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Consider a complete graph on n vertices with edge weights chosen randomly and inde-
pendently from an exponential distribution with parameter 1. Fix k vertices and consider
the minimum weight Steiner tree which contains these vertices. We prove that with high
probability the weight of this tree is (1+ o(1))(k−1)(logn− logk)/n when k= o(n) and
n→∞.

1. Introduction

Given an arbitrary weighted graph with a fixed set of vertices, the Steiner
tree problem is the task of finding a minimum weight subtree containing all
these vertices, where the weight of a tree is the sum of the weights of the
edges it contains. Steiner trees are very well studied objects in combinatorial
optimization; the interest is motivated by several practical problems such as
network design and VLSI design. The Steiner tree problem is well known
to be NP-complete; this separates it from the superficially similar minimum
spanning tree problem, for which there is a simple polynomial time algo-
rithm. Most of the theoretical work on the Steiner tree problem concerns
obtaining approximation algorithms. Currently, the best approximation fac-
tor is 1.55, obtained by Robins and Zelikovsky [17]. Arora [2] showed that
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an ε-approximation can be achieved for every ε > 0 when the underlying
weighted graph is Euclidean. On the other hand, unless P =NP , the Steiner
tree problem in general (weighted) graphs can not be approximated within
a factor of 1+ε for some ε>0, see [4], [7].

In this paper we focus on random instances of the Steiner tree problem.
The study of random instances of combinatorial problems has a very rich
history, starting with the random Euclidean traveling salesman problem [3]
and including studies of the random minimal spanning tree [11], assignment
[1], and shortest path problems [8],[13], as well as many other examples.
The main motivation is to complement the classical worst case analysis of
algorithms with the analysis of the performance of algorithms on typical
instances. On the other hand, very little is known about the Steiner tree
problem in a random setting. To the best of our knowledge, the only existing
results were obtained by Kučera et al. in [15], where the authors studied
algorithms for finding minimum Steiner trees in random graphs with all
edge weights equal to 1. We consider the problem of finding the minimum
weight of a Steiner tree in a complete graph Kn on n vertices with edge
weights chosen independently from some distribution X. Essentially, this
distribution can be any non-negative distribution with positive density at
zero. Rescaling, we shall assume that

X ≥ 0 and P(X ≤ x) = x+ o(x),(1)

as x→0. We also assume that E(X) is finite; some assumption along these
lines is needed for results on expectation. The two distributions of most in-
terest are the exponential distribution EXP(1) with mean 1 and the uniform
distribution on [0,1]. Throughout the paper we write G for the weighted
graph obtained from Kn by taking the edge weights as independent copies
of X. We fix 2≤k≤n vertices v1, . . . ,vk, and consider W (k), the minimum
weight of a tree containing these vertices. Our main result is the following,
giving the asymptotic value of W (k) for all functions 2≤k(n)= o(n). Note
that throughout the paper all logarithms have base e.

Theorem 1. Let ε>0 be fixed, and let k=k(n) satisfy 2≤k=o(n). Let

w =
k − 1
n

(log n− log k).

Then (1−ε)w≤W (k)≤(1+ε)w holds with probability tending to 1 as n→∞.

Note that since the graph is complete and the weight distribution is the
same for all the edges, the actual choice of the k vertices is irrelevant. This
justifies the notation W (k). When logk= o(logn), the value (k−1)logn/n
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that we obtain has a simple intuitive explanation. Davis and Prieditis [8]
and Janson [13] showed that the minimum weight of a path between a fixed
pair of vertices of G is asymptotically logn/n. This immediately implies an
upper bound (1+o(1))(k−1)logn/n on the value ofW (k) when k is bounded;
we just take shortest paths from vi to vi+1 for 1≤ i≤ k−1 and delete any
redundant edges. Using Dijkstra’s algorithm these paths can be found in
O(n2) computation steps. As k becomes larger, the logk ‘correction term’
becomes important. Intuitively, this arises from the many ways of connecting
v1, . . . ,vk with paths (perhaps using additional branching vertices).W (k) can
be written as the minimum of Θ(k)k quantities each of which has expectation
(k−1)logn/n; the smallest of these turns out to be typically (k−1)logk/n
smaller than its expectation. For the upper bound it turns out to be sufficient
to consider the shortest path Pr from vr+1 to {v1, . . . ,vr} for 1≤ r≤ k−1,
as this corresponds to minimizing over (k−1)!=Θ(k)k trees.

Note that for k constant the minimum weight Steiner tree can be found
in polynomial time O(nk), by a brute force search. An interesting corollary
of our result is that for any k= o(n), using only O(kn2) computation steps
(O(n2) to find each path Pr defined above) we can construct an asymptoti-
cally minimum weight Steiner tree, when n→∞.

Our work is motivated by similar research for other random combinatorial
structures. One of the earliest such results was obtained by Frieze [11] who
showed that with high probability the weight of the minimum spanning
tree in G is asymptotically ζ(3)=

∑∞
k=1k

−3, when n→∞. This result was
extended to regular graphs with certain expansion properties by Beveridge,
Frieze and McDiarmid [5]. The analysis explicitly uses the greedy algorithm
for finding a minimum spanning tree. Note that the minimum spanning tree
problem is the special case of our problem where k=n, yet the analysis in
[11],[5] does not extend to the general case since the problem is NP-complete
and the greedy search fails.

Before turning to the proof of Theorem 1 we note that the distribution X
chosen for the edge weights is irrelevant, as long as it satisfies (1). This will
allow us to use whichever distribution is convenient in the proof. Suppose
that X is a distribution satisfying (1), and let δ=n−1/2 logn= o(1). Let x
and y be fixed vertices of G. Writing w(e) for the weight of an edge e, for
each other vertex z we have

P(w(xz) + w(yz) ≤ δ) ≥ P(X ≤ δ/2)2 ∼ δ2/4,

so this probability is at least δ2/5 if n is large enough. Thus the probability
that there is no xy path of weight at most δ is at most(

1− δ2/5
)n−2

≤ e−(n−2)δ2/5,
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which tends to zero faster than any constant power of n. Thus with very
high probability every pair {x,y} of vertices of G is connected by a path of
weight at most δ, and an edge of weight larger than δ cannot form part of the
shortest path between two vertices, or of the minimum weight Steiner tree
for any set of vertices. Suppose Y is another distribution satisfying (1). Then
there is a strictly increasing function f such that f(X) has the distribution
of Y . (We are ignoring possible discontinuities in the distribution, but this
is not a real problem). Condition (1) for X and Y implies that f(x) and
f−1(x) are both x+ o(x) when x is small. Thus we can convert between
edge weights distributed as copies of X and edge weights distributed as
copies of Y changing all weights less than δ by a factor of 1+o(1). As with
high probability any minimum weight Steiner tree uses only such edges,
and the conversion goes both ways, the minimum weight of a Steiner tree
also changes by a factor of 1 + o(1), and a result such as Theorem 1 for
edge weights with distribution X implies the corresponding result for the
distribution Y .

The rest of this paper is organized as follows. In the next two sections we
prove lower and upper bounds onW (k) for k=o(n). By the above argument,
we may and shall assume in our proof that the edge weights are independent
EXP(1) random variables. In Section 4 we study the minimum weight of a
Steiner tree on k vertices when k is linear in n. The last section contains
some concluding remarks. Throughout the paper we shall write w(e) for the
weight of an edge e. Also, when T is a subgraph of G (usually a tree) we
shall write w(T ) for its weight, i.e., the sum of the weights of its edges. All
logarithms in this paper are natural.

2. Lower bound

In this section we obtain a lower bound on the random minimum weight
Steiner tree on k = o(n) vertices. The idea of the proof is as follows: sup-
pose v1, . . . ,vk are given, and consider a minimum weight Steiner tree T for
v1, . . . ,vk in G. Note that T has at most k leaves (vertices of degree 1), since
only the vertices vi, 1≤ i≤k, can be leaves of T . As usual, let us say that a
vertex v of T is a branching vertex if it has degree at least 3 in T . In T , the
sum of the degrees of the vertices is 2(|T |−1). Thus, although T may have
many vertices of degree 2, it is easy to see that it will have at most k− 2
branching vertices. Let us say a vertex of T is critical if it is either a leaf or
a branching vertex, so T has at most 2k−2 critical vertices. Any tree with
c critical vertices consists of c−1 paths joining these vertices (contracting
vertices of degree 2 leaves a tree with exactly c vertices), so T consists of
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l≤ 2k−3 paths P1, . . . ,Pl between certain pairs of vertices. As T is a min-
imum weight Steiner tree, each path is the minimum weight path joining
its endvertices, and these paths are disjoint. Let us write W1, . . . ,Wl for the
weights of these paths, and W for the minimum weight of a path between
two fixed vertices. The key observation is that the disjointness of the paths
Pi makes it hard for the Wi to be simultaneously small. We could just use
the van den Berg–Kesten inequality [18] or Reimer’s inequality [16] to show
that P(∀i :Wi ≤ wi) ≤

∏
P(W ≤ wi). However we obtain better results by

considering P(
∑

Wi ≤w), and it is not clear how to bound this probability
in this way. Instead we proceed ‘by hand’, using only the Harris–Kleitman
lemma. ThroughoutW is (the distribution of) the minimum weight of a path
between two fixed vertices of G. We write W (l) for the sum of l independent
copies of W .

Lemma 2. Suppose that l≥1 and let s1, . . . ,sl, t1, . . . , tl be fixed vertices of
G, with si �= ti for 1≤ i≤ l. For 1≤ i≤ l let Pi be the minimum weight siti
path in G. Then for any x>0 the probability that P1, . . . ,Pl are disjoint and
have total weight at most x is at most P(W (l)≤x).

Proof. Let P ′
1=P1 be the (with probability 1 unique) minimum weight s1t1

path. For 2≤ i≤ l let P ′
i be the minimum weight siti path edge-disjoint from

P ′
1, . . . ,P

′
i−1, if there is one. Let Wi be the weight of P ′

i , or infinity if there
is no such path. If the paths Pi are disjoint, then P ′

i =Pi for every i. Hence
it suffices to show that

P(W1 + · · ·+Wl ≤ x) ≤ P(W (l) ≤ x).(2)

We shall prove this statement by induction on l. The case l=1 is clear as
P ′

1=P1 is the shortest s1t1 path, so its weight W1 has the same distribution
as W , by the definition of W .

Suppose now that l≥ 2 and that (2) holds with l replaced by l−1. We
wish to consider the distribution of Wl conditional on W1+ · · ·+Wl−1. In
fact we shall condition on the very fine event that P ′

1, . . . ,P
′
l−1 are certain

particular paths, and that the individual edges of these paths have certain
weights. For any w the event W1+· · ·+Wl−1=w is a disjoint union of events
A of the form

A = {w(ej) = wj, j = 1, . . . ,m} ∩ U

where the edges e1, . . . ,em of Kn form edge disjoint paths pi from si to ti,
1≤ i≤ l−1, the wj are real numbers adding up to w, and U is the event that
certain paths in G′=Kn−{e1, . . . ,em} have at least certain weights (so that
the paths pi satisfy the minimality conditions defining P ′

i ). Consider one
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such event A, so the ei and hence E(G′) are fixed. Let Ω′ be the product
probability space given by the independent EXP(1) edge weights on G′.
Then U can be considered as an event in Ω′, and is then an up-set, i.e., an
event preserved by increasing the weight of an edge (in G′). Let W ′ be the
minimum weight of an sltl path in G′. Then for any w′ the event {W ′≤w′} is
a down-set, i.e., an event preserved by decreasing the weight of an edge. Now
it is well known that up-sets and down-sets are negatively correlated. (This
can be seen from the original correlation inequality proved independently by
Harris [12] and Kleitman [14]. Alternatively, for discrete random variables,
it follows immediately from the FKG inequality of [10]. The continuous case
is easy to deduce by ‘discretizing’ the random variables.) Given A we have
Wl=W ′, so

P(Wl ≤ w′ | A) = PΩ′(W ′ ≤ w′ | U)
≤ PΩ′(W ′ ≤ w′)
≤ P(W ≤ w′),

as W ′ is the shortest path between two fixed vertices using edges of G′, a
subgraph of G. As this holds for each A we have

P(Wl ≤ w′ | W1 + · · ·+Wl−1 = w) ≤ P(W ≤ w′),

and (2) follows by induction on l.

We now wish to study the sum of independent copies of the random
variable W , the minimum weight of a path joining two fixed vertices of G.
We first use a standard method to describe the distribution of W . Then we
simply estimate its moment generating function.

Lemma 3. Let X1, . . . ,Xn−1 be independent EXP(1) random variables, and
let R be uniformly distributed on {1, . . . ,n−1} and independent of the Xi.
Then W is distributed as

R∑
i=1

Xi

i(n − i)
.(3)

For any real x,ε>0 and any integer l≥1 we have

P(W (l) ≤ x) ≤ (n− 1)−lε−le(1+ε)nx.

Proof. The first part is standard; we include the proof for the sake of
completeness. Consider fixing a vertex x of G and using Dijkstra’s algorithm
to find the distance in G from x to each other vertex, writing these distances
as d1, . . . ,dn−1 in increasing order. Clearly d1 is the minimum weight of an
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edge from x; being the minimum of (n− 1) independent EXP(1) random
variables, this has an EXP(n−1) distribution. Suppose that this minimum
weight edge is xy. Then d2−d1 is the smaller of min{w(yz), z �= x,y} and
min{w(xz)− d1, z �= x,y}. By the memoryless property of the exponential
distribution, given y and d1 the quantities w(xz)−d1 again have an EXP(1)
distribution, so d2−d1 is the minimum of 2(n−2) independent exponentials.
Thus d2 − d1 has an EXP(2(n− 2)) distribution and is independent of d1.
Continuing, we see that di − di−1 is the minimum of i(n− i) independent
exponentials and hence the di, 1≤ i<n, have the same distribution as

∑
j≤i

Xj

j(n − j)
, 1 ≤ i < n.

Since all vertices are equivalent, the distance from x to another fixed vertex
x′ is equally likely to be any of the di, proving the first part of the lemma.

In order to estimate P(W (l) ≤ x) we consider the moment generating
function of W . If X has an EXP(1) distribution and α>0, then

E(e−αX) =
∫ ∞

0
e−αte−tdt =

1
1 + α

.

Thus for θ>0 we have

E(e−θXi/i) =
1

1 + θ/i
=

i

θ + i
.

Let Sm=
∑m

i=1Xi/i and let Z=SR. Defining W by the sum (3), which gives
the correct distribution by the first part of the lemma, we have nW ≥ Z.
Now

E(e−θSm) =
m∏

i=1

E(e−θXi/i) =
m!

(θ + 1) · · · (θ +m)
.

For θ>1 it is easy to verify by induction on n that
n−1∑
m=1

m!
(θ + 1) · · · (θ +m)

=
1

θ − 1

(
1− n!

(θ + 1) · · · (θ + n− 1)

)
≤ 1

θ − 1
.

Hence, as nW ≥Z=SR,

E(e−θnW ) ≤ E(e−θSR)

=
1

n− 1

n−1∑
m=1

E(e−θSm)

≤ 1
(n− 1)(θ − 1)

.
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Taking θ=1+ε and applying Markov’s inequality,

P(W (l) ≤ x) = P

(
exp(−θnW (l)) ≥ exp(−θnx)

)
≤ E(exp(−θnW (l)))/ exp(−θnx)
= E(exp(−θnW ))leθnx

≤ (n− 1)−lε−le(1+ε)nx,

as required.

We are now ready to prove the lower bound on W (k) in the following
rather unattractive form.

Lemma 4. Let v1, . . . ,vk be fixed vertices of G, where 2≤k=k(n)≤n/e2,
and let W (k) be the minimum weight of a Steiner tree for v1, . . . ,vk in G. If
ω=ω(n)→∞ (arbitrarily slowly) then

P

(
W (k) ≤

(k − 1)
(
log n− log k − 2 log log(n/k)− 3

)
− ω

n

)
→ 0

as n→∞.

Before turning to the proof note that this gives the lower bound stated
in Theorem 1, since if k = o(n) and ω tends to infinity sufficiently slowly
then the bound on W (k) above is asymptotically (k−1)(logn− logk)/n, as
required.

Proof of Lemma 4. Let v1, . . . ,vk be fixed vertices of G and let T be a
minimum weight Steiner tree for v1, . . . ,vk. Recall that a vertex v of T is a
branching vertex if v has degree at least 3 in T . Suppose that the branching
vertices of T not among {v1, . . . ,vk} are vk+1, . . . ,vm. To make it clear exactly
how we are counting later, we shall insist that vk+1 ≺ ·· · ≺ vm for some
arbitrary order on V (G). As noted at the beginning of this section, since T
has at most k leaves it has at most k−2 branching vertices, so m≤2k−2.
The tree T consists of edge-disjoint paths Pi from vsi to vti , 1≤ i≤m−1,
for some 1≤ si, ti ≤m, such that all internal vertices of every path are the
vertices of degree 2 in T . By minimality, each Pi is the minimum weight
path from vsi to vti . The structure of T can be represented by an auxiliary
tree T ′ on [m]={1,2, . . . ,m}; there is one edge siti of T ′ for each path Pi in
T . (Again, for the counting we will assume that the si and ti are fixed by
T ′. In other words, given a tree T ′ on [m] we fix the order of the edges and
the starting vertex of each edge according to some arbitrary rule.)
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For each choice ofm, vk+1, . . . ,vm and T ′, applying Lemma 2 with l=m−1
shows that the probability of such a minimum weight Steiner tree T existing
with w(T )≤x is at most P(W (m−1)≤x). This in turn is at most

(n− 1)−(m−1)ε−(m−1)e(1+ε)nx

for any ε>0 by Lemma 3. Given m, there are
(n−k
m−k

)
≤ (n−1)m−k/(m−k)!

choices for vk+1, . . . ,vm, and at most mm−2<mm−1 choices for the auxiliary
tree T ′ on [m]. (The larger bound will be more convenient in the estimates
below.) Thus for any x, ε>0 we have

P(W (k) ≤ x) ≤
2k−2∑
m=k

(n− 1)m−k

(m− k)!
mm−1(n− 1)−(m−1)ε−(m−1)e(1+ε)nx

=
2k−2∑
m=k

mm−1

(m− k)!
(n− 1)−(k−1)ε−(m−1)e(1+ε)nx.

Intuitively, for k small the dominant term should be m = 2k− 2, as the
minimum weight Steiner tree will have v1, . . . ,vk as leaves and all branching
vertices will have degree 3. In fact, for the whole range of k the quantity
am=mm−1/(m−k)! increases rapidly with m; for m>k≥2 we have

am

am−1
=
(

m

m− 1

)m−2 m

m− k
≥
(
1 +

1
m− 1

)m−2

≥ 3
2
.

For ε≤ 1 the ε−(m−1) term also increases with m, so the whole sum above
is bounded by

∑
i≥0(2/3)

i =3 times the value of the term with m=2k−2.
Loosening the estimates slightly to simplify the final expression, and apply-
ing Stirling’s formula in the weak form r!≥(r/e)r, we obtain

P(W (k) ≤ x) ≤ 3
(2k − 2)2k−3

(k − 2)!
(n − 1)−(k−1)ε−(2k−3)e(1+ε)nx

≤ O(1)
(2k − 2)2k−2

(k − 1)!
(n− 1)−(k−1)ε−2(k−1)e(1+ε)nx

≤ O(1)(4e)k−1((k − 1)/(n − 1))k−1ε−2(k−1)e(1+ε)nx

≤ O(1)(4ekn−1ε−2)k−1e(1−ε)−1nx.

Taking logs we see that P(W (k)≤x0)→0 if for some ω→∞ we have

x0 = (1− ε)(k − 1)
(
log n− log k − 1− log 4− 2 log(ε−1)

)
/n − ω/n

≥ (k − 1)
(
log n− log k − 1− log 4− 2 log(ε−1)− ε log(n/k)

)
/n− ω/n.
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The best choice for ε is ε=2/ log(n/k) which is at most 1 by the assumption
on k. For this ε the bound above simplifies to

x0 ≥ (k − 1)(log n− log k − 2 log log(n/k) − 3)/n − ω/n,

which is the quantity appearing in the statement of the lemma.

Remark. The boundmm−2 on the number of trees in the calculation above
turns out to be a key step—it is from this that the − logk term in the final
bounds comes. One might thus think that we should bound the number of
trees more carefully, using the fact that vk+1, . . . ,vm all have degree at least 3.
Although a method for doing this was suggested to us by Cecil Rousseau, it
turns out that the only gain is to improve the constant 3 appearing above.
This constant is irrelevant for Theorem 1, while for k = Θ(n) the correct
constant presumably cannot be obtained in this way. Thus for simplicity we
have just used the Cayley bound.

3. Upper bound

In this section we complete the proof of Theorem 1 by obtaining an upper
bound on the minimum weight of a Steiner tree in G. The idea is to consider
a simple method of constructing an upper bound for W (k) given G whose
behaviour when G is random we can analyze. The simplest approach, taking
a shortest path from vr to vr+1 for 1≤r≤k−1, does not suffice - this would
give a bound like (k− 1)logn/n. Instead, for 1 ≤ r ≤ k− 1 let Mr be the
minimum weight of a path from vr+1 to {v1, . . . ,vr}. It is easy to see that
the union of such paths is a connected graph containing {v1, . . . ,vk} and thus
that M1+· · ·+Mk−1 is an upper bound on W (k). Indeed, by our construction
every vertex vi is connected by a path to a vertex with index smaller than
i. This implies that there is a path from every vertex to v1. Now it is easy
to calculate the expectation of Mr, which turns out to be about log(n/r)/n.
This gives us an upper bound on E(W (k)). As this matches the lower bound
of the previous section, we obtain the required high probability bound as an
immediate consequence.

Lemma 5. Let α<1 be constant. Then

E(Mr) ∼
log n− log r

n− r

holds uniformly for 1≤r≤αn.
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Proof. Consider running Dijkstra’s algorithm starting from the set Vr =
{v1, . . . ,vr}. Arguing as in the proof of Lemma 3, the distances from Vr to
the remaining n−r vertices are distributed as (T ′

1, . . . ,T
′
n−r), where

T ′
m =

r+m−1∑
i=r

Xi

i(n − i)
,

with the Xi independent EXP(1) random variables as before. Now as vr+1

is equally likely to be the closest, 2nd closest etc. vertex to Vr we have

E(Mr) =
1

n− r

n−r∑
m=1

E(T ′
m)

=
1

n− r

n−r∑
m=1

r+m−1∑
i=r

1
i(n− i)

=
1

n− r

n−1∑
i=r

n−r∑
m=i+1−r

1
i(n − i)

=
1

n− r

n−1∑
i=r

1
i
∼ log n− log r

n− r
.

In the last step we used the fact that δj =
∑j

i=1 i
−1−log j is bounded to deal

with the case r=O(1), and the fact that δj tends to a constant as j→∞,
while logn−log r is bounded away from zero, to deal with the case r→∞.

Let M(k)=
∑k−1

r=1 Mr. Using the lower bound from Theorem 1, Lemma 5
has the following corollary, where

w =
k − 1
n

(log n− log k)

is the quantity appearing in Theorem 1.

Corollary 6. Let ε>0 be fixed, and let k=k(n) satisfy 2≤k=o(n). Then

(1− ε)w ≤ W (k) ≤ M(k) ≤ (1 + ε)w

holds with probability tending to 1 as n→∞.

Proof. The first inequality was proved in the previous section. The second
is the observation made at the start of this section. For the third, as k=o(n),
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by Lemma 5 we have

E(M(k)) ∼
k−1∑
r=1

log n− log r
n− r

∼
k−1∑
r=1

log n− log r
n

∼ k − 1
n

(log n− log k + 1) ∼ w.

Fix δ>0. Since for n large enough M(k)≥(1−εδ/4)w holds with probability
at least 1−εδ/4, it follows that we cannot have M(k)≥(1+ε)w with prob-
ability δ>0. (Otherwise we would have E(M(k))≥(1+εδ/2)w for large n.)
This proves the corollary, and hence completes the proof of Theorem 1.

4. Steiner trees for many vertices

So far we have found asymptotically the minimum weight W (k) of a Steiner
tree for k vertices of G, for all functions k=o(n). In this section we consider
the case when k is linear in n. For k=n such a tree is just a spanning tree
in G, so by the result of Frieze [11] we have W (n) = ζ(3)+ o(1) with high
probability. It is thus natural to ask what happens in between, when k=αn
with α=α(n) bounded away from 0 and 1, say. Of course the proof of our
main result gives some bounds for free: from Lemma 4 it is easy to see that
if α<e−7 then for any ε>0 we have

W (k) ≥ α(log(α−1)− 2 log log(α−1)− 3)− ε

with probability tending to 1 as n→∞. In the other direction, writing V for
the set of k vertices to be connected, one might expect that, as there are so
many ways to use the vertices not in V as part of the Steiner tree, almost
all other vertices will be used. Thus one might expect W (k) = ζ(3)+ o(1)
whenever k=αn with α bounded away from zero. It turns out that this is
not the case. Suppose that k= k(n) is such that α= k/n is bounded away
from 0 and 1. As before let Mr be the minimum weight of a path from vr+1

to {v1, . . . ,vr}, so W (k)≤M(k)=
∑k−1

r=1 Mr. Let us write

S =
k−1∑
r=1

log n− log r
n− r

.
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From the uniformity of the bound in Lemma 5 we have E(
∑k−1

r=1 Mr)∼ S.
Now the quantity (logn− logr)/(n−r) decreases with r. Thus, writing

I(x, y) =
∫ y

x

log n− log r
n− r

dr,

we have I(1,k)≤S≤I(0,k). For 0≤x≤1 let

dilog(x) =
∫ 1

x

− log x
1− x

dx.

Writing k=αn and changing the variable in the integration to be x= r/n,
one can easily check that

I(0, k) = log(α−1) log((1 − α)−1) + dilog(1− α).(4)

As this quantity is bounded away from zero, while I(0,1)=O(logn/n)=o(1),
we have S∼I(0,k), giving the right hand side of (4) as an asymptotic upper
bound for E(W (k)).

Unsurprisingly, the bounds above, extracted from the proof for k=o(n),
give little or no information when k is close to n. As α→ 0 both bounds
are asymptotically α log(α−1), the bound in Theorem 1. For α near 1, the
argument above gives no lower bound at all, while the upper bound tends
to dilog(0) = π2/6= 1.644 . . . , which is larger than ζ(3) = 1.202 . . . , Frieze’s
bound for α=1. It would be interesting to know how W (k) decreases from
ζ(3) as k decreases from n. For example, one might expect that W (k) =
ζ(3)−o(β) when k=(1−β)n with β→0. Again this turns out not to be the
case. We can obtain upper and lower bounds for W (k) in this range using
the proof in [11] as a basis, showing that W (k) decreases from ζ(3) linearly
with β.

Let u(0)=1 and for x>0 let

u(x) =
1
x

∞∑
k=1

kk−2

k!
(
xe−x)k .(5)

Theorem 7. Let k=k(n) be such that β=1−k/n is bounded away from 0
and 1, and let ε>0 be fixed. Then with probability tending to 1 as n→∞
we have

W (k) ≥ ζ(3)− log(1/(1 − β))− ε,(6)

W (k) ≥
∫ u−1(β)

0
(u(x)− β)dx− ε,(7)

and

W (k) ≤ ζ(3)− β/17.
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The first lower bound is in fact an easy consequence of Frieze’s result:
let V = {v1, . . . ,vk} be the set of Steiner vertices, and V c = {vk+1, . . . ,vn}
be the remaining vertices. For k+1≤ i≤n let mi be the minimum weight
of an edge from vi to {v1, . . . ,vi−1}. Together with a Steiner tree for V , the
corresponding edges form a connected graph on [n]. Thus we have

W (n) ≤ W (k) +
n∑

i=k+1

mi.

The mi are independent exponential random variables with means E(mi)=
1/(i−1), k+1 ≤ i ≤ n. It follows from standard Martingale methods (or
just a suitable form of the central limit theorem) that

∑n
i=k+1mi is concen-

trated about its mean of
∑n

i=k+1 1/(i−1)∼ log(n/k)= log(1/(1−β)). Since
by Frieze’s result we have W (n) concentrated about ζ(3), the first lower
bound (6) follows immediately.

For the remaining bounds we use the methods of [11]. It will be convenient
to take the edge weights to be uniformly distributed on [0,1]. We ignore the
probability 0 event that two edges have the same weight.

The proof in [11] that W (n) is concentrated about ζ(3) uses the greedy
algorithm to construct the minimum weight spanning tree in G. Here we use
the same algorithm to construct the spanning subgraph Hk−1 of G which
has minimum weight among all subgraphs of G with rank k− 1, i.e., with
n−k+1 components. As any connected graph containing any k vertices has
rank at least k−1, the weight of Hk−1 is a lower bound for the minimum
of MWST (V ) over all sets V of k vertices of G, where MWST (V ) is the
minimum weight of a Steiner tree for V . In particular, W (k)≥w(Hk−1).

Let H ′
0 be the empty graph on V (G). For 1 ≤ r ≤ n− 1 let er be the

minimum weight edge joining two different components of H ′
r−1, and let

H ′
r=H ′

r−1∪{er}. Then it is easy to see that H ′
k−1 is equal to Hk−1. Indeed,

suppose that this is not the case. The two graphs have the same number of
edges, so there is some er, r≤k−1, not inHk−1. If er joins two components of
Hk−1 then Hk−1∪{er} has fewer components than H ′

k−1, and thus contains
an edge f joining distinct components of H ′

k−1, and hence of H ′
r−1. By

definition of er we have w(f)>w(er). On the other hand, if er falls within a
component of Hk−1 then Hk−1∪{er} contains a cycle which, by definition of
er, meets two components of H ′

r−1. Some edge f �=er of this cycle must also
join two components of H ′

r−1. Again by the definition of er we then have
w(f)>w(er). In either case Hk−1∪{er}−{f} has smaller weight than Hk−1,
but the same rank, contradicting the definition of Hk−1.
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Now

w(Hk−1) =
k−1∑
r=1

w(er) =
k−1∑
r=1

(k − r)(w(er)− w(er−1)),(8)

where w(e0) is to be interpreted as 0. For 0<p< 1 let Gp be the spanning
subgraph of G formed by all edges with weight at most p. As we are tak-
ing the edge weights to be uniformly distributed on [0,1], Gp has the same
distribution as a random graph from the standard model G(n,p) where ver-
tices are joined independently with probability p. As p increases from 0 to
1 edges are added to Gp one at a time. Each new edge joins two compo-
nents of Gp if and only if it is one of the er. Thus if w(er−1)≤ p < w(er),
so e1, . . . ,er−1 ∈E(Gp), then Gp has exactly n+1−r components. Writing
c(H) for the number of components of a graph H, we can write (8) as

w(Hk−1) =
∫ w(ek−1)

0
(c(Gp)− (n+ 1− k))dp.

Note that the integrand decreases, and becomes zero precisely at p=w(ek−1).
So far the argument is similar to that in [11]. To obtain (7) we shall use the
standard result below. In the statement of this resultN=

(n
2

)
and G̃=(Gt)Nt=0

is the standard random graph process. Thus G0 is the empty graph on [n],
and Gt+1 is formed from Gt by adding one of the N− t edges of Gc

t chosen
uniformly at random. There should be no confusion between Gp and Gt as
0< p < 1, while t is an integer. Let u(x) be defined by (5). The following
result is Corollary 14 of chapter VI of [6]; we have changed the notation
slightly to avoid clashes.

Theorem 8. The probability that for a fixed γ the graph process G̃ =
(Gt)Nt=0 satisfies

|c(Gt)− u(2t/n)n| ≤ 2(log n)nγ

for every t≤4n logn is 1−o(n2−3γ).

Using this result it is straightforward to deduce the lower bound (7) on
W (k).

Proof of second lower bound in Theorem 7. Let Gt be the subgraph of
G formed by the t edges with smallest weights. Then (Gt)Nt=0 forms a stan-
dard random graph process. Applying Theorem 8 with γ=3/4, noting that
c(Gt) is decreasing and that u(8logn) = o(1), we see that with probability
1−o(1) we have

c(Gt) = (u(2t/n) + o(1))n,
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for all 0≤ t≤N , where the implicit bound in the o(1) term depends on n
only and is uniform in t. Now Gp =Gt whenever there are exactly t edges
of G with weight at most p. Standard bounds on the binomial distribution
imply that with probability 1−o(1) the graph Gp has pN+o(n) edges for all
p≤n−1/2 simultaneously. As u is continuous, it follows that with probability
1−o(1) we have

c(Gp) = (u(pn) + o(1))n

for all 0≤ p≤ n−1/2. Now suppose that k = k(n) is such that β = 1− k/n
is bounded away from 0 and 1. Then w(ek−1) is the minimal p such that
c(Gp)=n+1−k∼βn. Thus with high probability w(ek−1)∼u−1(β)/n, which
is much smaller than n−1/2 for n large enough, and

w(Hk−1) =
∫ (1+o(1))u−1(β)/n

0
(u(pn)− β + o(1))ndp.

Substituting p=x/n we can write this as
∫ u−1(β)+o(1)

0
(u(x)− β + o(1))dx =

∫ u−1(β)

0
(u(x)− β)dx+ o(1),

completing the proof.

One can check that, as β→0, the bound (7) proved above gives W (k)≥
ζ(3)−β(log(β−1)+O(1)), which is considerably worse than the boundW (k)≥
ζ(3)−β−O(β2) given by (6). For larger β, the more complicated bound (7)
is better. Also, as noted above, the right hand side of (7) is actually a lower
bound on a smaller quantity than W (k), namely the minimum weight of any
rank k−1 subgraph of G.

We now turn to the upper bound, that if k = (1−β)n then with high
probability W (k) ≤ ζ(3)− cβ, for some constant c > 0. Our proof is again
based on Frieze’s result for k=n. The main idea is to show that the minimum
weight spanning tree has many leaves, some of which can then be omitted.

For x>1 a constant let

t(x) =
1
x

∞∑
k=1

kk−1

k!
(
xe−x)k .

Erdős and Rényi [9] proved that almost every graph on n vertices with
�xn/2� edges has a giant component with (1− t(x)+ o(1))n vertices. Also,
trivial estimates of the first and second moments imply that that almost
every such graph has (e−x+o(1))n isolated vertices. These results and The-
orem 8 above immediately transfer to the random graph Gp when p=x/n, so
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almost every such graph has (u(x)+o(1))n components, a giant component
with (1− t(x)+ o(1))n vertices, and (e−x+ o(1))n isolated vertices. Taking
x=2, the sums defining u(x) and t(x) converge fairly rapidly, and it is easy
to verify that u(2)<1/6 while t(2)<1/4 and e−2>1/8.

Let p0 = 2/n. From the remarks above, with probability 1− o(1) the
graph Gp0 has the following three properties: (i) Gp0 has a giant component
consisting of at least 3n/4 vertices, (ii) Gp0 has at least n/8 isolated vertices,
and (iii) Gp0 has at most n/6 components.

Let H1, . . . ,Hn−1 be the minimum weight forests in G constructed by
the greedy algorithm as above, so Ht =Ht−1∪{et}, and let t0 be maximal
subject to Ht0 ⊂Gp0. Then by construction of the graph Ht0 , this graph has
the same components as Gp0 , and thus has properties (i)-(iii) above. (Note
that here and later when we talk about a component we mean its vertex set.)
From now on we take t0 and Ht0 to be fixed, with Ht0 having the properties
above, and consider the random process H̃ =(Ht)n−1

t=t0+1. Note that at step
t > t0 in this process, going from Ht−1 to Ht, the edge et added is chosen
uniformly at random from among all edges joining two components of Ht−1.

Let I be a set of �n/8� isolated vertices of Ht0. We say that a vertex x∈I
becomes a candidate at step t if et is the first edge from x in the process H̃,
and et joins x to the giant component of Ht−1. In other words, x∈I becomes
a candidate at step t> t0 if x is a leaf of the giant component of Ht but is
isolated in Ht−1. Let us say that step t> t0 is critical if the edge et has at
least one endvertex isolated in Ht−1. Suppose that Ht−1 is given and has m
isolated vertices. Then there are at most mn possible edges et that would
make step t critical. Since the giant component of Ht−1 has at least 3n/4
vertices, at least 3mn/4 of these would create a new candidate at step t. Thus
at each critical step a new candidate is created with probability at least 3/4,
no matter what has happened so far. The number of isolated vertices goes
down by at most two at each critical step, and is otherwise unchanged. Thus
there are at least n/16 critical steps, and the total number of candidates
created stochastically dominates a binomial Bi(n/16,3/4) distribution. Thus
(using the central limit theorem, for example), with probability 1− o(1) a
total of at least n/22 vertices become candidates at some stage.

From now on we condition on the components of Ht for every t, or equiv-
alently, on which components become joined at which steps. Let A be an
event of the form ‘for each t > t0 the edge et joins components Ct, C ′

t of
Ht−1’. Given A the only remaining randomness is in which of the |Ct||C ′

t|
edges to chose for et at each stage. Note that A determines which vertices
in I become candidates at which stages. We write L0={x1, . . . ,xm} for the
vertices which become candidates at some stage.
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Let us say that a candidate x is eliminated at stage t if x is a leaf in the
giant component of Ht−1 but not in that of Ht, so et = xy for some y not
in the giant component of Ht−1. We say that a candidate x survives if it is
not eliminated, and write L1 for the set of surviving candidates, noting that
these vertices are leaves of the spanning tree Hn−1.

Let B be the event that certain of the candidates {x1, . . . ,xs−1} are elim-
inated at certain stages, and that the rest survive. We wish to bound the
probability that xs is eliminated given A and B. Given these events we
know that xs becomes a leaf of the giant component at a certain step t.
We also know that the giant component merges with other components
at certain later steps t1, . . . , tr, with r ≤ c(Ht) ≤ c(Ht0) ≤ n/6. At some
of these steps we know that one of x1, . . . ,xs−1 is eliminated, so xs can-
not be. At each of the remaining r′ ≤ r steps ti we know that an edge eti

is added joining the giant component C to some (particular) other com-
ponent, and that none of x1, . . . ,xs−1 is eliminated. This leaves at least
|C|− (s−1)≥|C|− |I|+1≥ 3n/4−n/8=5n/8 possibilities for the vertex y
of eti which lies in C. As these are all equally likely, the probability that xs

is eliminated at stage ti is at most 8/(5n). As there are r′≤ r≤n/6 stages
when xs might be eliminated, we have

P(xs survives | A ∩ B) ≥ 1− n

6
8
5n

= 11/15.

As this holds for all s and all events B of the above form, given A the number
of surviving candidates stochastically dominates a Bi(m,11/15) distribution.
Thus, provided the event A is such that m≥n/22, we have

P (|L1| ≤ n/31 | A) = o(1).

As this holds for all A for which m ≥ n/22, and m ≥ n/22 holds with
probability 1−o(1), we have

P (|L1| ≤ n/31) = o(1).

We are now ready to prove the upper bound on W (k).

Proof of Theorem 7. We have already proved the lower bounds. Suppose
that k=k(n) is such that β=1−k/n is bounded away from 0 and 1. LetHn−1

be the minimum weight spanning tree in G, and let L1 be the set defined
above. Then each vertex x in L1 is a leaf of Hn−1. Furthermore, for each such
x the unique edge xy∈E(Hn−1) has weight at least p0=2/n. This is because
we only considered vertices for inclusion in L1 if they were isolated in Gp0 ,
i.e., were adjacent to no edges of weight less that p0. Now, as shown above,
with probability 1−o(1) we have |L1|≥n/31. Let us consider the weights on
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G and thus L1 as given, and then the set V ={v1, . . . ,vk} of Steiner vertices
as randomly chosen. Supposing that |L1| ≥ n/31, as |V c| = βn and β is
bounded away from zero we have |V c∩L1|≥βn/32 with probability 1−o(1).
We may omit these vertices from Hn−1 to obtain a tree T containing all the
vertices of V with w(T )≤w(Hn−1)− p0|V c ∩L1|. We know from [11] that
with high probability w(Hn−1)=ζ(3)+o(1). Thus with probability 1−o(1)
we have

W (k) ≤ w(T ) ≤ ζ(3) + o(1)− 2
n

βn

32
< ζ(3)− β/17,

provided n is sufficiently large. This completes the proof.

5. Concluding remarks

In this paper we considered the weight of a minimal Steiner tree in a complete
graph on n vertices with edge weights chosen randomly and independently
from some distribution X satisfying P(X≤x)=x+o(x) as x→0. We showed
that W (k), the minimal weight of a tree that contains a given set of k=o(n)
vertices is with high probability (1+o(1))(k−1)(logn− logk)/n.

In conclusion, let us draw attention to an interesting problem we could
not solve. It is very likely that there is a function c(α) defined on [0,1]
with c(0) = 0 and c(1) = ζ(3) such that if k/n→ α then E(W (k))→ c(α).
Assuming that this function exists, we have found its asymptotic behaviour
as α→ 0, and given upper and lower bounds for all α. We do not believe
that any of the latter bounds is close to being best possible, and we do not
have a conjecture, or even a guess, for the form of c(α). The question is to
determine c(α).
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Mat. Kutató Int. Kőzl. 5 (1960), 17–61.

[10] C. M. Fortuin, P. W. Kasteleyn and J. Ginibre: Correlation inequalities on
some partially ordered sets, Comm. Math. Phys. 22 (1971), 89–103.

[11] A. Frieze: On the value of a random minimum spanning tree problem, Discrete
Appl. Math. 10 (1985), 47–56.

[12] T. E. Harris: A lower bound for the critical probability in a certain percolation
process, Proc. Cambridge Philos. Soc. 56 (1960), 13–20.

[13] S. Janson: One, two and three times logn/n for paths in a complete graph with
random weights, Combinatorics Probability and Computing 8 (1999), 347–361.

[14] D. J. Kleitman: Families of non-disjoint subsets, J. Combinatorial Theory 1 (1966),
153–155.
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Béla Bollobás

Department of Mathematical Sciences

University of Memphis

Memphis TN 38152

USA

bollobas@memphis.edu

and

Trinity College

Cambridge CB2 1TQ

UK

b.bollobas@dpmms.cam.ac.uk

David Gamarnik

IBM

T.J. Watson Research Center

Yorktown Heights

NY 10598

USA

gamarnik@watson.ibm.com

mailto:bollobas@memphis.edu
mailto:b.bollobas@dpmms.cam.ac.uk
mailto:gamarnik@watson.ibm.com


ON THE VALUE OF A RANDOM MINIMUM WEIGHT STEINER TREE 207

Oliver Riordan

Trinity College

Cambridge CB2 1TQ

UK

o.riordan@dpmms.cam.ac.uk

Benny Sudakov

Department of Mathematics

Princeton University

Princeton

NJ 08540

USA

and

Institute for Advanced Study

Princeton

NJ 08540

USA

bsudakov@math.princeton.edu

mailto:o.riordan@dpmms.cam.ac.uk
mailto:bsudakov@math.princeton.edu

	Heading
	1. Introduction
	2. Lower bound
	3. Upper bound
	4. Steiner trees for many vertices
	5. Concluding remarks
	References

