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Using Fluid Models to Prove Stability of Adversarial
Queueing Networks

David Gamarnik

Abstract—A digital communication network can be modeled as an ad-
versarial queueing network. An adversarial queueing network is defined to
be stable if the number of packets stays bounded over time. A central ques-
tion is to determine which adversarial queueing networks are stable under
every work-conserving packet routing policy. Our main result is that sta-
bility of an adversarial queueing network is implied by stability of an asso-
ciated fluid queueing network.

Index Terms—Packet routing, queueing networks, stability.

I. INTRODUCTION

In this paper we investigate the behavior of communication net-
works in which packets are generated dynamically and are routed from
sources to destinations. Such a communication network is usually mod-
eled as a graph, in which each arriving packet has its own prescribed
simple path that it will follow from its source to its destination.

A surge of research activity in the area of packet routing in commu-
nication networks has been motivated by digital communication tech-
nology. In particular, requirements for providing specific level of per-
formance quality can be translated into questions of stability and per-
formance of packet routing schedules in communication networks. A
packet routing schedule is defined to be stable if the number of packets
stays bounded as the system runs over a long time period. It is known
[1], [19], [21] that the natural load condition that the packet arrival rate
is not bigger than the processing rate, is not sufficient for stability, and
in general, deciding the stability of a given network under every policy
or under a given policy is an unresolved problem.

One direction of stability research has been conducted within the
framework of adversarial queueing networks. In such networks an ad-
versary injects packets for processing. There are no probabilistic as-
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sumptions on the arrival of packets. This model was introduced by
Borodinet al. [3]. It was shown by Andrewset al. that certain policies
like Furthest-To-Go (FTG), Shortest-In-System (NIS), and Longest-In-
System (LIS) are stable in all networks, but First-In-First-Out (FIFO)
and Nearest-To-Go (NTG) policies are unstable in some networks [1].
Acyclic graphs and unidirectional rings were proven to be stable for
all work-conserving policies [1], [3]. Also a complete characterization
of graphs which are stable under any work-conserving policy and for
any arrival rate smaller than one was constructed by Goel [17] and
Gamarnik [15]. In general, however, it is not known which networks
are stable under all work-conserving policies for a given specific ar-
rival rate.

A parallel research activity has been conducted for stochastic
queueing networks [5], [19], [21]. Here, stability is usually defined
as finiteness of the expected number of customers (packets) in steady
state. Stability results similar to the ones for adversarial queues
have been established: acyclic networks and unidirectional rings are
stable for all work-conserving policies [11], [12], [22]. Most of these
stability results can be established through analysis of an associated
deterministic fluid model. It was proven by Dai [8] that stability
of fluid queueing network implies the stability of the underlying
stochastic queueing network. Partial converse results were proven by
Dai [9] and Meyn [20].

The two directions in stability research naturally lead to the question
of whether a single technique can be used for the stability analysis of
both stochastic and adversarial queues. In this paper we demonstrate
that fluid models can be used for both. Our main result is that the sta-
bility of a fluid model implies the stability of an underlying adversarial
queueing network. This parallels the result by Dai [8] for stochastic
networks. However, the proof technique is different and the result is
stated in a worst case sense as opposed to an expected sense. A result
similar to ours was established by Hajek [18]. He considers a more gen-
eral network in which processing times depend on the path and on the
edge (“station” in Hajek’s terminology). On the other hand he assumes
that arrival rates are constant for each path, an assumption we do not
require.

We also extend our result to specifically the FIFO policy. Applying
Bramson’s result on stability of FIFO policies in fluid models [4] we
prove that the FIFO policy is stable in adversarial queueing networks
when each path has a constant arrival rate.

II. DEFINITIONS AND ASSUMPTIONS

The definitions and assumptions of this paper are adopted from
[1]. An adversarial queueing network consists of an undirected graph
(V; E), whereV is the set of vertices andE is the set of edges.
The packets are injected into the network by an adversary; each
packet is injected into some node, follows a packet specific path to its
destination node, and then is dropped from the network. Although it is
not necessary for our analysis, we will assume that all the preassigned
paths are simple, so no packet traverses any given edge more than once.
Each packet takes a unit of time to traverse a single edge, and only one
packet at time can traverse any given edge (in either direction). Packet
processing occurs at integer time epochst = 0; 1; 2; � � �. Packets
waiting to traverse an edgee accumulate into a queue.

To describe the dynamics of our network, we introduce some addi-
tional notations. LetP = fP1; P2; � � � ; PMg be a set of simple paths
in the graph(V; E). Packets will follow paths inP , which might be
the set of all simple paths, or might be just a subset of it. For each
pathP 2 P , let feP0 ; e

P

1 ; � � � ; e
P

k(P )g be the set of consecutive edges
in P . Let AP (t1; t2) be the total number of packets that are injected
during time interval[t1; t2) and use pathP . For eachP 2 P and
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e 2 P , let D(e; P )(t1; t2) be the total number of packets, following
pathP and traversing edgee within the time interval[t1; t2). In par-
ticular,D(e; P )(t; t+ 1) takes value 0 or 1, for eacht = 0; 1; 2; � � �.
Finally, letQ(e; P )(t) be the total number of packets following path
P that are waiting to traverse edgee at time t. We denote byQ(t)
the vector(Q(e;P )(t))e2P;P2P of all queue lengths at timet and by
jQ(t)j the total number of packets in the network at timet:

jQ(t)j =
e2P; P2P

Q(e; P )(t):

For simplicity we denoteAP (0; t) by AP (t) andD(e; P )(0; t) by
D(e; P )(t). Also letA(t) = (AP (t))P2P denote the vector of arrivals
up to timet, and letD(t) = (D(e; P )(t))e2P;P2P denote the vector
of departures up to timet. The dynamics of the network is described
as follows. For eacht = 0; 1; 2; � � � and each pathP 2 P

Q(e ; P )(t) = Q(e ; P )(0) +AP (t)�D(e ; P )(t) (1)

and for alli = 1; 2; � � � ; k(P )

Q(e ; P )(t) = Q(e ; P )(0) +D(e ; P )(t)�D(e ; P )(t): (2)

For each edgee 2 E and each time interval[t1; t2) we have the fea-
sibility constraint

P : e2P

D(e; P )(t1; t2) � t2 � t1: (3)

In particular, for eacht = 0; 1; 2; � � � and eache 2 E

P : e2P

D(e; P )(t; t+ 1) � 1:

Packets are injected into the system by an adversary subject to the
following restriction. There exists a positive realrate r and an integer
w such that for each edgee and each time interval[t1; t2), the total
number of packets injected during[t1; t2) whose assigned paths con-
tain edgee, is at mostr(t2 � t1) + w. Formally, for eache 2 E and
t = 0; 1; 2; � � �, we restrict the adversary by

P : e2P

AP (t1; t2) � r(t2 � t1) + w: (4)

Assumption (4) is a generalization of the assumption considered by
Cruz in [7], where for each pathP the associated arrival process was
assumed to be sublinear: for somerP ; bP and for allt � 0

AP (t) � rP t+ bP : (5)

We will say that the network has pathwise constant arrival rates if
(5) holds and if, in addition, for someb0P � 0 and for allt � 0

AP (t) � rP t� b
0
P : (6)

We will be interested in networks, for which the queue sizes at each
edge stay bounded over time. A necessary condition for this is

r � 1: (7)

As in [1] we will concentrate only on the subcritical caser < 1
throughout the paper. A quadruple(V; E; r; w) will be called anad-
versarial queueing network with parametersr andw. Any feasible so-
lution (Q(t); A(t); D(t)) to (1)–(4) will be called a realization in the
network(V; E; r; w).

So far we have not discussed thescheduling policies by which
packets are chosen to cross edges. We will consider when an adver-
sarial queueing network is stable under every work-conserving policy
and when it is stable specifically under the FIFO policy.

Definition 1: A realization(Q(t); A(t); D(t)) in an adversarial
queueing network(V; E; r; w) is work conserving if whenever there
are packets waiting to cross an edgee at timet, at least one of these
packets will crosse during interval[t; t+1). Formally, for eache 2 E

andt = 0; 1; 2; � � �,

P : e2P

Q(e; P )(t) > 0 implies

P : e2P

D(e; P )(t; t+ 1) =1: (8)

Definition 2: A realization(Q(t); A(t); D(t)) in an adversarial
queueing network(V; E; r; w) is stable if the total number of packets
in the system stays bounded over time, i.e., if

sup
t2Z

jQ(t)j <1:

An adversarial queueing network(V; E; r; w) is universally stable, if
every work conserving realization is stable.

Remark 1: Note that, unlike in [1], [3], and [17], our definition of
universal stability depends on the arrival rater and on the set of paths
P used by packets. In this respect our definition is more general.

III. FLUID MODELS OFADVERSARIAL QUEUEING NETWORKS

In this section we introduce a fluid model which is a continuous-
time, continuous-state approximation of an adversarial queueing net-
work.

Given an adversarial queueing network(V; E; r; w) we define an
associated fluid model as follows. The fluid model inherits the graph
(V; E), the set of pathsP , and the arrival rater. For each pathP 2 P
in the fluid model there is an external arrival of flow that needs to be
processed through the pathP . For each positive realt the total amount
of flow arriving during the time interval[0; t] and following pathP
is a nonnegative real valueAP (t) 2 <+. Flow waiting to traverse an
edge accumulates into a queue. The flow arrival processAP (t) is an
arbitrary continuous nondecreasing function subject to the following
load constraint. For alle 2 E andt1 < t2 2 <+

P : e2P

AP (t2)� AP (t1) � r(t2 � t1): (9)

In particular, the arrival process is Lipschitz continuous. The total
amount of flow following pathP and crossing an edgee 2 P during
the time interval[0; t] is denoted byD(e; P )(t), which is also a
continuous nondecreasing function. The flow processing rate is equal
to one for all edges. In particular, for each edgee 2 E and each pair
of nonnegative realst1 < t2

P : e2P

D(e; P )(t2)�D(e; P )(t1) � t2 � t1: (10)
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The total amount of flow following pathP and waiting to cross edge
e at timet 2 <+ is some nonnegative real valueQ(e; P )(t). Then, for
eachP 2 P andt 2 <+

Q(e ; P )(t) = Q(e ; P )(0) + AP (t)�D(e ; P )(t) (11)

and for alli = 1; 2; � � � ; k(P )

Q(e ; P )(t) = Q(e ; P )(0) +D(e ; P )(t)�D(e ; P )(t): (12)

Let A(t) = (AP (t))P2P , Q(t) = (Q(e; P )(t))e2P;P2P , D(t) =

(D(e; P )(t))e2P;P2P . We will assume that each edgee processes a
fluid as long as there is some fluid waiting to crosse (work conserva-
tion). Namely, for any pair of nonnegative realst1 < t2 and for any
edgee 2 E

P : e2P

Q(e; P )(t) > 0; for all t 2 [t1; t2] implies

t2 � t1 =
P : e2P

D(e; P )(t2)�D(e; P )(t1) : (13)

This parallels the corresponding definition of work conser-
vation in adversarial queueing networks. Any feasible solution
(Q(t); A(t); D(t)) to the system of equalities and inequalities
(9)–(13) will be called a (work conserving) fluid solution. The
fluid network (V; E; r) can be viewed as a continuous time, con-
tinuous state analog of the discrete adversarial queueing network
(V; E; r; w).

Definition 3: A fluid network (V; E; r) is defined to be globally
stable if there exists some time� , such that any work-conserving fluid
solution(A(t); Q(t); D(t)) with initial vector of queue lengthsQ(0)
havingjQ(0)j = 1, satisfiesQ(t) = 0, for all t � � .

As we see, the definition of stability for fluid models is somewhat
different from the one for adversarial queues. Instead of requiring a
bounded number of packets in the network, the fluid stability requires
the network to become empty after some finite time. The reason for
such definition will become more intuitive in the following section,
when we discuss how fluid solutions are obtained as limits of realiza-
tions in adversarial queueing networks.

IV. THE CONNECTION BETWEEN FLUID AND ADVERSARIAL

STABILITY —MAIN RESULT

The main result of the paper is given by the following theorem.
Theorem 1: We are given an adversarial queueing network

(V; E; r; w). If the associated fluid network(V; E; r) is globally
stable, then the network(V; E; r; w) is universally stable.

We need the following lemma.
Lemma 2: Let (Q(t); A(t); D(t)) be any realization in an

adversarial queuing network(V; E; r; w). Then for any time
t = 0; 1; 2; � � � and any edgee

P : e2P

Q(e; P )(t+ 1)�
P : e2P

Q(e; P )(t) � w + jPj (14)

and

j jQ(t+ 1)j � jQ(t)j j � (w+ jPj)jEj:

Proof: Note that left-hand side of (14) is equal to the difference
between the total number of packets arriving into edgee and departing
from e during [t; t+ 1). By constraint (4) the total number of packets
injected is at mostbr+wc = w. The total number of packets arriving
from previous edges is at most the number of paths containing edgee,
which in turn is at mostjPj. During the same time interval at most one
packet departs, since at most one packet at a time can cross any edge.
We conclude that the maximal change of the number of packets in edge
e during time interval[t; t+1) is at mostmaxfw+jPj; 1g = w+jPj:
This proves (14). The total change of the number of packets in the
network then satisfies

j jQ(t+ 1)j � jQ(t)j j � (w+ jPj)jEj:

We now state and prove a proposition which is a key to proving The-
orem 1. It provides a general technique for building solutions to fluid
models from realizations in the underlying adversarial network. Then,
in order to prove Theorem 1, we will show that unstable realizations
correspond to unstable fluid solutions.

Proposition 1: Given a realization(Q(t); A(t); D(t)) in an adver-
sarial queueing network(V; E; r; w), suppose a nondecreasing se-
quence of integer timest1; t2; � � � ; tk; � � � is such thatjQ(tk)j �
k + C for some constantC. Then there exists a sequence of positive
integersk1; k2; � � � ; kn; � � � with the following properties.

1) The limits

lim
n!1

Q(tk + tkn)

kn
; lim

n!1

A(tk + tkn)�A(tk )

kn

lim
n!1

D(tk + tkn)�D(tk )

kn
(15)

exist for each nonnegative real numbert. These limits will be
calledfluid limits and will be denoted byQ(t); A(t), andD(t),
respectively.

2) The vector-valued function(Q(t); A(t); D(t)) is a fluid
solution of the fluid model (V; E; r). If the realization
(Q(t); A(t); D(t)) is work conserving, then the fluid solution
(Q(t); A(t); D(t)) is also work conserving.

Proof of Proposition 1: LetQ+ = fq1; q2; � � � ; qn; � � �g denote
the (countable) set of nonnegative rational numbers. We first find a
sequencek(1)1 , k(1)2 ; � � �, k(1)n ; � � � such that limits (15) exist fort = q1.
Consider all integersk > 0 such thatkq1 is also an integer. Applying
Lemma 2 to the differencesQ(tk +1)�Q(tk),Q(tk +2)�Q(tk +
1); � � �, Q(tk + q1k)�Q(tk + q1k � 1), we obtain

jQ(tk + q1k)j

k
�
k + C + q1k(w+ jPj)jEj

k

=1 + q1(w+ jPj)jEj+
C

k
:

Also, note from (4) and (3) that for eachP 2 P ande 2 P

AP (tk + q1k)�AP (tk)

k
�
rq1k + w

k
= rq1 +

w

k
and

D(e; P )(tk + q1k)�D(e; P )(tk)

k
�
q1k

k
= q1:
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In particular, all the ratios are bounded. Then there exists an infinite
sequencek(1)n ; n = 0; 1; 2; � � � such that the limits

lim
n!1

Q(t
k

+ q1k
(1)
n )

k
(1)
n

; lim
n!1

A(t
k

+ q1k
(1)
n )� A(t

k
)

k
(1)
n

lim
n!1

D(t
k

+ q1k
(1)
n )�D(t

k
)

k
(1)
n

(16)

exist. We denote these limits byQ(q1); A(q1), andD(q1), respec-
tively.

By a similar argument, we can construct a subsequencek
(2)
n of the

sequencek(1)n such that the limits

lim
n!1

Q(t
k

+ q2k
(2)
n )

k
(2)
n

; lim
n!1

A(t
k

+ q2k
(2)
n )� A(t

k
)

k
(2)
n

lim
n!1

D(t
k

+ q2k
(2)
n )�D(t

k
)

k
(2)
n

(17)

exist. We denote these limits byQ(q2); A(q2); D(q2). Sincek(2)n is
a subsequence ofk(1)n , (16) exists whenk(2)n is substituted fork(1)n .
Continuing, we build a series of sequencesk

(m)
n ; m = 1; 2; � � � with

the following properties:

1) for eachm, k(m)
n is a subsequence ofk(m�1)

n ;
2) for eachl and eachm � l the limits

lim
n!1

Q(t
k

+ qlk
(m)
n )

k
(m)
n

lim
n!1

A(t
k

+ qlk
(m)
n )�A(t

k
)

k
(m)
n

lim
n!1

D(t
k

+ qlk
(m)
n )�D(t

k
)

k
(m)
n

exist and are independent ofm. Denote these limits by
Q(ql); A(ql); D(ql).

Now, consider a diagonal sequencekn = k
(n)
n ; n = 0; 1; 2; � � �.

Eachk(m)
n haskn as a subsequence, disregarding finitely many initial

terms ofkn. It follows that for each rationalql the limits

lim
n!1

Q(tk + qlkn)

kn
; lim

n!1

A(tk + qlkn)�A(tk )

kn

lim
n!1

D(tk + qlkn)�D(tk )

kn

exist and are equal toQ(ql); A(ql); D(ql), respectively.
We have proved the existence of limits (15) for the sequencekn and

for all nonnegative rational values oft. Let us now prove that the func-
tionsQ(e; P )(t); AP (t); D(e; P )(t) are Lipschitz continuous onQ+.
Fix a pair of nonnegative rational numberst0 < t00. For each edgee
and pathP

AP (t
00)� AP (t

0)

�

P : e2P

AP (t
00)�AP (t

0)

= lim
n!1

P : e2P

AP (tk + t00kn)�AP (tk + t0kn)

kn

� lim
n!1

r(t00 � t0)kn + w

kn
= r(t00 � t

0) (18)

where the second inequality follows from (4). The Lipschitz continuity
ofD(e; P )(t) andQ(e; P )(t) is proved similarly, using (3), (1), and (2).
In particular, we obtain that for each edgee, pathP , and any pair of
rational valuest0 < t00

P : e2P

D(e; P )(t
00)�D(e; P )(t

0) � t
00
� t

0 (19)

Q(e ; P )(t
00) =Q(e ; P )(t

0) +AP (t
00)�AP (t

0)

� D(e ; P )(t
00)�D(e ; P )(t

0) (20)

and

Q(e ; P )(t
00) =Q(e ; P )(t

0) +D(e ; P )(t
00)�D(e ; P )(t

0)

� D(e ; P )(t
00)�D(e ; P )(t

0) (21)

for i = 1; 2; � � � ; k(P ). From Lipschitz continuity of the functions
Q(t); A(t); D(t)onQ+, it follows that there exists a unique Lipschitz
continuous extension of these functions to the<+.

For all t 2 <+ the extension satisfies

Q(t) = lim
q!t; q2Q

Q(q); A(t) = lim
q!t; q2Q

A(q)

D(t) = lim
q!t; q2Q

D(q): (22)

The limits (15) then hold for any nonnegative real value oft, because
for any nonnegative realt and any rationalst0; t00 such thatt0 � t � t00,
we have

AP (tk + t0kn)

kn
�
AP (tk + tkn)

kn

�
AP (tk + t00kn)

kn
and

D(e; P )(tk + t0kn)

kn
�
D(e; P )(tk + tkn)

kn

�
D(e; P )(tk + t00kn)

kn
:

This completes the proof of the first part of Proposition 1.
To prove the second part, we need to show that the constructed

process(Q(t); A(t); D(t)); t 2 <+ satisfies constraints (9)–(13) of
the fluid model(V; E; r). From (18)–(22) it follows that (9)–(12) are
satisfied. We now show that the fluid solution is work conserving if
the realization(Q(t); A(t); D(t)) is work conserving. Consider any
interval [t1; t2] and edgee 2 E such that for allt 2 [t1; t2]

P : e2P

Q(e; P )(t) > 0: (23)
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From (17) we have

P : e2P

D(e; P )(t2)�D(e; P )(t1)

= lim
n!1

P : e2P

D(e; P )(tk + t2kn)�D(e; P )(tk + t1kn)

kn
:

If

P : e2P

D(e; P )(tk + t2kn)�D(e; P )(tk + t1kn) = (t2 � t1)kn

for all sufficiently largen, then

P : e2P

D(e; P )(t2)�D(e; P )(t1) = t2 � t1

and we are done. Otherwise, the sequencekn has an infinite subse-
quencêkn, for which

P : e2P

D(e; P )(tk̂ + t2k̂n)�D(e; P )(tk̂ + t1k̂n) < (t2 � t1)k̂n:

From the work conservation constraint (8) for the underlying adver-
sarial queueing network, it follows that for eachn, there existszn 2
[tk̂ + t1k̂n; tk̂ + t2k̂n] such that

P : e2P

Q(e; P )(zn) = 0: (24)

Note that the sequence(zn�tk̂ )=k̂n is contained in[t1; t2] and there-
fore has some accumulation pointz0 2 [t1; t2]. We may assume that
z0 is in fact a limit point (if not replace the sequence with a convergent
subsequence). We now argue that

P : e2P Q(e; P )(z0) = 0. From
(17)

P : e2P

Q(e; P )(z0) = lim
n!1

P : e2P

Q(e; P ) tk̂ + z0k̂n

k̂n
:

Applying Lemma 2

P : e2P

Q(e; P ) tk̂ + z0k̂n �
P : e2P

Q(e; P )(zn)

� tk̂ + z0k̂n � zn (w + jPj):

Then, using (24)

lim
n!1

P : e2P

Q(e; P ) tk̂ + z0k̂n

k̂n

� lim
n!1

tk̂ + z0k̂n � zn (w+ jPj)

k̂n
= 0

where the last equality follows from the definition ofz0. We conclude
that

P : e2P Q(e; P )(z0) = 0, which contradicts (23). Thus, the con-

structed solution(Q(t); A(t); D(t)), t 2 <+ is work conserving.
This completes the proof of Proposition 1.

We now have the necessary tools for proving our main result.
Proof of Theorem 1: We will prove the result by contradiction.

Suppose there exists an unstable realization(Q(t); A(t); D(t)); t =
0; 1; 2; � � � in the adversarial network(V; E; r; w). Let� be the emp-
tying time specified by Definition 3. In particular, any fluid solution
satisfyingjQ(0)j = 1, must also satisfyQ(�) = 0. We will construct
a particular fluid solution(Q(t); A(t); D(t)) satisfyingjQ(0)j = 1
andQ(�) 6= 0, thereby obtaining a contradiction.

Lemma 3: Given an unstable realization(Q(t); A(t); D(t)); t =
0; 1; 2; � � � there exists a nondecreasing sequence of times
t1; t2; � � � ; tk; � � � such thatk � jQ(tk)j � k + (w + jPj)jEj and
jQ(tk + �k)j � k for all k � jQ(0)j.

Proof: Put ti = 0 for all i = 1; 2; � � � jQ(0)j�1. Fix k �
jQ(0)j. We now construct thekth member of the required sequence,
assuming thatti are constructed fori � k � 1. Let t̂1 � tk�1 be the
smallest time such thatjQ(t̂1)j � k. (Such a time exists since the real-
ization is unstable). From Lemma 2jQ(t̂1)j � k + (w+ jPj)jEj and
jQ(t)j � k+(t� t̂1+1)(w+jPj)jEj for t = t̂1; t̂1+1; � � � ; t̂1+�k:
If jQ(t̂1 + �k)j � k, then puttk = t̂1 and we are done. Other-
wise, let t̂2 be the first time after̂t1 + �k, for which jQ(t̂2)j � k.
Again jQ(t̂2)j 2 [k; k + (w + jPj)jEj]. If jQ(t̂2 + k�)j � k then
put tk = t̂2. Otherwise, findt̂3, and so on. If this procedure never
stops, then we obtain a sequencet̂1; t̂2; � � � ; t̂n; � � � such that for all
n, jQ(t)j 2 [k; k+(�k+1)(w+ jPj)jEj] for t 2 [t̂n; t̂n+ �k� 1],
andjQ(t)j < k for t 2 [t̂n+�k; t̂n+1�1]. In particular, the realization
Q(t); A(t); D(t) is stable, contradicting the instability assumption.

Now apply Proposition 1 to the given unstable realization and the
sequencet1; t2; � � � ; tk; � � �, constructed in Lemma 3. From Proposi-
tion 1 there is a subsequencekn for which the fluid limitQ(t) satisfies

Q(0) = lim
n!1

jQ(tk )j

kn
� lim

n!1

kn + (w+ jPj)jEj

kn
= 1

where the inequality follows fromjQ(tk )j � kn + (w + P)jEj.
Similarly, jQ(0)j � 1. ThusjQ(0)j = 1. Also

Q(�) = lim
n!1

Q(tk + �kn)

kn
� 1

sincejQ(tk + �kn)j � kn. We conclude that our fluid limit satisfies
Q(�) 6= 0, contradicting global stability.

V. EXTENSION TO THEFIRST-IN-FIRST-OUT SCHEDULING POLICY

We now establish an analog of Theorem 1 for networks operating
specifically under the FIFO policy. We begin by constructing fluid
models corresponding to the FIFO policy. (Such fluid models have been
considered previously; see [4] and [6]). In analogy with Theorem 1, we
then prove that the stability of fluid solutions corresponding to the FIFO
policy implies stability of the FIFO policy in the underlying adversarial
queueing network.

LetQe(t) denote the total number of packets waiting to cross edgee
at timet, Qe(t) = P : e2P Q(e; P )(t). Since the service rate is one,
the time it takes to process theseQe(t) packets is exactlyQe(t). Under
the FIFO policy, any packet arriving ate beforet will be processed
beforet+Qe(t). Also, any packet arriving ate aftertwill be processed
aftert + Qe(t). Thus, for each pathP

D(e ; P ) t+Qe (t) = Q(e ; P )(0) +AP (t) (25)
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and for alli = 1; 2; � � � ; k(P )

D(e ; P ) t+Qe (t) = Q(e ; P )(0) +D(e ; P )(t): (26)

It is this property that we adopt to fluid solutions corresponding to FIFO
policy. A solution(Q(t); A(t); D(t) to (9)–(13) is defined to be FIFO
if it satisfies (25) and (26). The following theorem is an analog of The-
orem 1 for networks operating under FIFO policy.

Theorem 4: Given an adversarial queueing network(V; E; r; w)
and associated fluid model(V; E; r). Suppose there exists� > 0 such
that all FIFO fluid solutions withjQ(0)j = 1 haveQ(t) = 0 for
all t � � . Then the FIFO policy is stable in the adversarial queueing
network(V; E; r; w). That is, if all FIFO fluid solutions are stable,
then the FIFO policy is stable in the underlying adversarial queueing
network.

The proof of this theorem is similar to that of Theorem 1. In the in-
terest of space it is omitted, but can be found in [16]. Now consider ad-
versarial queueing networks with path-wise constant arrival rates. Re-
call that network has path-wise constant arrival rates if for each pathP

there existsrP � 0 such that for all edgese,
P : e2P rP < 1, and (5)

and (6) are satisfied. Using the Lyapunov function technique, Bramson
proved that FIFO solutions are stable in fluid networks with path-wise
constant arrival rates [4]. The emptying time� can be expressed in
terms of the parameters of the Lyapunov function. Combining this re-
sult with Theorem 4 we obtain the following theorem.

Theorem 5: The FIFO scheduling policy is stable in adversarial
queueing networks with path-wise constant arrival rates.

In contrast, if arrival rates are not path-wise constant, the FIFO policy
can be unstable [1].

VI. CONCLUSION

We have proposed a fluid model approximation of adversarial
queueing networks for the purposes of stability analysis. We have
proved that universal stability of an adversarial queueing network is
implied by a global stability of an associated fluid model.

This result opens up an opportunity for using methods from con-
tinuous-time, continuous-state processes for stability analysis of ad-
versarial networks. Such methods include Lyapunov functions [5], [8],
[10], [11], [13] and trajectory decomposition [2], [14].

A number of interesting questions remain open. What are necessary
and sufficient condition for universal stability of any given network?
Networks, which are universally stable for allr < 1 are characterized
in [15] and [17]. But question which networks are universally stable for
specificr < 1 and specific set of path requested, remains unanswered.
Note that constructing networks unstable for givenr is progressively
harder asr gets smaller. Moreover, it has been shown by Borodinet al.
[3] that for an arbitrary small ratesr > 0 there existr-unstable net-
works. Characterizing exactly the set ofr-unstable networks is another
interesting open problem.
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