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Abstract

We consider the number c(n, m) of connected labeled graphs

on n nodes and m edges and the intimately related object,

the expected length of the minimal spanning tree of a

complete graphs with random edge lengths. We use a

very simple recursive procedure for computing the values

of c(n, m) for computing the expected length of the minimal

spanning tree exactly, under the uniform and the exponential

distributions. Our computations are recursive, scale very

well with the size of the problem, and we provide the values

of the expected minimal length spanning trees for complete

graphs Kn with sizes n ≤ 45, extending recent results of

Steele [Ste02], and Fill and Steele [FS04]. The main proof

technique is based on introducing an artificial root to a graph

and subsequently using a very simple inductive argument.

1 Introduction

Given positive integers n,m let c(n,m) denote the num-
ber of connected labeled graphs on n nodes with m
edges. The values of c(n,m) have been a subject of a
considerable interest in the area of enumerative combi-
natorics. Various asymptotical results are available for
computing c(n,m), see for example Bender, Canfield
and McKay [BCM90], Luczak [ÃLuc90], Coja-Oghlan et
al. [COMS04]. The methods for computing c(n,m) re-
cursively can be found in Harary and Palmer [HP73].
In this paper we investigate the connection between
c(n,m) and the expected length E[T n] of the mini-
mal spanning tree of a complete graph Kn with edges
equipped with random lengths, generated according to
either the uniform or the exponential distribution.

It was established by Frieze [Fri85] that value of
E[T n] converges to ζ(3) =

∑
k≥1 1/k3 as n → ∞, see

also Steele [Ste87]. Two recent papers by Steele [Ste02],
and Fill and Steele [FS04] have addressed the issue of
computing the values E[T n] exactly. They used a con-
nection between E[T n] and the Tutte polynomial of
a complete graph in which the lengths are generated
randomly and independently according to the uniform
distribution with support [0, 1] (denoted U(0, 1) hence-
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forth). The values E[T n] were computed exactly for
n = 2, 3, . . . , 9. Also a somewhat different recursive
method was proposed in [FS04] which also led to exact
computation of E[T n]. Unfortunately, both methods do
not scale well as n increases and the overall computa-
tional effort is an exponential function of n.

In this paper we start with a very simple method
for computing the values c(n,m) exactly for any n,m.
The computation is recursive but grows only as a
polynomial function of n and m. A similar computation
can be found in [HP73] and some variations using
generating functions are very well known in the area
of enumerative combinatorics. Then we propose a
simple exact formula for the values of E[T n] expressed
in terms of c(n,m). The formula is derived both for
the uniform U(0, 1) and the exponential distribution
with parameter 1 (denoted henceforth by Exp(1)). The
computation of E[T n] arising from these formulas scale
very well (in fact polynomially) as a function of n
and we compute the exact values of E[T n] for n =
2, 3, . . . , 45. It was observed in [Ste02] and [FS04]
that the values E[T n] are monotonically increasing as
a function of n for the derived cases n = 2, 3, . . . , 9,
and it was conjectured that the monotonicity remains
valid for all n. Interestingly, our computation show
that, while for the case of the uniform distribution the
values remain to be monotonically increasing, the values
corresponding to the exponential distribution increase
for n = 2, 3, . . . , 7 and decrease for n = 8, . . . , 44, and we
conjecture that the decrease continues for all the values
of n ≥ 8 (see Table 1 and Figure 5). Our proof method
is based on a simple idea of introducing an artificial root
to the graph and using an inductive argument.

2 Enumeration of connected graphs

Recall that c(n,m) is the total number of labeled con-
nected graphs on n nodes with m edges. The follow-
ing proposition is used to obtain a simple recursion on
c(n,m).



Proposition 2.1. For every m ∈ [n− 1, n(n− 1)/2]
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m

)
=(2.1)
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2∑

l=0

c(i, l)
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2

m− l

)
,

where for every m /∈ [n− 1, n(n− 1)/2], c(n,m) = 0.

Proof. Fix a root r, r = 1, 2, . . . , n and consider any
(not-necessarily connected) graph on n nodes with m
edges with the given root r. The total number of such
labeled graphs with the given root r is

(n(n−1)
2
m

)
. On the

other hand, let C(r) denote the component in this graph
containing r and let i, l denote the number of nodes and
edges in C(r). For a fixed such a component C(r) there

are altogether
( (n−i)(n−i−1)

2
m−l

)
labeled graphs spanned by

the remaining n − i nodes using the remaining m − l
edges. For a fixed choice of i − 1 nodes there exists
by definition c(i, l) labeled connected graphs spanning
these nodes and the node r. Since there are

(
n−1
i−1

)
choices for these nodes we obtain the formula after
cancelling n on both sides. ¤

Proposition 2.1 provides the following simple recur-
sive formula for c(n,m) the derivation of which is im-
mediate.
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(n(n−1)

2
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)
,

where the first double sum corresponds to the number
of graphs with n nodes and m edges such that the
component containing r has fewer than m edges, and the
second sum corresponds to the number of such graphs
where the component containing r has exactly m edges
but fewer than n nodes. It is easy to see that the
computation time required to compute c(n,m) grows
as a polynomial function in n (note m ≤ n(n − 1)/2).
The computation time growth as a function of n is in
fact quite moderate and we can compute the values of
c(n,m) for n up to 45 in a matter of minutes.

3 Expected minimal length spanning tree

Consider a complete graph Kn on n nodes with edges
having non-negative lengths wi,j , 1 ≤ i < j ≤ n. Let w∗

be any value larger than maxi,j wi,j . Denote by T (Kn)

the minimal total length of a spanning tree of Kn. When
the lengths wij = W i,j are generated at random inde-
pendently according to some probability distribution,
we denote T (Kn) by T n. Our focus is computing E[T n]
when W i,j are distributed either according to the uni-
form distribution over [0, 1] (denoted U(0, 1)) or accord-
ing to the exponential distribution with parameter 1
(denoted Exp(1)).

Given an arbitrary (non-random) graph G on n-
nodes, let κ(G) denote the number of connected com-
ponents of G. When the edges of G are equipped with
lengths wi,j , 1 ≤ i < j ≤ n and x > 0, let G(x) de-
note the subgraph obtained from G by including only
the edges with length wi,j ≤ x. The following formula
which was derived first in Avram and Bertsimas [AB92]
relates T (G) to the number of the connected compo-
nents κ(G(x)) of the subgraph G(x). Originally the for-
mula was developed for the case wi,j ≤ 1. Its extension
applicable to arbitrary lengths is obtained immediately
by rescaling wi,j to wi,j/w∗.

Proposition 3.1. For every connected graph G

(3.3) T (G) =
∫ w∗

0

κ(G(x))dx− w∗.

We now state and prove our main result.

Theorem 3.1. For every n ≥ 2

E[T n] = −1 +
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(
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)
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,

when the edge length distribution is U(0, 1) and

E[T n] = −
n(n−1)
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1
i

+
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(3.5)

(
n
k

)
m!c(k, m)

(k(k−1)
2 + k(n− k)−m) · · · (k(k−1)

2 + k(n− k))
,

(3.6)

when the edge length distribution is Exp(1), where

F (n) =
{

(k, m) : k ≤ n,m ≤ k(k − 1)/2,(3.7)

k + m < n + n(n− 1)/2
}

.



In light of the derivation in Section 2 which allows
us to compute c(k, m) in time polynomial in k and m,
the formula above gives us a polynomial in n algorithm
for computing expected minimal spanning tree on a
complete n-graph. The main trick which allows us to
derive the formula above is again creating an artificial
root in the graph and relating the expected number of
components to the number c(n,m) of connected graphs
on n nodes with m edges.

Proof. For any graph G we denote by n(G) and e(G)
the cardinality of the node set and the edge set of G,
respectively. The following formula is immediate for
every graph G.

(3.8) κ(G) =
∑

1≤i≤n

1
n(C(i)) ,

where C(i) is the component containing i. This formula,
while trivial, provides us with a convenient representa-
tion for κ(G):
(3.9)

κ(G) =
∑

1≤i≤n

∑

1≤k≤n

k(k−1)
2∑

m=k−1

1{n(C(i)) = k, e(C(i)) = m}
k

,

When G = Kn and the lengths are random, using
symmetry we obtain

E[κ(Kn(x))] =(3.10)

n
∑

1≤k≤n

k(k−1)
2∑

m=k−1

Pr(n(C(1)) = k, e(C(1)) = m)
k

.

Now we focus on the case of the uniform distribution.
The proof for the case of exponential distribution is
delayed till the next paragraph. Consider any connected
subgraph G1 ⊂ Kn containing the node 1 which consists
of k nodes and m edges. Since the length probability
distribution of the edges is U(0, 1) and 0 ≤ x ≤ 1, then
each edge (i, j) of G belongs to G(x) with probability
x and does not with probability 1 − x independently
for all edges. Then, under U(0, 1) distribution, the
probability that the random graph G(x) is such that
the component C(1) containing 1 is exactly G1 is equal
to xm(1 − x)

k(k−1)
2 −m+k(n−k) since we must have that

exactly m edges of G1 to have length at most x, and
the remaining edges k(k−1)

2 −m between pairs of nodes
in G1 as well as k(n − k) between nodes of G1 and
its complement must all have length bigger than x.
There are

(
n−1
k−1

)
choices for the remaining k − 1 nodes

to generate the component C(1) and there are c(k, m)
connected graphs on a given collection of k nodes with

m edges. We obtain

Pr
(
n(C(1)) = k, e(C(1)) = m

)
=(3.11)

(
n− 1
k − 1

)
c(k, m)xm(1− x)

k(k−1)
2 −m+k(n−k).

We use the formula
∫ 1

0

xi(1− x)jdx =
i!

(j + 1) · · · (j + i + 1)
,

for every i, j ≥ 0. Note that c(k,m) = 0 unless
k − 1 ≤ m ≤ k(k−1)

2 . Then applying (3.10) we obtain
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0
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)
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Applying (3.3) and using w∗ = 1 we obtain (3.4).
When the edges lengths are exponentially dis-

tributed use formula (3.3) to observe that

E[T n] = E[
∫ ∞

0

κ(G(x))1{max wi,j > x}dx−max
i,j

wi,j ].

Indeed when x > maxi,j wij , we have κ(G(x)) = κ(G) =
κ(Kn) = 1 (graph is complete). Therefore for every
w∗ > max wi,j

∫ ∞

0

κ(G(x))1{maxwi,j > x}dx−max
i,j

wi,j

=
∫ max wi,j

0
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=
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0
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Using (3.9) and interchanging the order of integration
we obtain
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where in the second equality we use the fact max wi,j <
x iff G(x) is a complete graph, implying k = n,m =
n(n−1)/2. Using the argument similar to the one lead-
ing to (3.11) we obtain that for the Exp(1) distribution

Pr(n(C(1)) = k, e(C(1)) = m) =(3.12) (
n− 1
k − 1

)
c(k, m)(1− exp(−x))m

exp
(
− x(

k(k − 1)
2

−m + k(n− k))
)
,

We use the following formula
∫ ∞

0

(1− exp(−x))i exp(−xj)dx =
i!

j · · · (j + i)
,(3.13)

and note E[maxwi,j ] =
∑

1≤i≤n(n−1)/2
1
i to obtain

E[T n] =
∑

k,m∈F (n)

(
n− 1
k − 1

)
n

k

c(k, m)m!

(k(k−1)
2 −m + k(n− k)) · · · (k(k−1)

2 + k(n− k))

−
∑

1≤i≤n(n−1)/2

1
i
,

which is exactly (3.5). ¤

4 Computations

We have computed the values of E[T n] for the case of
U(0, 1) and Exp(1) distributions for n = 2, 3, . . . , 45.
The answers are presented in Table 1, where in addi-
tion for every row n we present the difference E[T n] −
E[T n−1]. We have also plotted the values on Figure 5,
where the horizontal line corresponds to ζ(3) ≈ 1.202.
For the case of uniform distribution our computations
show that the monotonicity conjectured in [Ste02] and
[FS04] and confirmed for n = 2, 3, . . . , 8, indeed holds
for all n ≤ 44. Yet for the case of the exponential distri-
bution we see that E[T n] is growing for n = 2, 3, . . . , 7
but starting with n = 8 becomes monotonically decreas-
ing. It is natural then to extend the conjecture stated
in [Ste02] and [FS04] as follows.

Conjecture 4.1. Under the U(0, 1) distribution
E[T n] < E[T n+1] for all n = 2, 3, . . . , . Under Exp(1)
distribution E[T n] > E[T n+1] for all n ≥ 8.
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n U(0, 1) Difference Exp (1) Difference
2 0.5000 1.0000
3 0.7500 0.2500 1.1667 0.1667
4 0.8857 0.1357 1.2167 0.0500
5 0.9665 0.0807 1.2353 0.0187
6 1.0183 0.0519 1.2427 0.0074
7 1.0537 0.0354 1.2454 0.0027
8 1.0791 0.0253 1.2460 0.0005
9 1.0979 0.0188 1.2455 -0.0005
10 1.1124 0.0144 1.2445 -0.0010
11 1.1237 0.0114 1.2432 -0.0013
12 1.1328 0.0091 1.2418 -0.0013
13 1.1403 0.0075 1.2405 -0.0014
14 1.1465 0.0062 1.2391 -0.0013
15 1.1517 0.0052 1.2379 -0.0013
16 1.1561 0.0044 1.2366 -0.0012
17 1.1599 0.0038 1.2355 -0.0012
18 1.1632 0.0033 1.2344 -0.0011
19 1.1661 0.0029 1.2333 -0.0010
20 1.1686 0.0025 1.2323 -0.0010
21 1.1708 0.0022 1.2314 -0.0009
22 1.1728 0.0020 1.2305 -0.0009
23 1.1746 0.0018 1.2297 -0.0008
24 1.1762 0.0016 1.2289 -0.0008
25 1.1777 0.0015 1.2282 -0.0007
26 1.1790 0.0013 1.2275 -0.0007
27 1.1802 0.0012 1.2268 -0.0007
28 1.1813 0.0011 1.2262 -0.0006
29 1.1823 0.0010 1.2256 -0.0006
30 1.1832 0.0009 1.2250 -0.0006
31 1.1841 0.0009 1.2245 -0.0005
32 1.1849 0.0008 1.2240 -0.0005
33 1.1856 0.0007 1.2235 -0.0005
34 1.1863 0.0007 1.2230 -0.0005
35 1.1869 0.0006 1.2225 -0.0004
36 1.1875 0.0006 1.2221 -0.0004
37 1.1881 0.0006 1.2217 -0.0004
38 1.1886 0.0005 1.2213 -0.0004
39 1.1891 0.0005 1.2209 -0.0004
40 1.1895 0.0005 1.2206 -0.0004
41 1.1899 0.0004 1.2202 -0.0003
42 1.1903 0.0004 1.2199 -0.0003
43 1.1907 0.0004 1.2196 -0.0003
44 1.1911 0.0004 1.2192 -0.0003
45 1.1914 0.0003 1.2189 -0.0003

Table 1: Expected lengths and expected difference of
the minimal spanning tree lengths under U(0, 1) (left
two columns) and Exp (right two columns) in Kn, n =
2, 3, . . . , 45.
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Figure 1: Expected minimal length spanning tree under
Exp(0, 1) (top) and U(0, 1) (bottom) distributions in
Kn, n = 2, 3, . . . , 45.
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