
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 27, No. 2, May 2002, pp. 272–293
Printed in U.S.A.

ON DECIDING STABILITY OF CONSTRAINED HOMOGENEOUS
RANDOM WALKS AND QUEUEING SYSTEMS

DAVID GAMARNIK

We investigate stability of scheduling policies in queueing systems. To this day no algorithmic
characterization exists for checking stability of a given policy in a given queueing system. In this
paper we introduce a certain generalized priority policy and prove that the stability of this policy
is algorithmically undecidable. We also prove that stability of a homogeneous random walk in �d

+
is undecidable. Finally, we show that the problem of computing a fluid limit of a queueing system
or of a constrained homogeneous random walk is undecidable. To the best of our knowledge these
are the first undecidability results in the area of stability of queueing systems and random walks in
�d

+. We conjecture that stability of common policies like First-In-First-Out and priority policy is
also an undecidable problem.

1. Introduction. We consider a queueing system that operates under a specific and
fixed scheduling policy. The system consists of a single server and several buffers in which
arriving jobs are stored. We assume that the arriving parts may require several stages of
processing, in which case each stage corresponds to a different buffer. The jobs arrive in a
deterministic fashion: The interarrival times are fixed and known. All the processing times
are also deterministic. A scheduling policy is a rule that specifies how the arriving parts
are processed in the queueing system. Common scheduling policies include First-In-First-
Out (FIFO), Last-In-First-Out (LIFO), Longest-In-System (LIS), Shortest-In-System (SIS),
priority policy, etc. The priority policy is an example of a state-dependent policy—The
scheduling decision depends only on the current vector of queues of the system and is
independent of the past configurations and the past decision rules. FIFO, LIS, and SIS, on
the other hand, are not state dependent in that sense. One can make them state dependent
if additional information, like order of arrivals, is incorporated into the state.
A scheduling policy is defined to be stable if there is a finite uniform upper bound on

the total number of parts in the system at all times. A necessary condition for stability of
any work-conserving policy is the load condition: The traffic intensity of the station is not
bigger than one. Many results have demonstrated that this condition is not sufficient for
stability. The results were obtained primarily in the context of stochastic networks (Bramson
1994, Dai 1995, Down and Meyn 1997, Lu and Kumar 1991, Rybko and Stolyar 1992),
deterministic fluid networks (Bertismas et al. 1996, Dai 1995, Dai and Vande Vate 2000,
Dai et al. 1999, Dai and Weiss 1996), and deterministic adversarial networks (Andrews
et al. 2001, Borodin et al. 2001, Gamarnik 2000, Goel 1999). One of the earliest results
in the area was obtained by Rybko and Stolyar (1992) and Lu and Kumar (1991). They
showed that a simple priority policy can lead to instability in some queueing networks even
if the load condition is met. Bramson (1994) and Seidman (1994) showed that even FIFO
policy can be unstable in queueing networks. Instability of FIFO was later demonstrated in
an adversarial queueing setting by Andrews et al. (2001). Dai (1995) and Stolyar (1995)
established that stability of a deterministic fluid queueing network implies stability of a

Received May 22, 2000; revised November 9, 2001.
MSC 2000 subject classification. Primary: 60K25, 68M20, 90B22.
OR/MS subject classification. Primary: Queues/priority.
Key words. Queueing system, scheduling policy, stability.

272

0364-765X/02/2702/0272/$05.00
1526-5471 electronic ISSN, © 2002, INFORMS

DECIDING STABILITY OF QUEUEING SYSTEMS 273

stochastic queueing network. A similar result was established by Gamarnik (2000), which
connects stability of fluid and adversarial queueing networks. A complete characterization of
two-station fluid networks that are stable under any work-conserving policy was established
by Bertsimas et al. (1996) and Dai and Vande Vate (2000). Goel (1999) constructed a
complete characterization of adversarial queueing networks that are stable under the usual
load condition. The result is extended by Gamarnik (1999).
Despite the progress, no explicit or algorithmic characterization is known for checking

stability of a given policy in a given network. That is, no algorithm is available which,
on an input “queueing system description + scheduling policy,” would output “yes” if the
policy is stable in the network and “no” otherwise. (Of course, the scheduling policy should
be computable for this question to make sense.) Such an algorithm is not known even for
specific policies like FIFO, LIFO, or priority policies.
Motivated by a queueing network model, stability of homogeneous random walks in a

nonnegative orthant �d
+ (�+ is the set of nonnegative integers) was considered in sev-

eral papers: Malyshev (1972), Menshikov (1974), Fayolle (1989), Ignatyuk and Malyshev
(1993), and Malyshev (1993). The transition vectors � have deterministically bounded
length in max norm, and the transition probability p����� along the direction � depends
only on the face � that the random walk is currently on (the transition probabilities depend
only on which coordinates of the current state are positive and which are zero). Such a
random walk is defined to be stable if it is positive recurrent. We will also consider deter-
ministic walks for which p����� is always zero or one (the transition deterministically
depends on the face that the walk is currently on).
A complete characterization of stable homogeneous random walks in �d

+ for d ≤ 4
was obtained in Malyshev (1972), Menshikov (1974), and Ignatyuk and Malyshev (1993),
respectively, but no extension of this classification to higher dimensions has been obtained.
A very interesting and deep connection between the homogeneous random walks and con-
tinuous dynamical systems on compact manifolds is constructed by Malyshev (1993). This
paper shows that the difficulty of classifying stable random walks is of the same nature as
the difficulty of understanding the dynamics of these dynamical systems. Specifically, the
complicated dynamics precludes obtaining classification of stable random walks for d = 5,
although no formal proof of the impossibility of the classification is provided.
In this paper we demonstrate the fundamental reason for the absence of stability char-

acterizations for the models above. We prove that even for simplified deterministic homo-
geneous walks in �d

+, stability is not an algorithmically decidable property for general d.
No conceivable computational procedure can exactly characterize stability conditions for
this model. This settles in a somewhat unexpected way an open problem on characterizing
stable random walks in �d

+ for d ≥ 4. We then propose a certain class of generalized prior-
ity scheduling policies. For this class of policies the scheduler makes a decision depending
only on which buffers have parts present and which buffers are empty. In other words, the
scheduling decision is a function of the vector b ∈ 	0�1
n, describing the presence/absence
status of each buffer, where n is the number of buffers. As such, the policy is completely
state dependent. The scheduling policy allows idling—For some binary vectors the corre-
sponding decision could be “Do not serve until the state has changed.” We prove that the
stability of a generalized priority policy is algorithmically undecidable. The result holds
under fairly conservative assumption on the queueing system: All of the interarrival times
are deterministic, and all of the processing times are equal to one time unit. As a result,
our model is more restrictive than the stochastic or adversarial models mentioned above.
We conjecture that the stability of more common scheduling policies like FIFO or priority
policies is undecidable as well.
Our undecidability results are, to the best of our knowledge, the first undecidability results

in the area of stability of queueing systems and random walks. It has been largely motivated
by similar results in the area of control theory. It is known that certain dynamical systems,

274 D. GAMARNIK

such as hybrid systems or piecewise affine systems, can simulate a Turing machine; see
Henzinger et al. (1995) and Koiran et al. (1994). The stability of these systems is then
reduced to the halting problem of the Turing machine, which is a classical example of
an undecidable problem: No algorithm exists that, given “Turing machine+ input word,”
will tell whether the Turing machine halts on the input word. For a definition of a Turing
machine and discussion of a Turing halting problem, see Sipser (1997).
Recently, Blondel et al. (2001) demonstrated that global stability of a piecewise affine

dynamical system is undecidable. This was established via reduction from a so-called
counter machine (see Hooper 1966, Hopcroft and Ullman 1969), which is a variation of
a Turing machine. We will also use a counter machine as a reduction tool. We will show
how a counter machine can be embedded into a single-station queueing system and how a
halting problem can be reduced to the question of stability. The rest of the paper is struc-
tured as follows. In the following section we describe homogeneous random walks in �d

+
and a queueing model. In §3 we introduce a counter machine and state the halting unde-
cidability result for a counter machine. In §4 we establish the undecidability of stability of
a homogeneous random walk in a nonnegative orthant �d

+ by a simple reduction from a
counter machine. In §5 we prove undecidability of stability of a generalized priority policy
in a single-station queueing system. Some extensions are discussed in §6. Specifically, we
show that the problem of computing a fluid limit of a queueing system or of a constrained
homogeneous random walk is undecidable. Concluding thoughts and some open problems
are presented in §7.

2. Model description.

2.1. A homogeneous random walk in a nonnegative orthant. A discrete time homo-
geneous random walk (also called constrained random walk) Q�t�� t = 1�2� � � � , has a
nonnegative orthant �d

+ as its state space. For each �⊂ 	1�2� � � � � d
 let �� be the corre-
sponding face:

�� = 	�z1� z2� � � � � zd� ∈�d
+� zi > 0 for i ∈��zi = 0 for i ��
�

The transition probabilities depend entirely on the face, which the random walk currently
belongs to, and the transition vectors have at most unit length in max norm. In other words,
for each �⊂ 	1�2� � � � � d
 and each � ∈ 	−1�0�1
d a certain value p����� (the transition
probability) is defined. These values satisfy

∑

�∈	−1�0�1
d
p�����= 1�

for each � and p����� = 0 if for some i � ���i = −1. The latter condition is simply a
consistency condition that prevents transitions into states with negative components. Given
a current state Q�t� ∈�d

+ of the random walk, the next state is chosen to be Q�t�+� with
probability p�����, if the state Q�t� belongs to the face ��. Note that a homogeneous
random walk is defined in finitely many (although exponentially in d) terms.
We now consider a deterministic variant of our random walk, for which p����� ∈ 	0�1
.

In other words, the transition vector � = ���� deterministically depends on the face. We
call it a deterministic homogeneous walk in a nonnegative orthant. A homogeneous random
(or deterministic) walk with initial state Q�0� is defined to be stable if there exists some
C > 0 (which may depend on the initial state Q�0�� such that the random walk starting
from Q�0� visits the set 	z ∈ �d

+ �
∑d

i=1 zi ≤ C
 infinitely often with probability one. Of
course, stability may depend on the initial state Q�0�. We say that that the random walk is
globally stable if it is stable for all the initial states. It is not hard to see that a deterministic

DECIDING STABILITY OF QUEUEING SYSTEMS 275

homogeneous walk is stable if and only if it is periodic: Q�t+ r� = Q�t� for some r and
all large enough t. A random walk is defined to be ergodic if it is stable and irreducible.
As a result it possesses a unique stationary distribution.

2.2. A single-station queueing system. A single-station queueing system � consists
of a single server and I types of parts arriving externally. The parts corresponding to type
i= 1�2� � � � � I visit the station Ji times. On each visit the part must receive a service before
proceeding to the next visit. Only one part among all of the types can receive service at
a time. While a part waits to receive the service on its jth visit, it is stored in buffer Bij .
We denote by n the total number of buffers n=∑I

i=1 Ji. The service time for each part is
a certain (deterministic) integral value pi�j that depends on the type i and the visit number
j ≤ Ji. The type i parts arrive into the station in regular deterministic and integral intervals
of length 1/�i. In other words, �i is the arrival rate of the type i parts. For concreteness
assume that the first arrival occurs at time 1/�i for all types. All of the arrivals and service
completions occur at integer times t= 0�1�2� � � � . The integrality of interarrival and service
times is assumed for convenience but is not restrictive.
A scheduling policy � is defined to be a generalized priority policy if it operates

in the following manner. A map �� 	0�1
n → 	0�1�2� � � � � n
 is given. At each time
t = 0�1�2� � � � , the scheduler looks at the system and computes the binary vector b =
�b1� b2� � � � � bn� ∈ 	0�1
n, where bi = 1 if there are parts in the ith buffer and bi = 0 other-
wise. Then the value k = ��b��0≤ k ≤ n is computed. If k > 0, then the station processes
a part in the kth buffer. If k= 0, the server idles. The map � is assumed to satisfy the con-
sistency condition: if ��b�= k > 0, then bk = 1. That is, processing can be done in buffer
k only when there are jobs in buffer k. Note that the generalized priority scheduling policy
is defined in finitely many terms and is completely state dependent—The scheduling deci-
sion at time t does not depend on the state of the queueing system at times t′ < t. A usual
priority policy corresponds to the case when there is some permutation � of the buffers
	1�2� � � � � n
 and ��b�= k if and only if bk = 1 and bi = 0 for all i such that ��i� < ��k�.
In words, priority scheduling policy processes parts in buffers with lowest value (highest
priority) �, which still has parts.
Given a generalized priority policy � and a vector of queue lengths Q�0� =

�Q1�0�� � � � �Qn�0�� at time t = 0, a triplet �����Q�0�� is defined to be stable if there
exists a finite number C > 0 such that the total number of parts in the queueing system �
never exceeds C, when the system starts with Qi�0� parts in buffer i and operates using
policy �. A pair ����� is defined to be globally stable if it is stable for all the initial states
Q�0�. Our goal is to show that the properties “�����Q�0�� is stable” and “����� is glob-
ally stable” are undecidable. Note that the necessary condition for stability is the following
load condition:

 ≡
I∑

i=1

Ji∑

j=1
�ipi� j ≤ 1�(1)

This condition is also sufficient for stability if the policy is work conserving, which does
not apply here, since we allow idling ��b�= 0. Throughout the paper we assume that the
load condition above holds.

3. Counter machines. A counter machine (see Blondel et al. 2001, Hopcroft and
Ullman 1969) is a deterministic computing machine that is described by two counters R1�R2
and a finite number of states S. Each counter contains some nonnegative integer in its reg-
ister. Depending on the current state s ∈ S and depending on whether the content of the
registers is positive or zero, the counter machine is updated as follows: The current state

276 D. GAMARNIK

s is updated to a new state s′ ∈ S, and one of the counters has its number in the register
incremented by one, decremented by one, or no change in the counters occurs.
Formally, a counter machine is a pair �S� $�. S = 	s1� s2� � � � � sm
 is a finite set of

states, and $ is the configuration update function $� S× 	0�1
2 → S× 	−2�−1�0�1�2
.
A configuration of a counter machine is an arbitrary triplet �s� z1� z2� ∈ S×�2

+. A con-
figuration �s� z1� z2� is updated to a configuration �s′� z′1� z

′
2� as follows. First, a binary

vector b = �b1� b2� is computed where bi = 1 if zi > 0 and bi = 0 if zi = 0, i = 1�2. If
$�s� b� = �s′�1�, then the current state is changed from s to s′, the content of the first
counter is incremented by one, and the second counter does not change: z′1 = z1+1� z′2 = z2.
We will also write $� �s� z1� z2�→ �s′� z1+1� z2� and $� s→ s′� $ � z1 → z1+1� $ � z2 → z2.
If $�s� b� = �s′�−1�, then the current state becomes s′, z′1 = z1− 1� z′2 = z2. Similarly, if
$�s� b� = �s′�2� or $�s� b� = �s′�−2�, the new configuration becomes �s′� z1� z2 + 1� or
�s′� z1� z2−1�, respectively. If $�s� b�= �s′�0� then the state is updated to s′, but the con-
tents of the counters do not change. This definition can be extended to the one that incor-
porates more than two counters but, in most cases, such extension is not necessary for our
purposes.
Given an initial configuration �s0� z01� z

0
2� the counter machine uniquely determines sub-

sequent configurations �s1� z11� z
1
2�� �s

2� z21� z
2
2�� � � � � �s

t� zt1� z
t
2�� � � � . We fix a certain config-

uration �s∗� z∗1� z
∗
2� and call it a halting configuration. If this configuration is reached, then

the process halts and no additional updates are executed. The following theorem establishes
the undecidability of a halting property.

Theorem 1. (a) Given a counter machine �S� $�, initial configuration �s0� z01� z
0
2�, and

the halting configuration �s∗� z∗1� z
∗
2�, the problem of determining whether the halting con-

figuration is reached in finite time is undecidable. It remains undecidable even if z∗1� z
∗
2 are

restricted to be a zero.
(b) Given a counter machine �S� $� and the halting configuration �s∗� z∗1� z

∗
2�, the problem

of determining whether the halting configuration is reached in finite time for every initial
configuration is undecidable.

The part (a) of this theorem is a classical result and can be found in Hooper (1966). Part
(b) was proven in Blondel et al. (2001). This theorem is the key result for the analysis in
this paper.

4. Stability of a deterministic homogeneous walk in �d
+. In this section we prove

that it is generally impossible to obtain stability condition for a deterministic walk in a
nonnegative orthant �d

+, given the finite set of transition rules.
Recall from §2.1 that a deterministic homogeneous walk Q�t� in �d

+ is described by a
collection of deterministic transition vectors 	����
�, such that each d-dimensional vec-
tor ���� has all the components equal to −1�0�1 and if Q�t� ∈ ��, then Q�t+ 1� =
Q�t�+����. Then, given the initial position of the walk Q�0� the trajectory of the walk
Q�1��Q�2�� � � � �Q�t�� � � � is uniquely determined. We defined the walk Q�t� to be stable
if there exist C > 0 such that �Q�t�� ≤ C for infinitely many t, where �Q�t�� =∑d

i=1Qi�t�.
Observe that since the walk is deterministic, then the stability implies the existence of C > 0
for which �Q�t�� ≤ C for all t.

Theorem 2. There does not exist an algorithm that, on an input �Q�0�� 	����
��,
outputs “yes” if the deterministic walk Q�t� with initial state Q�0� and transition rules
	����
� is stable, and outputs “no” otherwise. Thus, stability of a deterministic homoge-
neous walk in �d

+ is not decidable.

Proof. We prove the theorem by a simple reduction from a counter machine. Given an
arbitrary counter machine �S� $� with initial configuration �s0� z01� z

0
2� and halting configu-

ration �s∗�0�0�, we will construct a deterministic walk that has dynamics very similar to

DECIDING STABILITY OF QUEUEING SYSTEMS 277

the dynamics of the counter machine. We then argue that if we had an algorithm for check-
ing stability of a deterministic walk we could use this algorithm for checking whether the
counter machine halts.
Let S = 	s1� s2� � � � � sm
 and let i

∗ ∈ 	1�2� � � � �m
 be the index of the halting state s∗.
That is s∗ = si∗ . Our deterministic walk has a state space �m+2

+ . The first m coordinates
will be used to encode the states of the counter machine. We encode the state si ∈ S by
an m-dimensional unit vector ei, where ei has ith component equal to one and all other
components equal to zero. The last two coordinates contain the values of the counters
of the counter machine. Thus, the configuration �si� z1� z2� corresponds to the following
state Q of the walk: Qi = 1�Qm+1 = z1�Qm+2 = z2, and Qj = 0 for all other coordinates
j. We now describe the transition vectors � for each face �� of the state space �m+2

+ .
Suppose � = 	i�m+ 1�m+ 2
 for some i ∈ 	1�2� � � � �m
. We compute $�si� �1�1��. If
$�si� �1�1�� = �sj�1� and i �= j, then we set �i��� = −1��j��� = 1��m+1��� = 1� and
�k��� = 0 for all other k. This simply means that if the current state Q�t� of the walk
encodes a state si and both coordinates m+1�m+2 correspond to positive contents, then
Q�t+1�=Q�t�+���� will encode the state sj , and the coordinate m+1 (the first counter)
increases its value by one. If i= j, then we set �m+1���= 1��i���= 0 for all other i. This
corresponds to the case when the state si does not change. If $�si� �1�1��= �sj�2� then we
set the vector ���� similarly, except �m+2���= 1 (the second counter should increase its
value by one). If �= 	i�m+1
 or �= 	i�m+2
 or �= 	i
, we construct ���� similarly,
by applying the rule $ to �si� �1�0��� �si� �0�1��, and �si� �0�0��, respectively. Specifically
for � = 	i∗
 we put ���� = 0 as �s∗�0�0� corresponds to a halting configuration. For all
the remaining � we set ����= 0. It is not hard to see that with this set of transition vectors
����, if Q�t� ∈ �� and Q�t� encodes the current configuration �s

t� zt1� z
t
2� of the counter

machine, then Q�t+1�=Q�t�+���� encodes the updated configuration �st+1� zt+11 � zt+12 �.
To complete the proof of the theorem we show that if we had an algorithm � for checking

stability of a deterministic homogeneous walk in �m+2
+ , we would have an algorithm for

checking whether a counter machine halts on a given initial configuration �s0� z01� z
0
2�. Given

a counter machine construct a deterministic walk with a specific initial state and transition
rules as described above. Check this walk for stability using algorithm �. If the walk is
unstable, we declare the counter machine nonhalting. This is accurate, because if it were
halting, then the walk would end up in a “trapping” face �� with �= 	i∗
 and would stay in
the same state forever (in particular, it would be stable). If, however, the walk is determined
to be stable, then we simply follow the dynamics of our counter machine until either it halts
or a certain configuration is repeated, that is, for some t1 < t2 �s

t1� z
t1
1 � z

t1
2 �= �st2� z

t2
1 � z

t2
2 �. In

fact, by stability, the content of the counters in the counter machine is bounded, and if the
counter machine does not halt, then it should repeat a configuration and enter a cycle. That,
of course, corresponds to a nonhalting case and we declare the counter machine nonhalting.
This completes the proof of the theorem. �

As Theorem 1 part (b) states, determining whether a counter machine halts starting from
every initial configuration is also undecidable. Using this result, we now show that the
ergodicity of a constrained homogeneous random walk is not decidable. Recall that a ran-
dom walk is ergodic if it is stable and irreducible. For the case of a deterministic walk, this
simply means that there exists a unique cycle that is entered by the walk starting from an
arbitrary initial point.

Corollary 1. Ergodicity of a homogeneous deterministic walk is not decidable.

Proof. Consider an arbitrary counter machine �S� $� and its embedding into a deter-
ministic walk Q�t� in ��S�+2

+ , as described in the proof of the previous theorem. Specifically,
as in that construction, we stipulate that when the face � represents the halting configura-
tion �si∗�0�0�, the corresponding transition ����= 0. Then this walk has at least one cycle
consisting of one point ei∗ , where ei∗ has i

∗th coordinate 1 and all the other coordinates 0.

278 D. GAMARNIK

For every face � �= � that does not correspond to an encoding of some counter machine
configuration, we define the corresponding transition ���� as follows: �i��� = −1 for
i ∈ � and �i��� = 0 for i � �. In words, every nonzero component of the state Q�t� in
such a face is decreased by one. Finally, if � = �, then �i∗��� = 1 and �i��� = 0 for
i �= i∗. That is, if Q�t�= 0 then Q�t+1� represents the halting configuration �si∗�0�0�. By
the construction above, if Q�0� does not correspond to an encoding of some configuration
of a counter machine, then either for some time t� Q�t� represents the halting configura-
tion and the walk enters a single state cycle, or at some time t� Q�t� does represent some
configuration of the counter machine. Suppose now there exists an algorithm for checking
ergodicity of a deterministic walk. We apply the algorithm to the walk constructed above. If
the output of the algorithm is “ergodic,” then there exists only one cycle that is eventually
entered from any initial state. In our case this can only be a single-point cycle consisting
of a state ei∗ representing the halting configuration. In particular, the halting configuration
is reached for every initial configuration. If the output of the algorithm is “not ergodic,”
then there exists more than one cycle, or there exist an unstable trajectory. In either case
there exists a starting state, that corresponds to some configuration of a counter machine,
from which the state ei∗ is never reached. This starting state must correspond to some con-
figuration of a counter machine. As a result, there exists a configuration from which the
halting configuration is never reached. We conclude, the walk is ergodic if and only if the
halting configuration is reached for any initial configuration. However, the latter property is
undecidable by part (b) of Theorem 1. �

The second part of Theorem 1 is also used in Blondel et al. (2001) to prove that a global
stability of a piecewise affine action is not a decidable property. We use this result here to
prove a similar result that stability of a homogeneous walk for all the initial states (global
stability) is also an undecidable property. Thus, global stability is not decidable.

Theorem 3. There does not exist an algorithm which, on an input �	����
��, outputs
“yes” if the deterministic walk Q�t� with transition rules �	����
�� is stable for all the
initial states Q�0� and outputs “no” otherwise.

Proof. Given a counter machine we will construct a deterministic walk that is stable
if and only if the counter machine halts for all the initial states. Then the result would
follow from Theorem 1, part (b). Note that we cannot use the construction in the proof of
Theorem 2 directly since the stability of the constructed walk from all the initial states only
tells us whether the counter machine halts or loops from every initial configuration. We
could check which one is the case for any individual initial configuration but not for all the
initial configurations simultaneously. For this reason we modify a given counter machine
�S� $� into a bigger counter machine ��S��$� with the following property: If �S� $� halts
for all the initial configurations, then ��S��$� halts for all the initial configurations. If �S� $�
does not halt for a certain initial configuration, then there exists a configuration in ��S��$�
starting from which one of the counters diverges to infinity (in particular, the machine does
not halt).
Suppose the original counter machine �S� $� has states S= 	s1� s2� � � � � sm
 and two coun-

ters z1� z2. Suppose the halting configuration is �s
∗�0�0�. Our extended counter machine

��S��$� has a state space S2 and seven counters denoted by z1� z2� z
+
1 � z

+
2 � z

−
1 � z

−
2 � z

�. The
first component si1 of the state �si1� si2� ∈ S2 corresponds to the state of the original counter
machine, and the first two counters z1� z2 correspond to the counters of the original counter
machine.
The configuration update rules are split into several groups.
Case 1. si1 �= si2 or one of z

+
1 � z

+
2 � z

−
1 � z

−
2 is nonzero. Suppose $ updates the configuration

�si1� z1� z2� into �si3� z1+ 1� z2�. We update the configuration in the extended machine as
follows: �$� �si1� si2� → �si3� si2� and

�$� z1 → z1+ 1��$� z2 → z2. In addition, if z
−
1 = 0,

then �$� z+1 → z+1 + 1, and if z−1 > 0, then �$� z−1 → z−1 − 1. All the other counters remain

DECIDING STABILITY OF QUEUEING SYSTEMS 279

the same. As we will see later, the counters z+i will represent the difference between the
current reading of the counter z1 and its original reading at some initial time. Specifically,
if the difference is ' > 0 �<0�, we will arrange for z+1 = '� z−1 = 0 �z+1 = 0� z−1 = −'). If
$� �si1� z1� z2�→ �si3� z1−1� z2�, then �$� �si1� si2�→ �si3� si2� and

�$� z1→ z1−1��$� z2 → z2.
In addition, if z+1 > 0, then �$� z+1 → z+1 −1, and if z+1 = 0, then �$� z−1 → z−1 +1. All the other
counters remain the same. If the second counter is changed in the original machine or both
counters stay the same, then the updates in the extended machine are similar. Specifically,
when both counters stay the same, the counters z+i � z

−
i do not change.

Case 2. si1 = si2 and z
+
1 = z+2 = z−1 = z−2 = 0. The configuration update rule is exactly

as above, but, in addition, �$� z� → z�+1.
In addition to the rules above we put: if si1 = s∗ and z1= z2 = 0 (which corresponds to the

halting configuration of the original machine), then �$� �s∗� si2�→ �s∗� s∗� and any of the non-
zero counters of the extended machine is decremented by one. Finally, �si1� si2� = �s∗� s∗�
and z1 = z2 = z+1 = z+2 = z−1 = z−2 = z� = 0 is set to be the halting configuration at which
no configuration update occurs.
The constructed machine does not fit exactly the definition of a counter machine from

§3, since it has more than two counters and more than one counter can be updated simul-
taneously. It is shown in Blondel et al. (2001) how to reduce a counter machine with more
than two counters into an equivalent one with only two counters. The second problem can
be circumvented simply by adding further new states and having only one counter update
at a time. Neither of these changes is required here, since we can embed a counter machine
with more than two counters, which updates several counters simultaneously, into a deter-
ministic walk exactly as in the proof of Theorem 2.
Let us now analyze the dynamics of the constructed counter machine. Note that the first

component si1 and the first two counters z1� z2 behave exactly like the original counter
machine. Specifically from the rules above, the extended counter machine halts if and
only if the original counter machine halts. However, we now show that, in addition, if the
original machine does not halt starting from some configuration, then starting from some
configuration the extended machine does not halt and the counter z� diverges to infinity.
Thus, suppose the original machine does not halt starting from some initial configuration.
Then either one of the counters of the original (and, therefore, also of the extended) counter
machine diverges to infinity, or the counter machine enters a cycle. In the first case we are
done—the embedding of this machine into a deterministic walk corresponds to an unstable
trajectory. Consider now the second case. Let �sk̂� ẑ1� ẑ2� denote an arbitrary point from this
cycle. Consider the following initial configuration of the extended counter machine: State
�sk̂� sk̂� and counters z1= ẑ1� z2= ẑ2� z

+
1 = z+2 = z−1 = z−2 = z� = 0. Note, from the rules of the

extended counter machine, that starting from this configuration, the second si2 component
of the state is always equal to sk̂. Also note that the difference between the counter value
zj at the current time and at time zero is represented by one of z

+
j � z

−
j . Specifically, if the

difference is 'j ≥ 0, then z+j = 'j� z
−
j = 0, and if 'j < 0, then z+j = 0� z−j = −'j . Since,

by assumption, the original machine starting from �sk̂� ẑ1� ẑ2� enters a cycle and revisits
this configuration infinitely often, then the extended machine will infinitely often be in a
configuration with state �sk̂� sk̂� and z+1 = z+2 = z−1 = z−2 = 0. Every time this occurs, we
increment z� by one (see Case 2 above). In particular, the counter z� diverges to infinity.
Thus, if the original counter machine is not halting for some initial configuration, then the
extended counter machine is also nonhalting for some initial configuration and, in addition,
one of the counters diverges to infinity.
To complete the proof, we embed the extended counter machine ��S��$� into a determin-

istic walk exactly as in the proof of Theorem 2. For the faces � of the walk that do not
correspond to any possible encoding of the counter machine we put ����= 0. Specifically,
starting from a state from such a face, the walk is stable. If the original counter machine
halts for all the initial configurations, then the constructed walk is stable for all the initial

280 D. GAMARNIK

states. If there exists a configuration starting from which the original machine does not halt,
then, by the argument above, there exists a state in the deterministic walk, starting from
which it is unstable. If we had an algorithm for checking global stability (stability for all
the initial states) of a deterministic walk, we would have an algorithm for checking “halt-
ing from all configuration” property for a counter machine, which contradicts Theorem 1,
part (b). �

5. Stability of a generalized priority policy: The undecidability result. In this
section we construct a queueing system and a generalized priority policy �, which mimics
the behavior of a counter machine. We then argue that if we had an algorithm for checking
stability of the queueing system, we could determine whether the counter machine halts or
not, contradicting Theorem 1. In what follows we describe the queueing system and con-
struct the reduction.

5.1. Description of the queueing system. Consider a counter machine �S� $� with
S = 	s1� s2� � � � � sm
. Our queueing system consists of 3m+ 24 buffers and receives parts
from 2m+ 7 external sources. Figure 1 displays the system for the case m = 3. It should
be understood that all the buffers belong to a single station (which we do not draw to
avoid cluttering the figure). All the parts move from left to right horizontally. We have 2m
buffers that are denoted by A01�A1�A

0
2�A2� � � � �A

0
m�Am. For each i = 1�2� � � � �m there is

an external stream of parts coming into buffer A0i . After completing a service, these parts
move into buffer Ai and then after service completion leave the system. The next m buffers,
denoted by B1� � � � �Bm� receive parts externally. After receiving service, these parts leave
the system. The subsequent six buffers are denoted by C0

1 �C1�C
1
1 �C

0
2 �C2�C

1
2 . For each

i = 1�2, the parts are arriving from outside and visit buffers C0
i �Ci�C

1
i in that order and

leave the system.
Finally, we have five types of special monitor parts ea� eb� ec0� ec1� ec2. There will never

be more than one monitor part of each type in the system at a time. The monitor part ea vis-
its three buffers denoted by EA1�EA2�EA3 respectively. The monitor part ec0 visits buffers
EC00�EC

0
1�EC

0
2�EC

0
3. The parts ec1� ec2 visit buffers EC

1
1� � � � �EC

1
5 and EC

2
1� � � � �EC

2
5,

respectively. Finally, monitor part eb visits one buffer EB. All parts arrive into the system
simultaneously at times 0� I�2I�3I� � � � , where I = 3m+26. All the service times are equal
to one unit of time.

Figure 1. Beginning of subcycle �.

DECIDING STABILITY OF QUEUEING SYSTEMS 281

5.2. Reduction. We first give a high-level description of our reduction. The detailed
description will follow later. The content of buffers A1� � � � �Am and B1� � � � �Bm are used
for encoding the current state s and the updated state s′ of the counter machine, respectively.
Specifically, we will say that buffers Ai� i = 1�2� � � � �m encode state s = sr at time t if,
at time t, buffers Ai are empty for i �= r , and buffer Ar contains exactly one part. Buffers
Bi� i = 1�2� � � � �m encode the states similarly. The buffers A01� � � � �A

0
m are auxiliary and

are only used for storing the parts so that they can be released into “content-full” buffers
Ai whenever an update is required. The content of buffers C1�C2 will represent the content
of the two counters of the counter machine. The remaining buffers Cj

i are auxiliary. We
will ensure that only buffers Ci (representing counters) can have more than one part waiting
for service at a time. An update �sr � z1� z2�→ �sr ′ � z

′
1� z

′
2� of the counter machine will be

represented by a cycle of service completions in our queueing system. It starts at time
tI and ends at time �t+ 1�I� t = 0�1�2� � � � . At the beginning of the cycle, buffers Ai

represent the current state s of the counter machine; buffers C1�C2 represent the current
content z1� z2 of the counters (that is, queue length in buffer Ci is zi); buffers A

0
i � Bi�C

0
i

each contain exactly one part; each monitor part is in its first buffer; and all the remaining
auxiliary buffers are empty. Figure 1, for example, represents the queueing system encoding
configuration �s1�4�2� at the beginning of a cycle. If the counter machine goes through a
sequence of configuration

�sr0� z
0
1� z

0
2�→ �sr1� z

1
1� z

1
2�→ �sr2� z

2
1� z

2
2�→ ·· · → �srt � z

t
1� z

t
2�→ ·· · �

then the queueing system will encode these configurations at times 0� I�2I� � � � � tI . A com-
plete cycle representing a generic transition �sr � z1� z2�→ �sr ′ � z

′
1� z

′
2� is split into three sub-

cycles, ���, and �. In the first subcycle, �, the parts in buffers Bi are processed so that in
the end they represent the updated state sr ′ . This is achieved by processing all the parts in
buffers Bi� i �= r ′ and not touching buffer Br . At this point buffers Bi “record” the updated
state sr ′ for future references.
In the second subcycle, �, the parts in buffers C0

i �Ci�C
1
i � i = 1�2, are processed so that

the buffers Ci represent the updated counters z
′
1� z

′
2. In the final subcycle, �, the parts in

buffers A0i �Ai are processed so that the buffers Ai also represent the updated state sr ′ . This
is done by “copying” the content of the buffers Bi into buffers Ai.
In the end of the cycle the content of the buffers Ai represents the updated state

sr ′ , and the content of the buffers Ci represents the updated counters z
′
1� z

′
2. The mem-

ory buffers Bi are cleared from parts, and another cycle representing the next transition
�sr ′ � z

′
1� z

′
2�→ �sr ′′ � z

′′
1� z

′′
2� can begin at the moment of the next simultaneous arrival of parts.

The correct order ����� of the subcycles is ensured via the monitor parts in buffers
EAj �EB�EC

0
j �EC

1
j �EC

2
j . Specifically, the presence of the monitor part eb in buffers EB

indicates that subcycle � must be executed. The absence of the part eb and the presence
of parts ec0� ec1� ec2 indicate subcycle �. Finally, the absence of parts eb� ec1� ec2 and the
presence of ea indicate the execution of the last subcycle �.
We now provide a detailed description of the generalized priority policy � that will

represent the subcycles����� described above. The subcycles are illustrated on Figures 1–
10 on a sample transition �s1�4�2�→ �s3�4�3�. This transition corresponds to configuration
update rule $�s1� �1�1��= �s3�2�. We describe the policy � by specifying the state or the
set of states of our queueing system (which buffers are empty, which buffers are nonempty)
and the corresponding decision (the part that the server must work on). We also analyze the
effect of applying the corresponding decisions.
Let �sr � z1� z2� be a configuration of the counter machine. We consider our queueing

system in the following state. All buffers A0i � Bi�C
0
i �EA1�EB�EC

0
1�EC

1
1�EC

2
1, and buffer

Ar contain exactly one part. The queue length in buffer Ci is equal to zi� i = 1�2. All the
remaining buffers are empty. If the counter machine has a configuration �s� z1� z2� at the tth

282 D. GAMARNIK

Figure 2. Beginning of subcycle �. Step 1.

Figure 3. Subcycle �. Step 2.

Figure 4. Subcycle �. Step 3.

DECIDING STABILITY OF QUEUEING SYSTEMS 283

Figure 5. Subcycle �. Step 4.

Figure 6. Subcycle �. Step 5.

Figure 7. Subcycle �. Step 1.

284 D. GAMARNIK

Figure 8. Subcycle �. Step 2.

Figure 9. Subcycle �. Step 3.

Figure 10. End of the full cycle.

DECIDING STABILITY OF QUEUEING SYSTEMS 285

step, our queueing system will be in the state described above at time tI . Let �sr ′ � z
′
1� z

′
2� be

the configuration obtained from �sr � z1� z2� using the update rule $ of the counter machine.
Subcycle �. The goal of this subcycle is to have buffers Bi encode the updated state sr ′ .

As will be seen, the set of rules corresponding to the cycle� is applicable whenever monitor
part eb is present in the system. The states of the queueing system and corresponding
decisions of the policy � are as follows:
State. Buffer EB nonempty (and contains monitor part eb).
Decision. Look at contents of the buffers Ai� i = 1�2� � � � �m and compute the current

state s of the counter machine. Specifically, s= sr if buffer Ar is nonempty and buffers Ai are
empty for i �= r . Look at the queue lengths Qi at buffers Ci� i= 1�2 and set z1=Q1� z2=Q2.
Apply the rule $ of the counter machine to the configuration �sr � z1� z2� and obtain the
updated state sr ′ . Find the smallest i �= r ′ such that buffer Bi is nonempty. Process the part
in the buffer Bi. If no such buffer exists, process the part in the buffer EB (remove monitor
part eb from the system).
Analysis. All buffers Bi� i �= r ′ become empty. Buffer Br ′ contains one part. Thus, buffers

Bi correctly encode the updated state sr ′ .
Subcycle �. The goal of this cycle is to have buffers Ci encode the updated counter

contents z′1� z
′
2. As will be seen, the set of rules corresponding to the cycle � is applicable

whenever at least one of the buffers ECj
i � j = 0�1�2� i= 1�2� � � � �5 is nonempty but buffer

EB is empty (cycle � is over).
We split the decision rules into two groups. The first corresponds to the increase by one

or no change in one of the counters z1� z2. The second corresponds to the decrease by one
in one of the counters z1� z2� Suppose, for example that the content z1 increases by one and
the content z2 does not change. Then, the first group of steps is applicable. These steps first
move one part from each buffer C0

1 �C
0
2 into buffers C1�C2. Then, exactly one part from

buffer C2 is sent to C
1
2 . Finally this part is removed from C1

2 . These are Steps 1–4 below.
The net result is an increase by one of the queue length in buffer C1 and no change in
buffer C2.
Suppose now the z1 decreases by one and the content z2 does not change. Then, the

second group of steps is applicable. We first send one part from each buffer C0
1 �C

0
2 to buffers

C1�C2 and then to buffers C
1
1 �C

1
2 and remove them from the system. Then in addition we

move one part from buffer C1 into buffer C
1
1 and remove it from the system. The net result

is no change in the queue length in buffer C2 and decrease by one of the queue length
in buffer C1. The correct order of all steps is ensured via movements of the monitor parts
ecj� j = 0�1�2. Specifically, movement of the part ec1 corresponds to increasing one of
the counters or no change in counters, and movement of ec2 corresponds to decreasing the
content of one of the counters. Part ec0 encodes the index of the counter that needs to be
updated.
The states of the queueing system and corresponding decisions of the policy � are as

follows:
Step 1. State. Buffer EB empty, buffers EC1

1 �EC
2
1 nonempty (and contain monitor parts

ec1� ec2 respectively).
Decision. Find the unique nonempty buffer Ar from the buffers Ai� i = 1�2� � � � �m. In

other words, the current state of the counter machine is s = sr . Construct a binary vector
b= �b1� b2�, with bi = 1 if the queue length in Ci is positive and bi = 0 otherwise. Apply the
rule $ to the configuration �sr � b1� b2� and get the corresponding counter update decision.
Suppose the decision increases by one the content z1 �z2� and leaves z2 �z1� unchanged.
Find the location of the monitor part type ec0. If part ec0 is in buffer EC

0
0 �EC

0
0 �EC

0
1 �, then

work on this part. If it is in EC0
1 �EC

0
2 �, work on monitor part ec1 in buffer EC

1
1 .

Analysis. These steps bring monitor part ec0 into buffer EC
0
1 �EC

0
2 �. Buffer EC

0
1 �EC

0
2 �

records the counter index i= 1 �i= 2� that needs to be updated. Then we move the monitor
part ec1 from buffer EC1

1 into buffer EC
1
2 . That way we indicate that the increase should

occur.

286 D. GAMARNIK

Step 2. State. EB�EC1
1 empty, EC

1
2 �EC

2
1 nonempty (monitor part ec1 is in buffer EC

1
2).

Decision. Find i = 1�2 such that buffer C0
i is nonempty and work on a part in this

buffer. If no such buffer exists, work on buffer EC1
2 and move part ec1 from buffer EC1

2 to
the buffer EC1

3 .
Analysis. For each i, one part is moved from the buffer C0

i into buffer Ci and buffers
C0
i are now empty. Then part ec1 is moved to the buffer EC

1
3 .

Step 3. State. Buffers EB�EC11�EC
1
2 empty, buffers EC

1
3 �EC

2
1 nonempty (monitor part

ec1 is in buffer EC
1
3).

Decision. Locate the monitor part ec0. If it is in EC
0
1 �EC

0
2 � and C

1
1 �C

1
2 are empty, work

on a part in buffer C2 �C1�. Note that because of the previous step, both buffers C
0
1 �C

0
2 are

empty. If ec0 is in EC
0
1 �EC

0
2� and C

1
2 �C

1
1 � is nonempty, move part ec1 from EC13 to EC

1
4.

Analysis. Part ec0 in EC
0
1 �EC

0
2 � indicates that buffer C1�C2� needs update. Part ec1 in

buffer EC1
3 indicates that update should be an increase. We first process a part from buffer

C2 �C1� (which should not increase) into buffer C
1
2 �C

1
1 � and then move part ec1 from EC1

3

to EC1
4 .

Step 4. State. Buffers EB�EC11�EC
1
2�EC

1
3 empty, buffers EC

1
4�EC

2
1 nonempty (monitor

part ec1 is in buffer EC
1
4).

Decision. Find which buffer C1
1 or C

1
2 contains one part and process this part away from

the system. If both C1
2 and C

1
2 are empty move part ec1 from EC1

4 to EC
1
5 .

Analysis. We clear buffers C1
1 �C

1
2 and move ec1 to EC

1
5 .

Step 5. State. Buffers EB�EC11�EC
1
2�EC

1
3�EC

1
4 empty.

Decision. If buffer EC1
5 is nonempty, work on monitor parts ec1. If it is empty work on

any of ec0� ec2, until they leave the system.
Analysis. Monitor parts ec1 leave the system. Then the remaining monitor parts leave

the system. Buffers C1�C2 contain updated content of the counters. Buffers C
j
i are empty.

The subcycle � may begin.
This completes the group of decisions corresponding to increase of the counter z1 �z2�

by one. When the counter needs to be decreased, similar decision rules are constructed, but
instead monitor part ec2 moves along the buffers EC

2
1 � � � � �EC

2
5 . When the counters do

not change, we use rules corresponding to the increase of one of the counters, except that
monitor part ec0 is placed in EC

0
3 in Step 1, instead of EC

0
1 or EC

0
2. In that case each buffer

C1�C2 moves one part into buffers C
1
1 �C

1
2 in Step 3, and each buffer C

1
1 �C

1
2 processes one

part in Step 4.

Subcycle �. The goal of this subcycle is to copy the content of buffers Bi (updated state
sr ′) into buffers Ai and clear the memory buffers Bi and auxiliary buffers A

0
i .

Step 1. State. EB�ECj
k are empty, EA1 nonempty.

Decision. Find the unique i such that the buffer Ai is nonempty and process a part in
it. If all buffers Ai are empty move the monitor part ea from buffer EA1 to the buffer EA2.
Step 2. State. EB�ECj

k�EA1 empty, EA2 nonempty.
Decision. Find the smallest i such that buffer A0i is nonempty and process a part in it.

If no such buffer exists, move the monitor part ea from buffer EA2 to the buffer EA3.
Step 3. State. EB�ECj

k�EA1�EA2 empty, EA3 nonempty.
Decision. Find a unique r ′ such that buffer Br ′ is nonempty. Find a smallest i �= r ′ such

that Ai is nonempty. Process a part in this buffer. If no such buffer exists and if some buffer
Br ′ is nonempty, work on the part in this buffer and remove it from the system. If all Bi are
empty, remove the part ea from the system.
Analysis. The net result will be exactly one part in buffer Ar ′ , no parts in buffers A

0
i � Bi,

and no parts in buffers Ai� i �= r ′. Thus, buffers Ai correctly encode the updated state sr ′ of
the counter machine, and buffers Bi are cleared. Also, the last remaining monitor part ea is
removed from the system.
Step 4. State. All the monitor buffers EAk�EB�EC

j
k empty.

DECIDING STABILITY OF QUEUEING SYSTEMS 287

Decision. Idle.
This ends the full cycle.
The idling that starts at the end of the subcycle � continues until new parts arrive into

the system at time �t+1�I , given that the cycle started at time tI . The beginning of a new
cycle is indicated by an appearance of a monitor part eb in buffer EB. It is not hard to
compute that the maximal total length of the entire cycle is smaller than 3m+26= I (the
total number of buffers in the system plus 2, to account for a decrease of the queue length
in one of the buffer C1�C2). Note that the scheduler does not need to “know” the correct
order ����� of the subcycles. The correct order is ensured by presence/absence of the
monitor parts ea� ecj� eb. Note also that we have not specified the scheduling decisions
for all 	0�1
3m+24 binary states that the system may potentially be in. We do not have to
do that since we are guaranteed that none of these additional states are ever reached. For
completeness, assume that the decision corresponding to these states is to “work on any
available part.”
In conclusion, if the counter machine goes through a sequence of configurations

�sr0� z
0
1� z

0
2� → �sr1� z

1
1� z

1
2� → �sr2� z

2
1� z

2
2� → � � � � �srt � z

t
1� z

t
2� → � � � , then these configura-

tions are encoded via buffers Ai�Ci by our queueing systems at times 0� I�2I� � � � � tI� � � � �
respectively. We have finished describing the reduction from a counter machine to a queue-
ing system.

5.3. Main result. We now state and prove the main result of the section.

Theorem 4. There does not exist an algorithm which, on an input �����Q�0��, outputs
“yes” if the queueing system �, operating under generalized priority policy � and starting
from initial vector of queue lengths Q�0�, is stable and outputs “no” otherwise. Thus,
stability of a generalized priority policy is not decidable.

Proof. We prove the result by contradiction. Suppose such an algorithm � exists. Con-
sider a counter machine with initial state �sr0� z

0
1� z

0
2� halting state �s∗�0�0� and update

rule $. We modify the counter machine slightly as follows: $� �s∗�0�0� → �s∗�0�0�. In
other words, if the counter machine reaches the halting configuration it keeps returning to
it. We now consider a queueing system constructed in the previous subsection with initial
state encoding configuration �sr0� z

0
1� z

0
2� and pass our queueing system through the stability

oracle �. If the oracle determines “unstable,” we declare our counter machine nonhalting.
This is accurate since, if the counter machine reaches the halting configuration �s∗�0�0�,
it keeps returning to it. Then our queueing system always encodes �s∗�0�0� at times tI
for all sufficiently large t. Since the total number of parts in the queueing system at times
, ∈ -tI� �t+1�I. is not bigger than at time tI , then the queueing system is stable, which is
a contradiction. If, on the other hand, the oracle determines “stable,” then we simply com-
pute the successive configurations of the counter machine until it either (1) enters a halting
state or (2) repeats a nonhalting configuration. Note that one of these two possibilities must
occur since by stability there is an upper bound on the maximal value in the counters of
the counter machine. Thus, provided with stability checking algorithm � we would be able
to check whether the counter machine halts—this contradicts Theorem 1. �

We now establish an analogue of Theorem 3 for a queueing system.

Theorem 5. There does not exist an algorithm which, on an input �����, outputs “yes”
if the queueing system �, operating under generalized priority policy �, is globally stable
and outputs “no” otherwise.

Proof. Given a counter machine �S� $� we extend this counter machine to a newer
one exactly as in the proof of Theorem 3. The extended counter machine halts for all the
initial configurations if and only if the original counter machine halts for all the initial
configurations. Moreover, if there exists a configuration starting from which the old counter

288 D. GAMARNIK

machine does not halt, then there exists a configuration in the new machine, starting from
which one of the counters diverges to infinity. We embed the extended counter machine
into a single station queueing system exactly as described in §§5.1 and 5.2. Note that if we
start this queueing system from a state that does not correspond to an encoding of a counter
machine then, since a work-conserving scheduling rule is used, the system stays stable or
enters a state that does correspond to an encoding of some configuration. We conclude that
the queueing system is globally stable if and only if the original counter machine halts for
all the initial configurations. As a result no global stability checking algorithm for queueing
systems can exist. �

6. Extensions. We discuss now some extensions of the results of the previous sections.
Specifically, we discuss communication-type queueing networks and fluid models. We also
describe a certain reformulation of the stability property that makes it decidable for most
of the models considered in this paper.

6.1. Communication-type queueing network. A communication-type queueing net-
work is described as an undirected graph �V �E�, which represents the communication net-
work topology. V and E are the set of nodes and edges, respectively. A set of simple paths
(representing communication sessions) � is fixed. For each path P ∈ �, jobs (communi-
cation packets) arrive into the network externally and cross all the edges of the path P. It
takes one time unit to cross any given edge for any packet and only one packet can cross a
given edge at a time. The remaining packets form a queue. Note that the paths are assumed
to be simple and, as a result, no packet can cross the same edge twice. This is in contrast
to the one-station queueing system model. We assume that packets that have to go through
the path P have a deterministic interarrival time denoted by 1/�P . The first arrival occurs
at time 1/�P for all P. The rule by which a packet is chosen from a queue to cross an
edge is called a scheduling policy. As in §2.2, we introduce a generalized priority policy.
A scheduling policy � is defined to be a generalized priority policy if it operates as fol-
lows. Let n denote the number of edge-path pairs �e�P� ∈ E×�. For each e ∈ E a map
�e� 	0�1

n → � ∪ 	0
 is given. At each time t = 0�1�2� � � � , the scheduler looks at the
system and computes the binary vector b = �b�e�P��e∈E�P∈� , where b�e�P� = 1 if there is at
least one packet following path P that is waiting to cross e and b�e�P� = 0 otherwise. For
each edge e the corresponding value �e�b� is computed. If �e�b� = P, then a packet fol-
lowing path P is chosen for crossing the edge. If �e�b� = 0, then the edge e idles and
no packets are processed. As before, the policy is not necessarily work conserving. Note,
again, that the generalized priority scheduling policy is defined in finitely many terms and
is completely state dependent.
Let � denote the vector ��P� of arrival rates. A queueing network �V �E������� with

initial state (vector of queue lengths) Q�0� = �Q�e�P��0��e�P is defined to be stable if there
exists C > 0 (which may depend on the initial state) such that the total number of packets
does not exceed C for all times t. The definition of global stability is similar to the one for
a single-station model and for a constrained random walk. The load condition necessary for
stability is formulated for the network model as follows:

 e ≡
∑

P�e∈P
�P ≤ 1�(2)

for each edge e ∈E. We now show that the properties “�V �E�������Q�0�� is stable” and
“�V �E������� is stable” are undecidable.

Theorem 6. There does not exist an algorithm that, on an input �V �E������, Q�0��,
outputs “yes” if a queueing network �V �E����� with initial state Q�0�, operating under
a generalized priority policy �, is stable and outputs “no” otherwise. Thus, stability of

DECIDING STABILITY OF QUEUEING SYSTEMS 289

a generalized priority policy in a communication-type queueing network is not decidable.
Similarly, global stability of a generalized priority policy in a communication-type queueing
network is not decidable.

Proof. Consider a reduction from a counter machine to a single-station queueing system
constructed in §5. We construct a communication-type queueing network that is equivalent
to our queueing system. For each i = 1�2� � � � �m, we consider three vertices a0i � ai� a

1
i

connected by edges �a0i � ai� and �ai� a
1
i �. These edges represent the buffers A

0
i �Ai of the

original queueing system. In particular, for every i and for every time instance tI� t =
0�1�2� � � � , a single packet arrives that has to go through the path a0i � ai� a

1
i . Similarly, for

every i= 1�2� � � � �m, there is pair of nodes b0i � bi connected by an edge representing buffer
Bi. Every time instance tI one packet comes that has to cross this edge only. We construct
for each i four nodes c0i � ci� c

1
i � c

2
i connected by edges �c

0
i � ci�� �ci� c

1
i �� �c

1
i � c

2
i � to represent

buffers C0
i �Ci�C

1
i . For each i = 1�2, one packet arrives at times tI , t = 0�1�2� � � � , that

has to go through these edges. We construct nodes and edges to represent special buffers
EAj�EB�EC

j
i similarly. A policy � constructed for the queueing system is adopted to our

network in an obvious way. For example, if the decision in the queueing system were to
work on a part in buffer Ci, then the corresponding decision is to process a packet in the
node ci that needs to cross the edge �ci� c

1
i �. Clearly, the queueing network is stable if and

only if the original queueing system is stable. Thus, by Theorem 4, stability of queueing
networks under generalized priority policies for a given initial state is not decidable. �

6.2. Fluid models. Fluid models have proven to be an extremely useful technique for
analyzing stability of constrained random walk and queueing systems (see Dai 1995, Dai and
Vande Vate 2000, Malyshev 1993, Rybko and Stolyar 1992, Stolyar 1995). The approach is
based on scaling state and time of the underlying process by a large constant and analyzing
the behavior of the limiting process. Specifically, if Q�t� is a homogeneous random walk in
�d

+, the process �Q�t�=Q�nt�/n is considered for large n with initial state �Q�0�= �nq� for
some vector q ∈�d

+. Malyshev (1993) used fluid limits to construct deterministic dynamical
systems on convex bounded regions and obtain stability conditions for constrained random
walks in �d

+�d ≤ 4� Dai (1995) and Stolyar (1995) proved that in queueing systems if
�Q�t� becomes a zero vector after some finite time interval, then the queueing system is
stable. While these results establish an important connection between discrete systems and
fluid models, understanding the dynamics of the fluid limit process �Q�t� itself is an open
problem. In special cases (fluid models of feedforward fluid networks (see Down and Meyn
1997), networks with two stations (see Bertsimas et al. 1996, Dai and Vande Vate 2000) this
can be done efficiently, but no constructive way of analyzing the behavior of fluid limits
is available to this day. We now prove that computing the trajectory of a fluid limit is not
possible.

Theorem 7. Given a homogeneous deterministic walk Q�t� in �d
+, with initial state

Q�0�=�nq�, let �Q�t�∈�d
+ denote a set of limit points of Q�nt�/n as n→�, for each fixed

time t. There does not exist an algorithm which, on an input �	����
�� t�, outputs “yes”
if �Q�t� = 	0
 and outputs “no” otherwise. Thus, computing fluid limit is not a decidable
problem. Likewise, computing a fluid limit for a single-station queueing system operating
under a generalized priority policy is not a decidable problem.

Proof. Consider a counter machine with states s1� s2� � � � � sm and with initial and halt-
ing configurations �si0� z

0
1� z

0
2�� �si∗�0�0�, respectively. We can assume, without loss of gen-

erality, that z01 = z02 = 0. (This can be easily achieved by extending the state space of the
machine; we omit the details.) We introduce several simple modifications to the machine.
We add two counters z3� z4 and embed the counter machine into a deterministic walk as
we did in the proof of Theorem 2. Specifically, the state of the walk at time t is denoted

290 D. GAMARNIK

by �Q1�t�� � � � �Qm+4�t��. The initial state of the walk is set to be Qm+3�0� = n�Qi�0� =
0� i �= m+ 3. In addition to the rules of the counter machine, for � = 	m+ 3
 we set
�m+3��� = −1��i��� = 0� i �= m+ 3. Thus, the walk starts in state with �Q�0�� = n and
after n steps ends in a state Q�n� = 0. Then, we set �i0

��� = 1��i��� = 0� i �= i0. Thus,
Q�n+ 1� (to be exact �Q1�n+ 1�� � � � �Qm+2�n+ 1�� corresponds to the encoding of the
initial configuration. Finally, we set that for any � that corresponds to an encoding of a
counter machine configuration, �m+4��� = 1 if the encoding does not correspond to the
halting configuration; �m+4��� = −1 if the encoding corresponds to the halting configu-
ration and m+ 4 ∈ �; and �m+4��� = 0 if the encoding corresponds to the halting con-
figuration and m+ 4 � �. Thus, starting from t = n+ 1 the walk simulates the dynamics
of the counter machine, and the coordinate m+ 4 is incremented by one at every step. If
the machine does not halt, then this goes on forever, and �Q�t�� ≥ Qm+4�t�= t− �n+1�.
Specifically, �Q�2n��/n≥ �2n−�n+1��/n and lim infn �Q�2n��/n≥ 1. On the other hand,
if the machine halts in, say, t0 steps (note that t0 is independent from n), the component
m+ 4 starts decreasing until it reaches zero, while the counter machine keeps reentering
the halting configuration. Then �Q1�n+1+2t0�� � � � �Qm+2�n+1+2t0�� encodes the halt-
ing configuration and Qm+3�n+1+2t0�=Qm+4�n+1+2t0�= 0, and the walk stays in this
state forever. Then �Q�2n�� = 1 and limn �Q�2n��/n= 0. We see that for t = 2� �Q�t� ≥ 1
if the machine does not halt, and �Q�t�= 0 if the machine halts. This completes the proof.
The proof for a single-station queueing system is similar. �

6.3. A decidable reformulation of the stability property. Since the models we con-
sider in this paper are intractable in the very strongest possible sense, a natural question
is: What are the necessary minimal modifications of the problem that would make them
tractable? We first provide some reformulations that restrict the class of models considered
but still do not avoid the “undecidability curse.” Then we propose a different formulation
of stability that makes, almost trivially, a decidable and sometimes an easily checkable
property.
Given a constrained random walk Q�t� in �d

+ with transition probabilities p�����, sup-
pose we further restrict the transition probabilities to be strictly less than one. Note that this
leaves out the deterministic walk we constructed directly from a counter machine. Unfortu-
nately, this restriction does not make the problem easier, as the following observation shows:
Consider the deterministic walk constructed, based on a counter machine, as was done in
§4. For any face � and direction vector � such that p�����= 1 we put p̃�����= 1

2 and
p̃���0�= 1

2 . In other words, the walk moves in the direction � or stays in the same state,
both with probability 1

2 . This new walk with transition probabilities p̃����� has exactly
the same trajectories as the original deterministic walk but follows these trajectories with
expected rate twice as small as the original one. The new random walk is stable if and only
if the original walk is stable. Thus, stability of a random walk with the restriction described
above is also undecidable.
Another possible restriction is nonuniqueness of the trajectories. Suppose that for our

constrained random walk Q�t� there exist states x�x1� x2 ∈ �d
+ such that both transitions

from x to x1 and from x to x2 have positive probability. This is clearly violated by the
random walk constructed above, since only one state x′ different from x can be reached in
a single transition. Unfortunately, even this restriction still leaves the problem undecidable,
as the following construction shows. Given a counter machine with m states we consider
the following random walk in �2m+2

+ . The state si is encoded by unit vectors e2i and e2i+1,
with i= 1�2� � � � �m. When the state si is changed to the state sj in the counter machine, the
walk moves along the vectors �1 or �2 with probability

1
2 , where �1 brings the state Q�t�

into state Q�t+ 1� with Q2j�t+ 1� = 1�Qi�t+ 1� = 0� i �= 2j� i ≤ 2m and �2 brings Q�t�
into state Q�t+1� with Q2j+1�t+1�= 1�Qi�t+1�= 0� i �= 2j+1� i ≤ 2m. In other words,

DECIDING STABILITY OF QUEUEING SYSTEMS 291

we have pairs of states of the walk that encode the same configuration of the machine. We
omit the details.
A final restriction we consider is to assume that, for each state, the transition probabilities

to all of the neighboring states are positive. We are not able to prove that the problem
remains undecidable but suspect that it is.

Conjecture 1. Consider a homogeneous random walk Q�t� with transition probabil-
ities 	p�����
���, such that if �i ≥ 0 for all i � �, then p����� > 0. In other words,
the transitions to all of the legal neighboring states occur with positive probability. The
(global) stability property of this random walk is not decidable.

Remark. Note that the random walk with this property is irreducible. As a result if it
is stable for some initial state, it is also stable for all the initial states. Thus, there is no
distinction between the stability and global stability.
We now consider a certain reformulation of the stability property.
Definition 1. Given a positive value � > 0, a deterministic walk Q�t� is defined to be

�-stable if

d∑

i=1
Q�t�≤ ��(3)

for all times t. Similarly, �-stability is defined for deterministic queueing systems and
queueing networks.
Trivially, the walk is not �-stable if Q�0� > �. The definition above is not quite suitable

for constrained random walks or stochastic queueing systems since the event
∑d

i=1Q�t� > �
occurs infinitely often with probability one, as long as the underlying Markov chain can
reach any state with some positive probability.

Theorem 8. Given a constrained deterministic walk Q�t� in �d
+, with initial state Q�0�

and given � > 0, the �-stability is a decidable property. It can be checked in no more than
���d computation steps.
Proof. The algorithm for checking �-stability is very simple. We first check if∑d
i=1Qi�0�≤ �. If not, the walk is not �-stable. Otherwise, compute the trajectory Q�t� for

t = 1�2� � � � � ���d. If at any time t, (3) is violated, then the walk is not �-stable. Other-
wise, since the number of states satisfying (3) is not bigger than ���d, a certain state will
be repeated. Then the walk will enter an infinite loop, contained entirely within the set,
defined by (3). As such the walk is �-stable. �

Note that we can also check whether the walk is �-stable for all the initial states Q�0�
satisfying (3), since there is only a finite number of them. If d is understood to be a
constant, then the stability checking algorithm runs in polynomial in � time. The extension
of �-stability and of Theorem 8 to queueing systems is immediate. The �-stability notion
could also be of more practical use, since a certain upper bound on the maximal size of the
buffers in a queueing system is typically dictated by reality.

7. Conclusions. We have introduced in this paper a class of generalized priority
scheduling policies and proved that stability of these policies is not algorithmically decid-
able. To the best of our knowledge, this is the first result showing that stability of scheduling
policies in queueing systems can be undecidable. We also proved that stability of a homo-
geneous random walk in �d

+ is not decidable for general d. This settles in a somewhat
unexpected way an open problem of characterizing stable random walks in �d

+ for d ≥ 5.
A very important extension of this work would be establishing a similar result for less

“exotic,” more common policies like FIFO or priority policies. To achieve this, one is forced
to look at queueing networks, since these policies, like any other work-conserving policy

292 D. GAMARNIK

are stable in a single-station queueing system. We conjecture that the stability of FIFO,
LIFO, and priority policies is not algorithmically decidable.
Another direction for investigation is understanding the stability of constrained determin-

istic or random walks for a fixed dimension d. Note, that, assuming that the dimension d
is a constant, the number of different deterministic walks (the number of systems of tran-
sition rules 	����
�) is also a constant, upper bounded by 3

d2d. In fact, for each � and
each coordinate i, the corresponding �i��� can potentially take three values −1�0�1. Also
there are 2d different faces �. It is a standard corollary of the decidability theory that a
system with only constantly many examples is decidable; see Sipser (1997). However, if
the initial state of the walk Q�0� is a part of the input, then it is not clear whether stabil-
ity is decidable even for, say, d = 5. Another interesting challenge would be establishing
undecidability for constrained random walks, with strictly positive transitions to neighbor-
ing states. As we mentioned above, stability for a specific initial state and global stability
are equivalent for this model due to irreducibility.

Acknowledgments. The author wishes to thank Dimitris Bertsimas, John Tsitsiklis,
Vadim Malyshev, Michael Shub, Bruce Kitchens, and Jay Sethuraman for many helpful
discussions on the decidability issues and corrections of the earlier draft.

References

Andrews, M., B. Awerbuch, A. Fernandez, Jon Kleinberg, T. Leighton, Z. Liu. 2001. Universal stability results for
greedy contention-resolution protocols. J. Assoc. Comput. Mach. 48(1) 39–69.

Bertismas, D., D. Gamarnik, J. Tsitsiklis. 1996. Stability conditions for multiclass fluid queueing networks. IEEE
Trans. Automatic Control 41 1618–1631.

Blondel, V. D., O. Bournez, P. Koiran, C. H. Papadimitriou, J. N. Tsitsiklis. 2001. Deciding stability and mortality
of piecewise affine systems. Theoret. Comput. Sci. 255(1–2) 687–696.

Borodin, A., J. Kleinberg, P. Raghavan, M. Sudan, D. Williamson. 2001. Adversarial queueing theory. J. Assoc.
Comput. Mach. 48(1) 13–38.

Bramson, M. 1994. Instability of FIFO queueing networks. Ann. Appl. Probab. 2 414–431.
Dai, J. G. 1995. On the positive Harris recurrence for multiclass queueing networks: A unified approach via fluid

models. Ann. Appl. Probab. 5 49–77.
, J. H. Vande Vate. 2000. On the stability of two-station fluid networks. Oper. Res. 48 721–744.
, J. J. Hasenbein. 1999. Stability of a three-station fluid network. Queueing Systems 33 293–325.
, G. Weiss. 1996. Stability and instability of fluid models for certain re-entrant lines. Math. Oper. Res. 21
115–134.

Down, D. D., S. P. Meyn. 1997. Piecewise linear test functions for stability and instability of queueing networks.
Queueing Systems 27 205–226.

Fayolle, G. 1989. On random walks arising in queueing systems: Ergodicity and transience via quadratic forms as
Lyapunov functions—Part II. Queueing Systems 5 167–183.

Gamarnik, D. 1999. Stability of adaptive and nonadaptive packet routing policies in adversarial queueing networks.
Proc. 31st ACM Sympsos. Theory of Comput., Atlanta, GA. SIAM J. Comput. Forthcoming.
. 2000. Using fluid models to prove stability of adversarial queueing networks. IEEE Trans. Automatic
Control 4 741–747.

Goel, A. 1999. Stability of networks and protocols in the adversarial queueing model for packet routing. Proc.
10th ACM-SIAM Sympos. Discrete Algorithms. Networks, Baltimore, MD.

Henzinger, T., P. Kopke, A. Puri, P. Varaiya. 1995. What’s decidable about hybrid automata. Proc. 27th ACM
Sympos. on Theory of Comput., Las Vegas, NV.

Hooper, P. 1966. The undecidability of the Turing machine immortality problem. J. Symbolic Logic 2 219–234.
Hopcroft, J., J. Ullman. 1969. Formal Languages and Their Relation to Automata. Addison-Wesley, Reading, MA.
Ignatyuk, I. A., V. A. Malyshev. 1993. Classification of random walks in �d

+. Selecta Math. 12 129–194.
Koiran, P., M. Cosnard, M. Garzon. 1994. Computability properties of low-dimensional dynamical systems. The-

oret. Comput. Sci. 132 113–128.
Lu, S. H., P. R. Kumar. 1991. Distributed scheduling based on due dates and buffer priorities. IEEE Trans.

Automatic Control 36 1406–1416.
Malyshev, V. A. 1972. Classification of two-dimensional positive random walks and almost linear semimartingales.

Dokl. Akad. Nauk SSSR 202 526–528.
. 1993. Networks and dynamical systems. Adv. Appl. Probab. 25 140–175.

DECIDING STABILITY OF QUEUEING SYSTEMS 293

Menshikov, M. V. 1974. Ergodicity and transience conditions for random walks in the positive octant of space.
Soviet. Math. Dokl. 15 1118–1121.

Rybko, A., A. Stolyar. 1992. On the ergodicity of stochastic processes describing open queueing networks. Prob-
lemi Peredachi Informatsii 28 3–26.

Seidman, T. I. 1994. First come first serve can be unstable. IEEE Trans. Automatic Control 39 2166–2170.
Sipser, M. 1997. Introduction to the Theory of Computability. PWS Publishing Company, Boston, MA.
Stolyar, A. 1995. On the stability of multiclass queueing networks: A relaxed sufficient condition via limiting fluid

processes. Markov Processes and Related Fields 491–512.

D. Gamarnik: IBM T. J. Watson Research Center, Yorktown Heights, New York 10598; e-mail: gamarnik@
watson.ibm.com

