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Using Fluid Models to Prove Stability of Adversarial stochastic queueing network. Partial converse results were proven by
Queua ng Networ ks Dai [9] and Meyn [20]
The two directions in stability research naturally lead to the question
David Gamarnik of whether a single technique can be used for the stability analysis of

both stochastic and adversarial queues. In this paper we demonstrate
AbstractA dicital ot ctwork be modded g that fluid models can be used for both. Our main result is that the sta-
Strac [e]] communication network can be m as an ad- HR H H H HR : :

versarial queueing network. An adversarial queueing network isdefined to bility ofaflwd model |n_1plles the stability of an unde_rlylng adversanal_
bestableif thenumber of packetsstaysbounded over time. A central ques-  dueueing network. This parallels tht_e reSI_JIt t_)y Dai [8] for stochastlf:
tion isto determinewhich adversarial queueing networksarestableunder ~ networks. However, the proof technique is different and the result is
every work-conserving packet routing policy. Our main result isthat sta-  stated in a worst case sense as opposed to an expected sense. A result
bility of an adversarial queueing network isimplied by stability of an ass0-  gjmjlar to ours was established by Hajek [18]. He considers a more gen-
ciated fluid queueing network. . . . .

eral network in which processing times depend on the path and on the

Index Terms—Packet routing, queueing networks, stability. edge (“station” in Hajek's terminology). On the other hand he assumes
that arrival rates are constant for each path, an assumption we do not
I. INTRODUCTION require.

_ _ _ _ o We also extend our result to specifically the FIFO policy. Applying
In this paper we investigate the behavior of communication negramson’s result on stability of FIFO policies in fluid models [4] we

works in which packets are generated dynamically and are routed frgfdve that the FIFO policy is stable in adversarial queueing networks
sources to destinations. Such a communication network is usually mgghen each path has a constant arrival rate.

eled as a graph, in which each arriving packet has its own prescribed
simple path that it will follow from its source to its destination. Il. DEEINITIONS AND ASSUMPTIONS
A surge of research activity in the area of packet routing in commu- . . .
nication networks has been motivated by digital communication tech-1he definitions and assumptions of this paper are adopted from
nology. In particular, requirements for providing specific level of perkt]- An adversarial queueing network consists of an undirected graph
formance quality can be translated into questions of stability and péF- £), whereV" is the set of vertices and’ is the set of edges.
formance of packet routing schedules in communication networks. € Packets are injected into the network by an adversary; each
packet routing schedule is defined to be stable if the number of pack@@ket is injected into some node, follows a packet specific path to its
stays bounded as the system runs over a long time period. It is knodptination node, and then is dropped from the network. Although itis
[1], [19], [21] that the natural load condition that the packet arrival raf@0t necessary for our analysis, we will assume that all the preassigned
is not bigger than the processing rate, is not sufficient for stability, aR@ths are simple, so no packet traverses any given edge more than once.
in general, deciding the stability of a given network under every polidyach packet takes a unit of time to traverse a single edge, and only one
or under a given policy is an unresolved problem. packet a}t time can trav_erse any given edge (in either direction). Packet
One direction of stability research has been conducted within tRE°CESSIng occurs at integer time epochs= 0, 1, 2, - --. Packets
framework of adversarial queueing networks. In such networks an 442iting to traverse an edgeaccumulate into a queue. )
versary injects packets for processing. There are no probabilistic asT0 describe the dynamics of our network, we introduce some addi-
tional notations. LeP = { P\, P., ---, Py} be a set of simple paths
in the graph(V, E). Packets will follow paths ir?, which might be
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e € P, let D py(t1, t2) be the total number of packets, following As in [1] we will concentrate only on the subcritical case< 1
path P and traversing edge within the time interval¢;, ¢;). In par- throughout the paper. A quadrugl€, E. », w) will be called anad-
ticular, D(., py(t, t 4 1) takes value O or 1, for eagh= 0, 1, 2, ---.  versarial queueing network with parameters andw. Any feasible so-
Finally, let Q. py(f) be the total number of packets following pathlution (Q(#), A(t), D(t)) to (1)—=(4) will be called a realization in the
P that are waiting to traverse edgeat time¢. We denote byQ(¢) network(V, E, r, w).

the vector(Q(., py(t))ccr, rer of all queue lengths at timeand by So far we have not discussed theheduling policies by which

|Q(t)| the total number of packets in the network at titne packets are chosen to cross edges. We will consider when an adver-
sarial queueing network is stable under every work-conserving policy
1Q(t)] = Z Qre. (1) and When it is stable s_pec_ifically’under the FIFO_poIicy. _
cehTer ’ Definition 1: A realization(Q(t), A(t), D(t)) in an adversarial

queueing networkV, E, r, w) is work conserving if whenever there
are packets waiting to cross an edgat timet, at least one of these
packets will cross during interval¢, ¢+ 1). Formally, for eack € E
andt = 0,1, 2, ---,

For simplicity we denotedr (0, t) by Ap(t) and D., py(0, t) by

D, py(t). AlsoletA(t) = (Ap(f)) rer denote the vector of arrivals
up to timet, and letD(t) = (D, p)(t))ccp, Pcp denote the vector
of departures up to time The dynamics of the network is described

as follows. For each= 0, 1, 2, --- and each patl®® € P Z Q.. py(t) >0 implies
P:ecP
Qur py() =Qur p)(0) + Ap(t) = D p py(t) @ > Deptt+1)=1. ®)
P:ceP
andforalli = 1,2, ---, k(P)

Definition 2: A realization(Q(t), A(t), D(t)) in an adversarial
() = O+ D 4 -D RO queueing networkV, E, r, w) is stableif the total number of packets
Qer. ) = CQuer O+ D 1)) = Dier (1) (2) in the system stays bounded over time, i.e., if

For each edge € E and each time intervdi,, t.) we have the fea-

ibili i sup |Q(t)] < oo.
sibility constraint - |Q(D)]

Z D py(t1, t2) <tz —t1. 3)

o An adversarial queueing netwofk’, E, r, w) is universally stable, if
e€

every work conserving realization is stable.

Remark 1: Note that, unlike in [1], [3], and [17], our definition of
universal stability depends on the arrival ratend on the set of paths
‘P used by packets. In this respect our definition is more general.

In particular, foreach = 0, 1, 2, --- and eaclke € F

> Deptt+1) <1
PreeP Ill. FLUID MODELS OFADVERSARIAL QUEUEING NETWORKS

Packets are injected into the System by an adversary Subject to thg\ this section we introduce a fluid model which is a continuous-
following restriction. There exists a positive reate » and an integer time, continuous-state approximation of an adversarial queueing net-
w such that for each edgeand each time intervdt,, ), the total Work.
number of packets injected durifig, #.) whose assigned paths con- Given an adversarial queueing netwgik E. r, w) we define an
tain edgee, is at mostr (2 — t1) + w. Formally, for eacke € E and associated fluid model as follows. The fluid model inherits the graph
t=0,1,2, -, we restrict the adversary by (V, E), the set of path®, and the arrival rate. For each patt®® € P
in the fluid model there is an external arrival of flow that needs to be
processed through the path For each positive realthe total amount
of flow arriving during the time interval0, ¢] and following pathP
is a nonnegative real valuép () € R.. Flow waiting to traverse an
e accumulates into a queue. The flow arrival procks§) is an
trary continuous nondecreasing function subject to the following
d constraint. For alt € F andt; < t2 € R4+

Z ;4P(f1, fz) S I’(fz —_ fl) + ur. (4)

P:c€P

Assumption (4) is a generalization of the assumption considered g’g{?,
Cruz in [7], where for each patR the associated arrival process wag, .
assumed to be sublinear: for some bp and for allt > 0

Ap(t) < rpt+bp. (5) Y (Ap(t2) = Ap(t)) < vtz = ta). ©)

P:echP

We will say that the network has pathwise constant arrival rates if . . o . .
(5) holds and if, in addition, for som&. > 0 and for allt > 0 In particular, the arrl_val process is Llps<_:h|tz continuous. Tr_le total
amount of flow following path” and crossing an edge€ P during

the time interval(0, ¢] is denoted byD(. p)(t), which is also a
continuous nondecreasing function. The flow processing rate is equal
to one for all edges. In particular, for each edge E and each pair

We will be interested in networks, for which the queue sizes at eaohnonnegative reals, < #-

edge stay bounded over time. A necessary condition for this is

Ap(t) > rpt —bp. (6)

el @) PgP (D(., py(t2) = Do, py(t1)) <ty — t1. (10)
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The total amount of flow following pat#® and waiting to cross edge Proof: Note that left-hand side of (14) is equal to the difference

e attimet € R is some nonnegative real valag. »(t). Then, for between the total number of packets arriving into eclgad departing

eachP € P andt € Ry from e during[t, t 4+ 1). By constraint (4) the total number of packets
injected is at mostr + w| = w. The total number of packets arriving

_ — — — from previous edges is at most the number of paths containingeedge
Cg(eé’,P)(t) = Q(eé’, Py (0)+ Ap(t) — Der. 7 () (A1) whichinturnis at mositP|. During the same time interval at most one
packet departs, since at most one packet at a time can cross any edge.
andforalli = 1, 2, ---, k(P) We conclude that the maximal change of the number of packets in edge
’ ' e during time intervalt, ¢+1) is at mostmax{w+|P|, 1} = w+|P|.
This proves (14). The total change of the number of packets in the
@cg? () = Q(ef)m(o) + 5(63_:_1‘ py(t) = E(ef_ayy) (t). (12) network then satisfies

Let A(t) = (Ap(t))per, Q(t) = (Q(. p)(t))eer per, D(t) = R+ )| = [QUHIT < (w+ [PDIE].
(D(., py(t))eep, Per. We will assume that each edgeprocesses a
fluid as long as there is some fluid waiting to cresgvork conserva-

tion). Namely, for any pair of nonnegative reals < ¢, and for any u
edgeec € F We now state and prove a proposition which is a key to proving The-

orem 1. It provides a general technique for building solutions to fluid
models from realizations in the underlying adversarial network. Then,

> Q) >0, forallt € [t t.] implies in order to prove Theorem 1, we will show that unstable realizations
PreeP correspond to unstable fluid solutions.
to —t; = Z (E(e)}))(fz) — E(c,m(tl)) . (13) Proposition1: Given arealizatiofiQ(t), A(t), D(t))inan adver-
Preer sarial queueing networkV, E, r, w), suppose a nondecreasing se-
quence of integer times,, tz, - -+, ), - -+ is such thafQ(tx)| <
This parallels the corresponding definition of work consert T C for some constant. Then there exists a sequence of positive

vation in adversarial queueing networks. Any feasible solutigRte9ersky, k2, -+ kn, -+ with the following properties.

(Q(t), A(t), D(1)) to the system of equalities and inequalies 1) The limits
(9)-(13) WI|| be called a (work conserving) fluid solution. The
fluid network (V, E, r) can be viewed as a continuous time, con-

tinuous state analog of the discrete adversarial queueing network lim M lim Alty, +thn) = Alty,)
(V. E, r, w). e o e ki

Definition 3: A fluid network (V, E, r) is defined to be globally lim D(ty, + thn) — D(tx,) (15)
stable if there exists some time such that any work-conserving fluid n—co kn

solution(A(t), Q(t), D(¢)) with initial vector of queue length§(0)
having|Q(0)| = 1, satisfiesQ(t) = 0, forall t > 7

As we see, the definition of stability for fluid models is somewhat
different from the one for adversarial queues. Instead of requiring a
bounded number of packets in the network, the fluid stability requires
the network to become empty after some finite time. The reason for . . . L
such definition will become more intuitive in the following section, solution of the ﬂL."d model (V. E r). If the re_ahzauorn
when we discuss how fluid solutions are obtained as limits of realiza- (Q(1), A(t), D(1)) IS work conserving, t_hen the fluid solution

(t), D(t)) is also work conserving.

. . . . Qt), A
tions in adversarial queueing networks. /
Proof of Proposition1: LetQ+ = {q1, g2, - -, qu, - - -} denote

the (countable) set of nonnegative rational numbers. We first find a
sequencé!” k(" ... kD, ... suchthatlimits (15) existfar= ¢,.
Consider all integers > 0 such thatt¢; is also an integer. Applying
The main result of the paper is given by the following theorem. |emma 2 to the differenceg(ts. + 1) — Q(tx), Q(tr + 2) — Q(tx +

exist for each nonnegative real numiseiThese limits will be
calledfluid limits and will be denoted b§)(¢), A(t), andD(t),
respectively.

2) The vector-valued function@(t), A(t), D(t)) is a fluid

IV. THE CONNECTION BETWEEN FLUID AND ADVERSARIAL
STABILITY —MAIN RESULT

Theorem 1. We are given an adversarial queueing network), ... Q(t;. + qi k) — Q(tr + q1 k — 1), we obtain
(V, E, r, w). If the associated fluid networkV, E, r) is globally
stable, then the networR’, E, r, w) is universally stable.

We need the following lemma. QU + k)| _ k+C+ qik(w+[P)IE]|

Lemma 2. Let (Q(¢), A(t), D(t)) be any realization in an ks - k
adversarial queuing networkV, E, r, w). Then for any time =1+q(w+|PDE|+ 9
t=0,1,2,---and any edge k

Also, note from (4) and (3) that for eadh € P ande € P
S Qupmt+D— > Qe.rp®|<w+[P] (1)

P:.ecP P:e€P

Ap(ty + 1 k) — Ap(tr) < rqrk +w
< i

+ w
=7 —
k Ty

and and

D(ﬁyp)(f/« =+ (111(7) — D(C’P)(f/« q1k
1Q( + DI = Q)| < (w+[P]IE]. r S T
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In particular, all the ratios are bounded. Then there exists an infinite = lim Y Ap(te, +t"k) — Ap(te, +t'ka)
sequencé:f,”, n =20, 1, 2, --- such that the limits e e K
L4 gl ,
" " < gim MEZDREY g (18)
Qlt, 1y + qikn’) Alt ) +aikn’) — At ) oo ky.

lim —2>—— lim e A

oo D) il D
where the second inequality follows from (4). The Lipschitz continuity

Dt +ak) = Dt ) of D(., p(t) and@,, p(t) is proved similarly, using (3), (1), and (2).

i = 0 = (16) In particular, we obtain that for each edgepath P, and any pair of

rational valueg’ < ¢

exist. We denote these limits W9 (¢1), A(¢1), and D(¢:), respec- _ _

tively. B > (D (") =D py(t)) <t = 19)
By a similar argument, we can construct a subsequékéeof the Preel

sequencé’! such that the limits

Aty + a:k) = Alt, ) Q

Qlt @ + 42 k)

Jim @ ; Jim @ Quep . =Qpp () + Ap(t") - Ap(t)
) — (Dir. mt") =Dip ()  (@0)
D(t, o) + qﬂ»‘gf)) - D(t,2))
lim kn = i 17)
n—20 kn / and

exist. We denote these limits [6)(g2), A(q2), D(qz). Sincek’ is — = — P )
. 2. . . t) =@ t)+D t')—D t
a subsequence df.”, (16) exists wherk!” is substituted fork{" . Qeer () =Q(er, 1) () r ) @r . mit)
Continuing, we build a series of sequend;é’é‘), m =1, 2, - with - (ﬁ(gp)m(f”) - E(eP,P) (t’)) (21)
the following properties: ‘ ‘
1) for eachm, k™ is a subsequence &f" " "; ] ) ) o )
2) for eachl and eachn > I the limits fgr 1 il* 2;' -+, k(P). From Lipschitz continuity of the functions
- Q(t), A(t), D(t)onQ4, itfollows that there exists a unique Lipschitz
continuous extension of these functions to #he.

(m) R s
i Qlt o + k™) For allt € R the extension satisfies
a I
) At o + aki™) — Aty o) Qt) = qﬁ}}}}é% Qlg), A(t)= qﬁ}}f}é% Alq)
1m - — —
n— o0 () D(t) = linx D(q). 22
ey, (t) Ll (a) (22)
Dl + ) = Dltg)
,}El;, ) The limits (15) then hold for any nonnegative real value dfecause
" for any nonnegative reabnd any rational§, " suchthat’ < ¢ < ¢,
exist and are independent of.. Denote these limits by we have
Q(a), Ala), D(q). , ’ ,
Now, consider a diagonal sequerige = k5", n = 0,1, 2, - - -. Ap(th, +t'ka)  Ap(te, +tha)
Eachk{" hask, as a subsequence, disregarding finitely many initial ke - kn
. . . 1
terms ofk,, . It follows that for each rationa; the limits < Ap(te, +1"kn)
<
, to, + qikn - Alte, F atka) — Alt, and
lim_ (Q(Ak—‘ﬂﬂ) lim k qzkn (tk..) Do, py(te, + t'kn) < Doyt + thy)
) ‘ ka - L’"l
p— A . " >
lim Dtk + @tkn) = D(tr..) < D, py(tg, +1 ]m)_
n—>0o0C kll k?l
exist and are equal ©@(q:), A(q:), D(q:), respectively. This completes the proof of the first part of Proposition 1.

We have proved the existence of limits (15) for the sequéncand  To prove the second part, we need to show that the constructed
for all nonnegative rational values afLet us now prove that the func- procesgQ(t), A(t), D(t)), t € R4 satisfies constraints (9)—(13) of
tionsQ(, p)(t), Ap(t), D(., r)(t) are Lipschitz continuous 0@+. the fluid model(V, E, ). From (18)—(22) it follows that (9)—-(12) are
Fix a pair of nonnegative rational numbefs< t". For each edge satisfied. We now show that the fluid solution is work conserving if
and path?” the realization Q(t), A(t), D(t)) is work conserving. Consider any

interval[t., t;] and edge: € E such that for alt € [¢1, t2]

Zp(t//) — ZP (t/)
< > (Ap(t") - Ap()) D Qu.pt)>0. (23)

P:e€P P:ecP
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From (17) we have structed solution(Q(t), A(t), D(t)),t € Ry is work conserving.
This completes the proof of Proposition 1. [ ]
- - We now have the necessary tools for proving our main result.
D¢, py(t2) — Do py (¢ . o
Z ( (o) t2) e 1)) Proof of Theorem 1. We will prove the result by contradiction.
) ) Suppose there exists an unstable realizati@tx), A(t), D(t)), t =
. D py(tk, +t2ky) — D, py(tk, +t1ky . .
= lim (e, P) 2 )k (e, P) (& : ). 0,1, 2, - - - inthe adversarial networl¥’, E, r, w). Letr be the emp-
"T% pleer " tying time specified by Definition 3. In particular, any fluid solution
satisfying|@(0)| = 1, must also satisf@(r) = 0. We will construct
If a particular fluid solution(Q(#), A(t), D(t)) satisfying|Q(0)| = 1
andQ(r) # 0, thereby obtaining a contradiction.
Lemma 3: Given an unstable realizatidid)(¢), A(t), D(¢)), t =
D py(tk, +tokn) — Do py(t tikn)) = (ts — t1)kn . A ’ ’ .
Z ( () (B + t2hn) (e, ) (Thn + 10 )) (2 v 0,1,2,--- there exists a nondecreasing sequence of times
ti, ta, -+, tr, -+~ such thatt < |Q(¢)| < k + (w + |P])|E| and
|Q(tx + 7k)| > K forall k > |Q(0)|.
Proof: Putt; = Oforalli = 1,2, ---|Q(0)|-1. Fix k >
|2(0)|. We now construct théth member of the required sequence,

P:eclP

P:ceP

for all sufficiently largen, then

> (D, y(t2) = Do py(t)) =tz — 11 assuming that; are constructed for < k — 1. Let#, > #,_, be the
Pieer smallest time such th&®(£,)| > k. (Such a time exists since the real-
ization is unstable). From Lemma@Q(#)| < k + (w
and we are done. Otherwise, the sequefacéras an infinite subse- |Q(t)| < k+(t—f,+1)(w+|P|)|E|fort = £, {1 +1, - h +7k.
quencek,,, for which If |Q(f1 + Tk)| > k, then putt, = £, and we are done. Other-

wise, let#, be the first time aftef; + 7k, for which [Q(£2)] > F.
; . . Agaln|Q(f;)| € [k, k+ (w + |PDIE|]. f |Q(fs + kT)| > k then
Dy, tr tokn) — D, ts tiky, to — t1 k.
Pé}g( (e ), +t2kn) = De py (t, + 1 )>< (t2 = 1) putt, = f,. Otherwise, findfs, and so on. If this procedure never
’ stops, then we obtain a sequengets, - -, ,, - -+ such that for all

From the work conservation constraint (8) for the underlying advel- Q)] € [k, k+ (rk+ 1)(w+ [P E] fort € [ v btk —1],

sarial queueing network, it follows that for eaghthere exists.,, € ‘Z‘)n(d\)Q(4 ()t‘)< ;(f;))rlts itggglg_Tckoni; ;; Ictilr]] |Thzairr:§tl£§irl‘i g‘zsfgz‘!f atti'g:
[t + tikn, t;, + t2ka] such that t), A(t), 9 Siion

[ ]
Now apply Proposition 1 to the given unstable realization and the
Z Qe py(zn) = 0. (24) sequence,, t», ---, t, -+, constructed in Lemma 3. From Proposi-
P.ccP tion 1 there is a subsequenieg for which the fluid limitQ () satisfies

Note that the sequenc¢e,, —t,;n)/}::n is contained itft;, ¢»] and there-
fore has some accumulation poiat € [¢;, t2]. We may assume that
zp is in fact a limit point (if not replace the sequence with a convergent

subsequence). We now argue that,. .., Q. p)(z0) = 0. From where the inequality follows fromiQ(t¢,,)| < kn + (w + P)|E|.

|Q(0)] = lim M < fim ot (@ HPDIE]

= e fen

17 Similarly, [Q(0)| > 1. Thus|Q(0)| = 1. Also
o Q(C,p) tl%,l + Zul;n N 1 Q(tkn + 7k,.)
Z Q(E,P)(Zo) = lim Z ( = ) Q(T) - nlglio k. 21
Precl e P:eepP k”
) since|Q(tx,, + 7kx)| > k.. We conclude that our fluid limit satisfies
Applying Lemma 2 Q(7) # 0, contradicting global stability. ]

. V. EXTENSION TO THEFIRST-IN-FIRST-OUT SCHEDULING PoLICY
Z Qe ry (t,;n + ZOkn) - Z Q. ry(zn)

P:ec P P.echl

< ‘t/}n + 2ok — #n (w =+ |P)).

We now establish an analog of Theorem 1 for networks operating
specifically under the FIFO policy. We begin by constructing fluid
models corresponding to the FIFO policy. (Such fluid models have been
considered previously; see [4] and [6]). In analogy with Theorem 1, we
Then, using (24) then prove that the stability of fluid solutions corresponding to the FIFO
policy implies stability of the FIFO policy in the underlying adversarial
queueing network.

Let Q. (¢) denote the total number of packets waiting to cross edge

Q(e, P) (t,;n + ZU]:/'W,)

lim E
n—oo

Procp kn attimet, Q.(t) = > p. .cp Q. p)(t). Since the service rate is one,
the time it takes to process the3e(¢) packets is exactlg). (¢). Under
tp + Zokn — 2n| (w + |P)) the FIFO policy, any packet arriving atbeforet will be processed
< lim =2 - =0 beforet+ Q. (t). Also, any packet arriving ataftert will be processed

n—oo kn

aftert + Q.(¢). Thus, for each pati®

where the last equality follows from the definition of. We conclude
thaty,. ..p» @ p)(z0) = 0, which contradicts (23). Thus, the con- Di.r p (f + Qegf(fo =Qr p(0)+Ar(h) (25)
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andforalli =1, 2, ---, k(P) [2]
3

Der py (t + Qegf(t)) = Q(eg’,p)(()) + D(ef_l,l’)(f’)' (26) &

[4]

Itis this property that we adopt to fluid solutions corresponding to FIFO
policy. A solution(Q(t), A(t), D(t) to (9)—(13) is defined tobe FIFO  [®
if it satisfies (25) and (26). The following theorem is an analog of The-

orem 1 for networks operating under FIFO policy. [6]
Theorem 4: Given an adversarial queueing netwdfk E, r, w)
and associated fluid modeV, E, r). Suppose there exists> (0 such 7

that all FIFO fluid solutions witH@Q(0)| = 1 haveQ(t) = 0 for
all t+ > 7. Then the FIFO policy is stable in the adversarial queueing 18]
network(V, E, r, w). That is, if all FIFO fluid solutions are stable,
then the FIFO policy is stable in the underlying adversarial queueing
network. (9]

The proof of this theorem is similar to that of Theorem 1. In the in- 10]
terest of space it is omitted, but can be found in [16]. Now consider ad-
versarial queueing networks with path-wise constant arrival rates. Rd11]
call that network has path-wise constant arrival rates if for eachPath
there exists > > O such thatforalledges .. .., 7~ < 1,and (5) [12]
and (6) are satisfied. Using the Lyapunov function technique, Bramson
proved that FIFO solutions are stable in fluid networks with path-wise13]
constant arrival rates [4]. The emptying timecan be expressed in
terms of the parameters of the Lyapunov function. Combining this rel14]
sult with Theorem 4 we obtain the following theorem. [15

Theorem 5: The FIFO scheduling policy is stable in adversarial
gueueing networks with path-wise constant arrival rates.

In contrast, if arrival rates are not path-wise constant, the FIFO poIic&lG]
can be unstable [1]. [17]

VI. CONCLUSION
[18]

We have proposed a fluid model approximation of adversarial
queueing networks for the purposes of stability analysis. We havé®]
proved that universal stability of an adversarial queueing network is
implied by a global stability of an associated fluid model. [20]

This result opens up an opportunity for using methods from con-
tinuous-time, continuous-state processes for stability analysis of ad21l
versarial networks. Such methods include Lyapunov functions [5], [8],
[10], [11], [13] and trajectory decomposition [2], [14].

A number of interesting questions remain open. What are necessary
and sufficient condition for universal stability of any given network?
Networks, which are universally stable for alk 1 are characterized
in [15] and [17]. But question which networks are universally stable for
specificr < 1 and specific set of path requested, remains unanswered.
Note that constructing networks unstable for giveis progressively
harder ag gets smaller. Moreover, it has been shown by Boretai.

[3] that for an arbitrary small rates > 0 there exist--unstable net-
works. Characterizing exactly the setefinstable networks is another
interesting open problem.
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