster 

presentation [21], reported an evaluation of GE’s algorithm. The algorithm 

employed by the monitors was shown to have a sensitivity of 94% and a positive 

predictive value of 74%. After applying an unspecified fusion algorithm that used 

the information in all the recorded channels the sensitivity remained unchanged, but 

the positive predictive value increased to 86%. Unfortunately, no per-alarm category 

analysis was given based upon alarm type, and only 151 alarms in total were used.  

In a previous work, we analyzed a public database of ICU data which contained 89 

distinct critical (life-threatening) ECG arrhythmia alarms (defined as asystole, 

extreme bradycardia, extreme tachycardia, ventricular tachycardia and ventricular 

fibrillation/tachycardia) recorded from a total of 21 subjects and 800 hours of ICU 

waveform data [22]. A total of 25% of the 89 critical ECG arrhythmia alarms were 

found to be false. An ABP analysis strategy (that involved checking to see if the 

morphology and timing of the ABP was commensurate with the issued alarm) was 

successful in suppressing all the false alarms in this study, without suppressing any 

true alarms. However, given the small size of the dataset, it is unlikely that the FA 

suppression rate would remain at 100% on a larger set of data, and some true alarm 

suppression would likely be inevitable. 

To avoid erroneous triggers of critical ECG ICU alarms, noisy sections of data 

could be rejected using signal quality measures. Furthermore, intelligent multi-lead 
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ECG analysis (as is employed by most ICU monitors) and the use of data derived 

from an independent cardiac-cycle signal might facilitate the rejection of false 

arrhythmia alarms. The corroboration of alarms using information extracted from a 

signal highly correlated with the ECG, (such as a pulsatile waveform) that uses an 

independent sensor to monitor the cardiac cycle, might be able to suppress a large 

number of false ECG alarms in the ICU.  The ABP waveform signal is generated by 

an independent transducer located away from the torso, exhibits different noise 

characteristics from an ECG waveform, and is unlikely to contain ECG-related 

artifacts (except in the case of large body movements of the patient that affect both 

sensors simultaneously). Therefore, by using information derived from ABP and 

ECG waveforms, it is likely that true ECG alarms can be effectively corroborated 

and false ECG alarms suppressed. In the study presented in this article, a new multi-

parameter ICU database (PhysioNet’s MIMIC II database) [23, 24, 25] was used to 

investigate the frequency of true and of false critical ECG arrhythmia alarms 

generated by patient monitors in real ICU settings. No second-level “yellow” alarms 

were considered in this study. The methods presented here are broken down into two 

pieces of work. Firstly, procedures to identify and annotate critical ECG arrhythmia 

alarms are detailed. Secondly, a strategy is presented for suppressing false critical 

ECG arrhythmia alarms using an algorithm that exploits morphological and timing 

information derived from the ABP waveform. Methods for optimizing the algorithm 

are discussed. Results are then presented in three sections: 1) false and true alarm 

rates of the annotated data, 2) optimized parameters values for the FA suppression 

algorithm using the training set, and 3) the performance of the FA suppression 

algorithm.  Weaknesses of, and possible improvements to the algorithm are 

discussed. 
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2. Methods 

2.1. Data Sources 

The Multi-Parameter Intelligent Monitoring for Intensive Care II (MIMIC II) 

database was assembled primarily to facilitate the development and evaluation of 

ICU decision support systems [23, 24, 25]. The database currently includes more 

than 2,000 records containing multiparameter physiologic waveforms and 

accompanying data which span approximately 10,000 patient-days. Each record 

contains up to four channels of continuously monitored waveforms (usually two 

leads of ECG, arterial BP, and pulmonary arterial pressure where available), as well 

as monitor-generated alarms. Data was obtained under an IRB-approved protocol 

from adult patients (ages 18 - >90 years, mean 68.3 years), in 48 medical, surgical, 

and coronary intensive care beds at an urban tertiary-level hospital. All waveform 

data and alarms were collected using Philips CMS bedside patient monitors (Philips 

Medical Systems, Andover, MA). Although multi-lead arrhythmia analysis was 

available in these monitors, it is important to note that the clinical staff at the data 

collection site chose to use single lead arrhythmia analysis. Waveforms were stored 

at 125 Hz with 8 bit resolution. The original ECG sampling rate was 500 Hz, and the 

ECG was then compressed to 125Hz using a turning point algorithm to preserve 

ECG peaks [26]. A subset of records were selected from the MIMIC II database that 

fulfilled two criteria: 1) a critical ECG arrhythmia alarm was issued at some time 

during the ICU stay, and  2) one channel of ECG and an ABP waveform  were 

present at the time of the arrhythmia alarm.   

 

2.2. Alarm Definitions 

In a modern ICU virtually all bedside monitors generate two classes of alarms: A 

“yellow” alarm for notification of something abnormal, and a “red” alarm for 
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notification of a critical or life-threatening event. The “yellow” alarms are typically 

not very loud and last for 5 or 6 seconds. However, the critical or “red” alarms have 

a much louder and distinctive tone that remain on until they are “acknowledged” by 

the care giver, usually a nurse. In this study we considered only critical “red” ECG 

alarms, which comprise approximately 4% to 8% of the ECG alarms in our database. 

Critical arrhythmia alarms issued by the bedside monitors as a result of ECG 

signal processing were defined by the manufacturer according to the current 

ANSI/AAMI EC13 Cardiac Monitor Standards [27] as follows: (1) Asystole alarms 

were triggered by a default asystolic pause of 4 seconds that was user-adjustable 

between 2.5 and 4 seconds. (2) Extreme bradycardia was defined to be a heart rate 

(HR) less than 40 BPM. (3) Extreme tachycardia was defined to be a HR greater 

than 140 BPM, adjustable up to 200 BPM for an adult population. (4) VTach was 

defined as a run of ventricular beats at a rate of at least 100 BPM, lasting 5 or more 

beats. (5) VTach/VFib was defined as a fibrillatory waveform lasting for at least 4 

seconds. Table 1 details the alarm definitions and thresholds for the monitors used in 

this study. Note that each triggered alarm also documented the currently valid user-

defined threshold settings where applicable.  

 

2.3. “Gold Standard” Alarms: Annotation & Adjudication 

Since no large annotated dataset of alarms is publicly available, a new set of 

“gold standard” alarms was required to support the development and testing of false 

alarm rejection strategies. Patient records which met the required criteria (described 

above), were selected from the MIMIC II database, yielding 496 adult patient 

records with a total of 45,370 hours of simultaneous ECG & ABP waveforms 

containing 8,636 alarms.  

Eleven volunteers were recruited to manually review the alarms. The 

volunteers consisted of two main groups; first, a group of experienced researchers 
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(one physician with several decades of experience, and four signal processing 

experts, each with over a decade of experience analyzing such data), and second, a 

group of six graduate students, all with graduate level training in cardiac 

electrophysiology [28]. The dataset was carefully reviewed by two annotators 

working independently and in different locations. The reviewers were able to view 

all the ECG and ABP waveforms surrounding each alarm (with a controllable 

window size), using a standard open-source tool (‘WAVE’, available from 

PhysioNet.org [29]). The default view provided all available bedside monitor signals 

30 seconds either side of the alarm. Reviewers could expand and shrink both the 

time and amplitude scales at their discretion to provide more detailed information or 

to add context to the alarm. The reviewers were instructed to mark each alarm as 

true, false, or ambiguous (if they were not completely certain). The reviewers’ 

annotations were recorded by the annotation software. The two passes were then 

digitally compared for each individual alarm. Two sets were produced: 1) a set of 

6,402 matched alarms where both reviewers agreed on the state of the alarm as true 

or false, and 2) a set of 2,234 mismatched alarms, where the two reviewers either 

disagreed, or at least one of them was uncertain of the state of the alarm. The 

mismatched set was reviewed by one experienced physician or one experienced 

research engineer to provide a final adjudication. The entire matched set was also 

reexamined by a graduate student to ensure consistency, with any anomalies fed 

back to the research engineers or physician. During the adjudication process, any 

uncertainty was directed to the experienced physician for resolution. Throughout the 

iterative process, alarms without associated physiological waveforms (due to 

disconnections), and alarm repetitions referring to the same event, were removed. 

Furthermore, 49 patients who had active intra-aortic balloon pumps (IABP) were 

excluded, since their ABP waveforms did not appear as “physiologically normal”. 

The final “gold standard” alarm set comprised 5,386 alarms from 447 patients 
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during a total of 41,301 hours. Hence, on average, there were approximately 3 

critical ECG arrhythmia alarms per patient per day. Table 2 details the relative 

frequency of each alarm category and their associated true and false rates, as judged 

by the annotators.  

 

 

2.4. Algorithm Architecture 

The algorithm described here was designed to be used as a post-processing 

module that could filter a bedside monitor’s critical alarm output in real-time. The 

logic flow, depicted in Figure 1, consisted of using evidence from the ABP 

waveform to accept or suppress an ECG-based alarm. At the onset of each critical 

ECG arrhythmia alarm, a 17-second ABP waveform segment was extracted, 

including 13 seconds prior to the alarm onset and 4 seconds after the alarm. The 

AAMI standards [27] require that asystole and rate-limit arrhythmia alarms must be 

triggered within 10 seconds of the onset of the event. Given that each alarm was 

triggered within 5 to 6 seconds of the onset of the event, an additional 4 second 

delay from the processing still satisfied the AAMI requirements.  

After notification of each alarm, the algorithm first determined whether the 

signal quality of the ABP was high enough to enable a decision concerning the 

validity of the alarm to be made (except in the case of asystole or bradycardia, where 

the algorithm searched for the absence of beats). This filter used the signal 

abnormality index (SAI) of Sun et al. [30] and the beat detection algorithm of Zong 

et al [31, 32]. The SAI value (‘0’ for a good beat and ‘1’ for an abnormal beat) was 

calculated by comparing intervals, gradients and amplitudes of the blood pressure 

waveform to pre-defined thresholds. If more than a given number of beats, M, 

(which could be optimized differently for different alarm types) in the 17-second 

analysis window were considered abnormal, then the ABP signal was deemed 

 10



unsuitable for further processing and by default, the arrhythmia alarm was accepted 

as true. If a sufficient number of beats were considered normal, each arrhythmia 

alarm was processed as detailed below.  

 

2.4.1 Asystole Processing 

An asystole alarm was issued by the bedside monitor if a beat-to-beat interval 

longer than TA seconds (the variable asystole pause interval) was found for the 

single lead being monitored.  To decide on the truth of each asystole alarm the ABP 

waveform was used to compute first, the largest pulse-to-pulse interval within the 

analysis window (in case the asystole resolves itself within the window) and second, 

the last pulse-to-window end interval (i.e. the time interval between the last detected 

pulse onset and the end of the analysis window, in case the asystole was sustained 

beyond the end of the analysis window). If the larger of the two intervals was greater 

than TA, the asystole alarm was accepted; otherwise it was suppressed. 

 

2.4.2 Extreme Bradycardia Processing 

To determine the validity of an extreme bradycardia alarm, NB of the longest 

pulse-to-pulse intervals extracted from the ABP waveform in the analysis window 

were used to estimate the mean heart rate (by using the mean interval between 

consecutive high quality beats). If the mean HR was above the monitor’s HR 

threshold by at least E

B

BB BPM, the corresponding extreme bradycardia alarm was 

suppressed.  

 

2.4.3 Extreme Tachycardia Processing 

The mean HR was computed based on the NT shortest pulse-to-pulse intervals 

in the ABP waveform within the analysis window. There were three requirements 

for alarm suppression: 1) there must be less than or equal to MT abnormal ABP 
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beat(s) (determined by the SAI algorithm), 2) the duration of the MT abnormal 

beat(s), if any exist, must be less than a total of TT seconds, and 3) the mean HR 

(calculated from NT beats) must be lower than ET BPM below the monitor’s adjusted 

threshold. The condition of permitting MT abnormal beat(s) lasting a total of less 

than TT seconds was designed to decrease the method's sensitivity to spurious noise, 

and to allow suppression of alarms with a marginally abnormal ABP waveform. (In 

this context, marginal means at least one and less than six beats in the 17-second 

window were labeled as abnormal by the SAI algorithm.) 

  

2.4.4 Ventricular Tachycardia 

The mean HR was computed based on the NVT shortest pulse-to-pulse 

intervals in the ABP waveform within the analysis window. A VTach alarm was 

suppressed if both of the following conditions held: 1) the ABP waveform contained 

less than or equal to MVT abnormal beats as defined by the SAI algorithm, and 2) the 

mean HR (calculated over NVT beats) was below a variable threshold, RVT BPM.  

 

2.4.5 Ventricular Fibrillation/Tachycardia 

The mean HR was computed based on the NVF shortest pulse-to-pulse 

intervals in the ABP waveform within the analysis window. A ventricular fibrillation 

alarm was suppressed if both of the following conditions held: 1) the ABP waveform 

displayed abnormal behavior (as judged by the SAI algorithm) for less than TVF 

seconds and, 2) the mean HR (calculated over NVF beats) was below a variable 

threshold, RVF BPM. 

 

2.5. Algorithm Development: Training and Test Data Sets 

 The data in this study were divided into a test set and a training set of roughly 

equal sizes. Optimization of each of the 13 parameters, (TA, EB, ET, NB, NT, NVT, NVF, 
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TT, TVF, MT, MVT, RVT and RVF) described above (in section 2.4) was performed over 

the training set, between the limits listed in Table 3. The test set was used to estimate 

the algorithm’s performance on ‘unseen’ data. The alarms were distributed amongst 

the training and test groups on a per-patient basis, balancing them according to the 

frequency of arrhythmia alarms. The patient records were rank-ordered with respect 

to frequency of alarms and then divided into training (n=267) and test (n=180) 

groups.  

The distribution of the 5,386 distinct critical ECG arrhythmia alarms for each 

group (and each alarm) is detailed in Table 4, together with their respective false 

alarm rates. As can be observed from the table, each group was roughly equally 

balanced for each type of alarm, although there were few true asystole and 

VTach/VFib alarms in each group. The imbalance between the FA rates in the 

training and test sets for the extreme bradycardia group indicated that the true and 

false alarm rates for extreme bradycardia (but not the other critical alarm types in 

this study) were highly subject specific, particularly with respect to the ratio of the 

true to false alarms.  

 

 

2.6 Algorithm Optimization  

Due to the low number of algorithm parameters required for processing each 

alarm type and the relatively small search-space required, complex optimization 

schemes (such as gradient descent or Newton-based methods) were not required. 

Furthermore, in some cases there were large areas of optimality where either the 

extremes or the centroids of the parameter domains were appropriate. Since an 

asymmetric optimization of several parameters using two cost functions sequentially 

was required, (the minimum TA suppression rate, and then the maximum FA 

suppression rate), a slightly unconventional approach was employed. Generally, for 
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the optimization of one parameter, a receiver-operator curve (FA suppression rate 

versus one minus the TA suppression rate) is plotted. However, such an approach 

would assume that a trade-off between FA and TA rates is acceptable. For critical 

ECG arrhythmia alarms, non-zero TA suppression rates are unacceptable. Therefore, 

the search was restricted to parameter values that resulted in the lowest TA 

suppression rate. Figure 2 illustrates this approach. As the parameter TA (the 

minimum length of the asystole) was increased from 1 to 3 seconds, the FA 

suppression rate increased steadily to 92.5%. For TA > 3s, the FA suppression rate 

continues to rise, but with a rapidly increasing suppression rate of true asystoles; an 

unacceptable scenario. In this case the largest value of TA (3 sec.) that gave a FA 

suppression rate of zero was chosen.  

Optimal parameter threshold values were determined by simply repeating the 

FA suppression algorithm over all possible combinations of relevant parameter 

values (within the ranges detailed in Table 3). Parameter values that provided the 

minimal TA suppression rate were noted for each alarm type. After identifying a 

subset of parameter values yielding a minimal TA suppression rate, the parameter 

values giving the maximal FA suppression rate were ultimately chosen. 

Figure 3 illustrates extreme bradycardia parameter optimization, a two-dimensional 

(two-parameter) problem and the second least complicated scenario for the five 

alarm categories. In this case the objective was to optimize the same two cost 

functions (minimum TA and maximum FA suppression rates), but for two variables; 

EB (the maximum negative error allowed between the HR calculated by the bedside 

monitor and the ABP waveform-derived HR) and N

B

BB (the number of beats used to 

calculate the HR). FA suppression rates are marked by circles and TA suppression 

rates are marked by squares. Additionally, points where the TA suppression rate is 

zero are marked by stars.  
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Similar approaches were taken for the other arrhythmia alarm categories, 

although their dimensionality was much higher and therefore not amenable to 

graphical illustration. After determining the optimal values for each parameter using 

the training data, the algorithm was applied to the test data. 

 

 

3. Results 

3.1. Human Annotation: Critical ECG Alarm Distribution in the ICU 

For the 447 patients studied, there were 5,380 ECG life-threatening alarms, 

representing approximately 4% to 8% of all the ECG alarms in our database. As can 

be seen in Table 2, extreme tachycardia and VTach were the most frequent critical 

ECG arrhythmia alarms, totaling respectively 34.8% and 35.3% of all alarms. 

Extreme bradycardia and asystole were approximately one third as frequent, 

comprising respectively 13.3% and 10.8% of all alarms. The alarms caused by 

ventricular fibrillation were the least frequent, comprising only 5.8% of the total 

critical ECG arrhythmia alarms.  

The 579 asystole alarms were almost as frequent as the 717 extreme 

bradycardia alarms. However, the asystole alarms had the highest FA rate (90.7%), 

while the bradycardia FA rate was relatively low (29.3%). We found that only 54 of 

the asystole alarms were true (1.0% of all critical alarms in this study) compared to 

507 true extreme bradycardia alarms (9.4% of all the alarms). Simple rate-related 

alarms (extreme bradycardia and extreme tachycardia) were the most accurate (with 

TA rates of 70.7% and 76.9%). However, true extreme bradycardia events were 

almost three times less frequent than true extreme tachycardia (9.4% versus 26.8%). 

Extreme tachycardia and VTach comprised 70.1% of the overall arrhythmia alarms, 

and 45.6% of the true arrhythmia alarms. VTach/VFib was by far the least frequent 

overall arrhythmia alarm, (only 5.8% of the alarms in the dataset) but had a high 
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associated FA rate (79.6%). The true VTach/VFib alarms were therefore almost as 

infrequent (1.2% of all alarms in the dataset) as true asystole alarms. The overall FA 

rate for the data used in this study was found to be 42.7%, with asystole, extreme 

tachycardia and VTach being the major contributors to the FA rate.   

 

 

 

3.2. Algorithm optimization  

Table 5 lists the optimal parameter values found during algorithm training. In 

some cases, a broad range of parameters was possible, in which case either the 

center of the parameter ranges, or the most logical upper or lower limits were 

chosen.  (For example, when computing HR it is logical to use as many beats as 

possible, within the optimal range, to obtain the best estimate. When choosing the 

threshold for bradycardia, it is logical to choose the optimal value that most closely 

maps to the clinical threshold for bradycardia.)  

Figure 2 illustrates that an optimal value of TA=3 sec gave a FA suppression 

rate of zero for asystole alarms. Figure 3 illustrates the more complicated scenario 

for bradycardia FA suppression optimization, where two parameters (EB and NB BB) can 

be varied. The circled area is the subset of points where the FA suppression rate is 

largest given a TA suppression rate of zero, and where small changes in parameter 

values do not change the performance substantially. An 80% FA suppression rate is 

possible (with a zero TA suppression rate) for a non-unique set of values for EB and 

N

B

BB. In this case the center of the region is used, giving EB=6 and NB BB=3. Note that 

decreasing EB or decreasing NB BB can improve the FA suppression rate by at most 2% 

(to 82%) but at the great cost of elevating the TA suppression rate from 0% to as 

high as 80%. 
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3.3. Algorithm performance  

Surprisingly, the performance of the arrhythmia alarm suppression algorithm 

was better on the test set than on the training set, and hence a slight asymmetry in 

the quality of the signals must exist between the test and training sets. Normally, we 

would have expected a better performance on the training set, and would have 

reported the (generally poorer results) on the test set. Since in this case the test set 

essentially inflates the performance of the algorithm we were testing, we decided to 

report also the lower performance statistics provided by averaging the results from 

both the training and testing sets.  

Table 6 details the FA and TA suppression performance of the algorithm on 

the training and test sets, and also on the combined training and test sets. FA 

suppression rates for the combined set ranged between 58.2% and 93.5% for all 

arrhythmia alarm types except for VTach. The last two columns of Table 6 provide 

the FA rates before and after suppression for the combined set. The asystole FA 

rates were reduced from 90.7% to 5.5%. Extreme bradycardia and tachycardia FA 

rates were reduced from 29.3% and 23.1% to 5.5% and 8.4% respectively. 

VTach/VFib FA rates were reduced from 79.6% to 33.1%. The false VTach alarm 

suppression rate was the lowest of all alarm categories tested, with a reduction in the 

FA rate from 46.6% to 30.8%, at the cost of suppressing 9.4% of the true VTach 

alarms (14.5% in the training data and 4.0% in the test data). No true alarms were 

suppressed for any other critical alarm group in this study. The overall FA rate was 

reduced from 42.7% to 17.2%. 
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4. Discussion  

In the present study, for patients with invasive ABP monitoring, false critical 

ECG arrhythmia alarm rates in the ICU were found to be, on average, 42.7%, with 

individual rates varying between 23.1% and 90.7%. The literature reports FA rates 

in ICU data (for both “red” and “yellow” conditions) between 40% and 90% [16-

21]; results which are consistent with those presented in this study. The false 

asystole alarm rates (and FA rates for all the critical ECG arrhythmia alarms) in our 

data may have been higher than they needed to be. Firstly, the critical care units 

from which these data were recorded chose to standardize arrhythmia analysis on 

only one selected lead of ECG even though the monitors were capable of using 

multilead arrhythmia analysis. Hence the arrhythmia alarms included in the MIMIC-

II database do not reflect the optimal performance of the vendor’s arrhythmia 

algorithms. In addition, most false asystole alarms were caused by low amplitude 

QRS complexes in the ECG (less than 150 microvolts), which could not be reported 

as valid beats according to the current ANSI/AAMI EC13 Cardiac Monitor 

Standards [27].  

The false alarm suppression strategy explored in this study proved remarkably 

effective at suppressing false arrhythmia alarms in ICU data, reducing the average 

FA rate from 42.7% to 17.2%. The algorithm was particularly successful in reducing 

FA rates for asystole, extreme bradycardia, and extreme tachycardia, with zero 

suppression of true alarms. The algorithm achieved more moderate reductions in FA 

rates for VTach and VTach/VFib, and only at the expense of suppressing 9.4% of 

true VTach alarms. To avoid suppressing any true alarms, the algorithm could be 

implemented for all alarms except VTach. In this case, the average FA rate would be 

reduced from 42.7% to 22.7%.   

The algorithm’s requirement for simultaneous ECG and ABP signals is a 

condition that is not always satisfied in the ICU since not all patients require 
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invasive ABP monitoring. Only 63.8% of patients in the MIMIC II database had 

invasive ABP monitoring during part of their ICU stay, and hence the algorithm 

described in this paper will not affect FA rates for the other 36.2% of patients. 

Furthermore, it is likely that the FA rates in patients not requiring ABP monitoring 

are higher, reflecting their more active behavior. 

Future work will focus on extracting information from the ECG and other 

pulsatile waveforms (such as the pulse oximeter and pulmonary arterial pressure) to 

improve the FA reduction rate on a broader patient population. Additionally, 

information from multiple leads of ECG is required to reduce the number of 

suppressed true VTach alarms to a negligible amount, and increase the number of 

false VTach alarms one can suppress. Such an approach is likely to require a 

combination of signal quality indices [33] and additional signal processing methods 

applied to the ECG and other cardiovascular signals. Other improvements should 

include a method for automatically identifying intra-aortic balloon pumps, and 

developing signal quality indices for the pulse oximeter waveform (to allow the 

incorporation of this signal into this FA suppression framework). 
 

5. Conclusions 

The study described in this paper demonstrated that a FA suppression 

algorithm that used only one extra channel of non-ECG information (the ABP 

waveform) and some simple logic allowed for the identification and suppression of 

the majority of false critical ECG arrhythmia alarms. The algorithm demonstrated 

the potential of using multiple physiologic waveforms for reducing false alarms in 

the clinical setting. An extension of the algorithm could be applied to physiological 

monitoring in a general sense (to other signals, other alarms categories, and in other 

settings, such as the operating room) and would only be limited by the number of 

related cardiovascular signals and their respective signal qualities. Specific 
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extensions to the algorithm should include a fusion of data from multiple ECG leads 

and from other pulsatile waveforms, such as that derived from the pulse oximeter. 

The analysis of the pulse oximeter waveform is important for the subset of patients 

that are not being monitored with an invasive ABP line. The analysis of multiple 

ECG leads will be of particular use in dealing with the “yellow” second-level 

alarms.     

The demonstrated improvement in alarm performance described in this study 

should motivate monitoring vendors to process multiple physiologic waveforms 

within their own alarm algorithm architectures. In fact, the present algorithm should 

be deployed in a controlled small scale clinical study to assess its impact on reducing 

false critical arrhythmia alarms in the ICU. To avoid suppressing any true positive 

alarms the algorithm could be run for all alarm types except for VTach, where the 

suppression strategy needs further refinement.  

Since the annotated database used in this work is publicly available [25], it is 

hoped that other research groups and device manufacturers will improve both on the 

algorithms described here, and on the quality and quantity of the annotated data 

(such as a subset of the “yellow alarms”). It would be useful to identify possible 

errors (or points of contention) in the annotations, and to identify arrhythmic events 

that were missed by the original monitors. It is likely, given previous studies [21], 

that around 200 to 300 such false negative events are hidden within the data used 

here. If current device manufacturers run their arrhythmia algorithms on this data, 

some of the missing events may be identified. Ultimately, collaborative efforts are 

needed to develop new multi-parameter annotated databases that can serve as “gold-

standards” to support the development and evaluation of novel monitoring 

algorithms and to provide high quality metrics for regulatory bodies.   
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Table 1: Alarm definitions and thresholds (for Adults). N/A = not applicable.  

† indicates that criterion meets AAMI-EC-13 Cardiotach Standard [29]. 

 

 

Alarm Type 

Default 

Heart Rate 

(BPM) 

Criteria 

 

Alarm 

Adjustable 

Range 

 

Typical Time 

Delay to 

Alarm 

(sec) 

Time Delay For 

Alarm 

AAMI-EC-13 

Cardiotach 

Standard  (sec) 

Asystole 

 

No QRS for 4 sec

 

 

2.5 - 4.0 sec 

 

 

5 sec † 

 

 

< 10 sec 

 

Extreme 

Bradycardia 

 

< 40 

 

Larger of 40 or 

(Low HR  

Limit – 20) 

 

5 sec † 

 

 

< 10 sec 

 

Extreme 

Tachycardia 

 

> 140 

 

Smaller of 200 or

(High HR  

Limit + 20) 

 

6 sec † 

 

 

< 10 sec 

 

VTach 

Run of 5 or more 

Ventricular Beats 

with HR > 100 

3 to 99 (Run) 

15 – 300 (HR) 

 

N/A 

 

 

N/A 

 

VTach/VFib 

Fibrillatory 

waveform for 4 

sec or more 

 

N/A 

 

5 sec † 

 

< 10 sec 
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Table 2: Gold standard database of N=5386 critical ECG arrhythmia alarms: 

relative frequency of true and false alarms on a per-alarm basis. Average true 

alarm rate = 57.3%. 
 

All Alarms True Alarms False Alarms 

 

Alarm Type 
 

Total  

Alarms 

% of all 

alarms  

N 

% of all 

alarms that 

are true 

% of specific 

alarm type 

that are true 

N 

% of all 

alarms that 

are false 

% of specific 

alarm type 

that are false

Asystole  579 10.8% 54 1.0% 9.3% 525 9.7% 90.7% 

Extreme 

Bradycardia 717 13.3% 

 

507 9.4% 

 

70.7% 

 

210 3.9% 

 

29.3% 

Extreme 

Tachycardia  1877 34.8% 

 

1444 26.8% 

 

76.9% 

 

433 8.0% 

 

23.1% 

VTach 1900 35.3% 1015 18.8% 53.4% 885 16.4% 46.6% 

VTach/VFib 313 5.8% 64 1.2% 20.4% 249 4.6% 79.6% 

All  5386  3084 57.3%  2302 42.7%  
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Table 3: Parameter ranges used in training. N/A = not applicable. All ranges 

span all integer values between the max and min values shown, except for maximum 

HR, which increments every 5 BPM. 
 

Parameter ► 

Alarm Type▼ 

Maximum 

pulse-to-pulse 

length (s) 

HR error 

margin 

(BPM) 

Number of 

beats for 

computing HR

Duration 

of Bad 

Beats 

(s) 

Number of 

Abnormal 

Beats 

Allowed 

Maximum HR

(BPM) 

Asystole TA ={1…6} N/A N/A N/A N/A N/A 

Extreme 

Bradycardia 

N/A EB={0…20} NB ={1...10} N/A N/A N/A 

Extreme 

Tachycardia 

N/A ET={0…20} NT ={1...10} TT ={0...6} MT ={1...5} N/A 

VTach N/A N/A NVT ={1...10} N/A MVT ={1...5} RVT ={80..150}

VTach/VFib N/A N/A NVF ={1...10} TVF ={0...6} N/A RVF ={90..175}
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Table 4: Distribution of alarms in training, test, and combined sets.  
 

 Training 

(n=267) 

Test 

(n=180) 

Combined training and 

 test sets (n=447) 

Alarm 
Type FALSE TRUE TOTAL 

FA 
RATE 

(%) FALSE TRUE TOTAL

FA 
RATE 

(%) FALSE TRUE TOTAL

FA 
RATE 

(%) 
 

Asystole 281 35 316 88.9 244 19 263 92.8 525 54 579 90.7 
Brady 143 207 350 40.9 67 300 367 18.3 210 507 717 29.3 
Tachy 256 816 1072 23.9 177 628 805 22.0 433 1444 1877 23.1 
VTach 484 517 1001 48.4 401 498 899 44.6 885 1015 1900 46.6 
VT/VF 137 39 176 77.8 112 25 137 81.8 249 64 313 79.6 

 

Total 
alarms 1301 1614 2915 44.6 1001 1470 2471 40.5 2302 3084 5386 42.7 
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Table 5: Optimal parameters found during training. N/A = not applicable. 
 

Parameter ► 

Alarm Type▼ 

Maximum 

pulse-to-

pulse  

length (s) 

HR error 

margin 

(BPM) 

Number of 

intervals for 

computing 

HR 

Duration

of Bad 

Beats 

(s) 

Number of 

Abnormal 

Beats 

Allowed 

Maximum 

HR 

(BPM) 

Asystole TA = 3 N/A N/A N/A N/A N/A 

Extreme Bradycardia N/A EB = 7 NB = 3 N/A N/A N/A 

Extreme Tachycardia N/A ET = 20 NT = 1 TT = 4 MT = 5 N/A 

VTach N/A N/A NVT =1 N/A MVT  = 0 RVT = 80 

VTach/VFib N/A N/A NVF = 7 TVF =2 N/A RVF =150 
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Table 6: False and true alarm suppression results with resultant average FA alarm 

rates. 
 

 
TRAINING SET 

(n=267) 
TEST SET  

(n=180) 
COMBINED TRAINING AND TEST SETS  

(n=447) 
Alarm 
Type Suppression Rates 

Suppression 
Rates FA Rates 

  FA TA FA TA FA TA 
Before 

suppression
After 

suppression
Asystole 92.5% 0.0% 95.0% 0.0% 93.5% 0.0% 90.7% 5.5% 

Brady 79.7% 0.0% 83.6% 0.0% 81.0% 0.0% 29.3% 5.5% 
Tachy 59.4% 0.0% 70.1% 0.0% 63.7% 0.0% 23.1% 8.4% 
VTach 28.3% 14.5% 38.7% 4.0% 33.0% 9.4% 46.6% 30.8% 
VT/VF 57.7% 0.0% 58.9% 0.0% 58.2% 0.0% 79.6% 33.1% 

  
ALL 57.0% 4.7% 63.2% 1.4% 59.7% 2.4% 42.7% 17.2% 
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