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Abstract

Given a (directed or undirected) gragh finding the smallest number of additional edges which
make the graph Hamiltonian is called the Hamiltonian Completion Problem (HCP). We consider this
problem in the context of sparse random gragtis, ¢/n) onn nodes, where each edge is selected
independently with probability/n. We give a complete asymptotic answer to this problem when
¢ < 1, by constructing a new linear time algorithm for solving HCP on trees and by using generating
function method. We solve the problem both in the cases of undirected and directed graphs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and the main result

Consider a (undirected or directed) grag@on n nodes. How many extra edges, which
are not originally present in the graph, do we need to add in order the make the graph
Hamiltonian? This is called the Hamiltonian Completion Problem (HCP), and the minimal
number of extra edges is defined to be the Hamiltonian Completion Number (HCN). Hamil-
tonicity itself is then a decision version of this problem—the problem of checking whether
the optimal value of HCP is zero. In particular, HCP problem is NP-hard. Several papers
studied HCP problem in various graphs with some special structures, for example trees and
line graphs of treefl,6,5,3,10] Specifically, a linear time algorithm for computing HCN
was constructed by Goodman et[&l] for the case of undirected trees.

To the best of our knowledge HCP was never studied in the context or random graphs.
To the contrary, Hamiltonicity was investigated very intensively in a variety of random
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graph models, starting from a classical work by Beardwood §Jabn optimal Travelling
Salesman tours in random planar graphs. We refer the reader to Frieze andMlikarh

a very good survey on this subject. One of the most interesting results in this area was
obtained by Posp)]. Solving a problem, which was open for 20 years, he showed that the
random graplG (n, ¢/n), where each edge is selected independently with probabjlity

is Hamiltonian wherc > 16 logrn. Komlos and Szemere@] later tightened this bound

by proving Hamiltonicity forc = logn. Essentially they showed that, ass increasing

the random graph becomes Hamiltonian with high probability (w.h.p.) precisely when its
minimal degree becomes two, w.h.p., which occurs at the threghkoldg~. Interestingly,
random regular graphs with degree at least three are Hamiltonian {¥hAn interesting

open problem remains determining the threshold for Hamiltonicity in random subgraphs of
a binary cub€g0, 1}", where edges between pairs of nodes with Hamming distance 1 are
included with probabilityp, and between all other pairs with probability 0. It is conjectured
that the threshold value js = 3.

In this paper we study HCP problem in the context of sparse undirected and directed
random graphss = G(n, ¢/n) on n nodes, where, in the undirected case, every edge
(@, j), i, j<nis included with probability/n, independently for all edges, and< 1 is
some fixed constant. For the directed case, we take our undirected random graph model and
give every edge a random orientation, with equal probabgityl\gain we assume < 1.

It is well known [7], that such random graphs are disconnected w.h.p. Moreover, w.h.p.,
most of the (weak) components of this graph are trees. We obtain a complete asymptotic
solution of HCP in these graphs,as~> oo. Itis easy to see th&{ H (n, ¢)] = ©(n), where

H (n, ¢) denotes the optimal value of the HCN aH(d] is the expectation operator. Indeed,

E[H (n, c)]= O (n), since we can simply plant a Hamiltonian tour. On the other hand, w.h.p.
there exists linearly many isolated nodék As a result, we need at lea3{n) extra edges.

Inthis paper we prove the existence and compute the limit gfii (», ¢)]/n. Our method

of proof is based on constructing a new and simple linear time algorithm for solving HCP
on trees. In the case of directed trees, our algorithm is, to the best of our knowledge, the
first algorithm for solving HCP on directed trees. As we mentioned above, such algorithms
exist for undirected graphs, and some of them have linear complexity. Yet we found that
these algorithms are not useful for the analysis of HCP in random graphs. Our algorithms
turn our to be far more amenable for the analysis of random instances, thanks to certain
recursive properties.

In order to state our main theorem, we need the following technical result.

Proposition 1. Fix an arbitrary valuec € (0, 1). For every pairO<x <1,0<y<1
satisfying

xe ¢ 14x
1>y> maxyl— , 1
vz maxfa- 227, 222 @
the system of equations and inequalities in varialgigs; > 0:
Xyeso—¢
g1= (2)

1— cxecgo—c’
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X ecgo—c(ec

go= — €807 (e81 — 1 — cgy), 3)
y

go+g1<1 4)

has exactly one solution

Proof. The existence of a solution will follows from the developments in later sections,
where we show that a generating function of a certain two-dimensional random variable
satisfies (2), (3), (4). We now prove uniqueness. Rewrite the Eq. (2) as

g1 — §1cxX€807C = xyesoTe (5)
and add to (3) multiplied by to obtain

81+ ygo = x€B0TEITC — (1 — y)eso¢
which we rewrite as

80+ 81 = x€B0TEBITC — x(1— y)eB0™ 4 (1 — y)go.

We introduce an independent variabte go and consider a functiol(r) implicitly defined
by

h(t) = x€"D=¢ — x(1— y)e ™ + (1 — y)r. (6)

The functionhi(t) stands forgg + g1. Our first claim is that for all &z <1 there exists
exactly one solutiork(r) satisfyingh(z) <1, that is satisfying inequality (4). Indeed, the
left-hand side of (6) is a linear function af= h(r) taking values 0 and 1 when= 0, 1
respectively. The right-hand side is a convex functioh.&/henk =0, its value isce ¢ —
xL—y)e 4+ A—-yrzxe“—x(1—y)=xe “—(1—y)>0,byassumption (1). On
the other hand, whel= 1, the corresponding value is at mast 1 — y, which is strictly
smallerthan 1, since < 1 and therefore by assumption () (14 x)/2 > x. Thus, indeed
there exists exactly one solutidriz) <1 for all 0<r < 1.

The rest of the argument is structured as follows. We obtained that each vagde of
uniquely specifies the value @h via g1 = h(t) — t = h(go) — go. We will show that,
moreovergi = h(t) — t is a decreasing function @b = ¢. On the other hand observe that
(5) uniquely specifiegs as a function ofg, and, moreover, this function is non-decreasing.
Therefore these two functions gf can have at most one intersection, and the proof would
be completed.

Our next claim is that the functioky(r) satisfiesi () < 1. This implies that the function
h(t) — t is strictly decreasing, and we would be done. Differentiating both sides of (6) and
rearranging we obtain

h()(L = xeg” D7) = —x(1 - y)ee”“ + (1 - y)<1-y.
Therefore

1—vy < 1—-y

— xcechh—c =1 — x

sincec < 1, h(r)<1and by (1),y > x. This completes the proof.(]

hm<1 <1,
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We will show later that the unique solutign= go + g1 is in fact a generating function
of some two-dimensional random vector, corresponding to the HCP in undirected random
graphs. The corresponding sequence of equations and inequalities for directed random
graphs involves variablegyo, go1, g11 and is as follows:

g11 = xye-sootesor—c, (7)
901 = €800 F 801+ 5811—¢ _ yecgontcgon—c, 8)
X oo iocanteaii—c X oo 130 Lo o X o o
goo=— gf8o0t2cgortegi—c _ T o800t 801tc811—¢ | . of800tcgor < (9)
y y
goo + 2go1 + g11< 1. (10)

Like in the undirected case, we will show that a certain generating function satisfies
these equations and inequalities. Therefore, this system has at least one solution for each
O<c<1, 0<x<1, 0<y<1.We were notable, unfortunately, to prove the uniqueness
of the solution, but our numerical computations do show the uniqueness. We leave the
unigueness as an open question.

We define functiongo(x, y), g1(x, y)andgoo(x, y), go1(x,y), g11(x, y)astheunique
solutions to the systems of equations and inequalities (2), (3), (4) and (7), (8), (9), (10)
respectively, (uniqueness conjectured in the second case) and let

g(x, y) = go(x, y) + g1(x,y),  &(x,y) =goolx, y) + 2goa(x, y) + g11(x, y).(11)
The main result of the paper is stated below.

Theorem 1. For ¢ <1, the optimal value of the HCP for an undirected random graph
G(n, c/n) satisfies

1
“m E[H(H,C)] :/ gy(xa 1) d
0

n—o0o n X

x, (12)

whereg, (x, y)=[0/0ylg(x, y). For adirected random grapt¥ (n, ¢/n) the corresponding
value satisfies

l -
im ELH (0] :/ & D dr
0

n—o00 n X

, (13)
whereg, (x, y) = [0/0y1g(x, y). Both partial derivatives and integrals exist and are finite

Observe that the value @/0y]g(x, y) for y =1 is completely determined by the values
of the functiong (x, y) in the region wherg is closed to the unity. This region, in particular,
is covered by the region specified by the constraint (1). This is why for the purposes of
solving the HCP, the uniqueness within the region (1) suffices.

The value of the integrals above can be computed approximately by numerical methods.
We will report the results of computations in Section 5. The rest of the paper is organized
as follows. In Section 2, we analyze HCN of a fixed deterministic tree. Two subsections
correspond to the cases of undirected and directed graphs. We obtain a linear time algorithms
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for the optimal values of HCP in trees and we show that the optimal value of HCP for a
forest is the sum of the optimal values of its individual trees. In Section 3 we use a classical
fact from the theory of random graphs that a given fixed node of a random Grapla/n)
belongs w.h.p. to a component which, in the limitias> oo, is a random Poisson tree. We
obtain an exact distribution of the optimal value of HCP of a random Poisson tree, via its
generating function. We use this result in Section 4, to complete the proof of Theorem 1. In
Section 5 we provide numerical results of the computing the limits (12), (13).

2. Hamiltonian completion of a tree
2.1. Undirected graphs

Let T be a non-random tree with a selected roat 7. We denote by (T') the HCN
of T. Note, that there are possibly several solutions which achig{®). We say that the
rooted graph(7, r) is type 0O, if foreveryoptimal solution, both edges incidentitan the
resulting Hamiltonian tour belong f Otherwise, the pair is defined to be type 1. We also
define the root to be type 0 (type 1), ifT, r) is type 0 (type 1). Any isolated nodas
defined to be type 1, anl (i), for convenience, is defined to be 1, by definition.

An example of type O tree is a path= (r1, r2, ..., r;), wherer is any internal node
ri, 2<i <t — 1. Indeed, the HCN for this graph is 1—add edger1), and this is a unique
optimal solution. The resulting Hamiltonian tat, ro, . . ., ry, r1 (Or the reverse tour) uses

edgedr;_1, ri), (ri, riy+1) incident tor = r;, both of which belong to the tree. On the other
hand ifr =r1 (r =r;), the pair(T, r) is type 1, since the generated tduuses a new edge
(r;, r1) incident tor.

Consider the complete weighted gra@h on the same vertex set as the tfeand define
weight of an edge to be O if this edge belongs toTraad 1 otherwise. Then the Hamiltonian
Completion Problem in tre€ is equivalent to the Travelling Salesman Problem in graph
G and the optimal value of a TSP tour "y is equal to a number of edges we need to
add to make grapf Hamiltonian. We now prove an auxiliary lemma about a property of
the optimal Hamiltonian cycle i 7. Denote byTy, ..., T, the subtrees generated by the
childrenry, rp, ..., rgofrinT.

Lemma 2. Forany tour of length Hin & 7 which uses=0, 1, 2 edges of weighiincident

to r (in other words edges incident to the root r iptlere is a tour inG 7 with length at most
H, which uses s edges of weidghincident to r and visits each subtrég, ..., T; exactly
onesi.e. vertices of every subtrég, .. ., T, form contiguous segments of the Hamiltonian
tourin Gr.

Proof. Indeed, if there are two such contiguous segmeBis= (i1,...,i,) and

P, = (ig, ..., in) belonging to the same subtrge and not connected by an edge in

a Hamiltonian cycle then at least three out of four edges incident to this segments in a
Hamiltonian cycle have weight 1 since there is at most one edge of weight O incident to
a subtred;. Assume, thati,, i, y1), (ig—1, ig) and(i,, in41) are these edges. Therefore,

for Pio=1ip41,...,i4—1, the part of the Hamiltonian cycle betweéh and P, and for
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Py1 = ipq1, ..., 10, the part of the Hamiltonian cycle betwenand P, the new tour
P1, P2, P1p, P»1 has length at most since we took out three edgés,, i,11), (ig—1,ig)

and(i,,, i,4+1) of weight 1 and used instead eddes, i;), (im, ip+1) and(iy—1, im41) Of

weight at most 1. Repeating these procedure we get a Hamiltonian cyGlg mith the
desired properties. J

In the following result we related the optimal values of HCP on trees and forests.

Proposition 2. The optimal value of HCP on a forest is the sum of the optimal values of
HCP of its tree components

Proof. The proof is almost exactly the same is of Lemma 2 above. We show that there
exists an optimal tour which visits each component of the forest exactly onés.

The proposition below is the key technical result of this subsection. Here we assume a
non-trivial case when the degree of the roat T is at least 1.

Proposition 3. The following holds

1. If there are at least two pairs out @ff;, r;), 1<i <d which are typel, then the pair
(T,r)istype0and H(T) = —1+ Y, H(T}).

2. Ifexactly one of the pair€l;, r;) istypel,then(T, r) istypeland H (T) =Z§1=1 H(Ty).

3. If all of the pairs(7;, r;) are type0, then(T, r) istypeland H(T) =1+ Zf’zl H(T;).

Remark. Animmediate corollary of the recursion above is a linear time algorithm (in size
n of the tree) for solving HCP on trees.

Proof. We consider the three cases from the claim of the proposition.

Casel: Assume that there are at least two pairs oui7dfr;) which are type 1. W.l.0.g.
let 71 and7, be two of these trees. L€ély, . .., C; be optimal Hamiltonian cycles iG'7;,
i=1,...,d of length H(T;) such thatC1 and C; have edges of weight 1 incident t9
andr,. Delete these two edges from andC,. Delete one arbitrary edge of length 1 from
eachCy, ..., C4—1. After that connect the path ify obtained fromC; with the path in7,
obtained fromC, by two edges of weight 0 through the root verkeand connect remaining
pathsin any order by — 1 edges of weight 1 into a Hamiltonian cycleGty . Clearly, these
new Hamiltonian cycle has length exacthl + Zle H(T;) since we deleted one edge of
weight 1 from every subtree and added exadtlyl edges of weight one to the Hamiltonian
cycle. One the other hand,1 + Zle H (T;) is alower bound for every Hamiltonian cycle
in G, since, by Lemma 2 this Hamiltonian cycle must contain a Hamiltonian path for each
T; of length at leasH (7;) — 1 andd — 1 edges of weight 1 between subtrees. Moreover, we
can achieve this lower bound only if Hamiltonian path uses two edges of weight 0 incident
to the rootr to connect two subtrees. Therefore, pdir ) has type O.

Case2: Assume that exactly one of the paifg, r;) is type 1 and assume that this is
(T1, r1). Then deleting the edge of weight 1 incident-idfrom C1, and arbitrary edge of
weight 1 from eaclCy, ..., C4, connecting the Hamiltonian path @y with the rootr by



D. Gamarnik, M. Sviridenko/Discrete Applied Mathematics 152 (2005) 139-158 145

the edge of weight 0 and all other Hamiltonian paths into one cyckkdmjges of weight 1
we get a cycle of length exactEf=l H(T;). Since the constructed tour contains the edge
of weight 1 incident to the roat, what we need to prove is that there is no Hamiltonian
cycle in Gr of weight —1 + ZleH(Ti). Assume on the contrary that there is such a
tour C. Then, as we noticed in the previous paragraph, it must use two edges of weight 0
incident to the root. Let 7, and7; be subtrees connected by these edges with the root.
Let (T3, ry) be the pair of type 0 since both of these palifs, ;) and(T;, r;) cannot be of
type 1. Then subpath through the subtfea a cycleC cannot have length less thah(T;)
since otherwise connecting two endpoints of such path we will either get a tour of weight
less thanH (T;) or a tour of weight exactlyH (7;) but with edge of weight 1 incident to
r; and then(7;, r,) would be of type 1. Therefore, we have at least one sulfireehich
contributesH (T;) to the length ofC, by adding at least (T;) — 1 for all other trees and
d — 1 to connect all subtours into one Hamiltonian cycle. We get that the tour length is at
leasty"?_, H(T;). Contradiction.

Case3: In the last case we assume that all of the pélisr;) are type 0. Then we
can easily obtain a Hamiltonian cycle @y by deleting one edge of length one in each
Ci,i =1,...,d and addingd + 1 edges of weight 1 connecting resulting paths and
into Hamiltonian cycle inG . Clearly, the length of this cycle is-% Zle H(T;) and it
has an edge of weight 1 incidentit@nd therefore, what we need to show is that there is
no Hamiltonian cycle inGr of length ZleH(T,») or less. The argument is very similar
to the one in the previous paragraph. Assume that there is a tour of length smaller than
1+ Zle H (T;). It cannot have two edges of weight 1 incidentr teince otherwise this
cycle has the weight at IeasHQZ?zl (H(T;) — 1) +d — 1. Suppose it has one edge of
weight 1 incident ta. Let 7; be a subtree connected by this edge with the root. The subpath
of Hamiltonian cycle in this subtree must have the length at I#&%}) and therefore adding
H (T;) — 1 for all other subtrees artledges of weight one to connect subtours in different
subtrees we gett Zle H(T;), again. Finally, if there are two edges of weight 0 incident
tor in a Hamiltonian cycle then |&f, andT; be subtrees connected by these edges with the
rootr. Therefore, they will contributé? (7;) and H(T;) to the length of the Hamiltonian
cycle plusH (T;) — 1 for all other trees and — 1 to connect all paths in subtrees into one
cycle. Again, we obtain & Y"¢_, H(T}). O

2.2. Directed graphs

LetT be a non-random directed acyclic rooted graph obtained from some undirected tree
by orienting its edges in some way. A graph is defined to be a directed forest if all of its
weakly connected components are directed trees. Given a directdd keée € T denote
the root of this tree, and, as above, I#{T) denote the HCN off. We will say that the
rooted graphT, r) is type(0, out), if for everyoptimal solution, the oriented edge outgoing
fromr in the resulting Hamiltonian tour, belongsToln this case we will also say that the
rootr is type(0, out). If pair (T, r) is not type(0, out), then it is said to be of typél, out),

i.e. there is an optimal Hamiltonian tour such that the edge outgoingrfaias not belong
to T. If for everyoptimal solution, the edge incoming ttén the resulting Hamiltonian tour
belongs tdr then the paicT, r) has typg0, in) and, otherwise, the pair is said to be of type
(1, in).
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Any isolated node is said to be of typd1l, in) and (1, out). For a later convenience,
H (i) is set to be 1, by definition. An example of typ® in) ((0, out)) node is a directed
pathT = (r1, 72, ..., r:), wherer isanode;, 2<i <t (r;, 1<i <t —1). Indeed, the HCN
for this graph is 1—add edge;, r1), and this is a unique optimal solution. The resulting
Hamiltonian tourry, ro, ..., ry, r1 Uses edgeé&;_1, ), (i, ri+1) incident tor = r;, both
of which belong to the tree for any internal nageOn the other hand if=r1 (r = r;), the
pair (T, r) is of type (1, in) ((1, out)), since the generated toliruses a new edge;, r1)
incident tor.

Consider the complete weighted directed gréfghon the same vertex set as the directed
treeT, and define weight of an edge to be 0 if this edge belongs to the directet drek
1 otherwise. Then the Hamiltonian Completion Problem for the graghequivalent to
Travelling Salesman Problem @y and the optimal value of TSP tour @y is equal to
the number of edges we need to add to make the directed grajatmiltonian. We now
prove an auxiliary lemma analogous to Lemma 2 about certain properties of the optimal
Hamiltonian cycles inGr. Denote byT1, ..., T, the subtrees generated by childrerr of
in T. (A child of r is any node connected withby a directed edge oriented either to or
fromr).

Lemma 3. For any tour of length H in aG7y which usessj,, siy = 0, 1 incoming and
sout sout= 0, 1 outgoing edges of weightincident to r(or in other words edges incident
to a root r in directed tree Ythere is a tour inGy of length at most H which also uses
sjn incoming andsgyt outgoing edges of weigltt incident to r and visits each subtree
T1, ..., T; exactly onesi.e. vertices of any subtreB, ..., T, form a contiguous segment
of Hamiltonian cycle inGr.

Proof. Indeed, if there are two such contiguous segmets= (iy...,i,) and P, =

(ig, ..., im) belonging to the same subtr@gand not connected by an edge in a Hamil-
tonian cycle then at least three out of four directed edges incident to this segments in a
Hamiltonian cycle have weight 1 since there is at most one edge of weight 0 incident to a
subtreel;. Assume, thati,, i p+1), (ig—1, ig) @and(i,,, im+1) are these edges. Therefore, for
Pio=ipi1,...,14-1, the part of the Hamiltonian cycle betwe@nand P,, and for Py =

im+1, - - - » 0, the part of the Hamiltonian cycle betweBsnand Py, the new tourPy, P2, P12,

P, has length at mogt since we took out three edg€$, ip11), (ig—1, ig) @and(iy, imt1)

of weight 1 and used instead edg€s.iy), (im.ip+1) and (iz—1,in+1) Of weight at

most 1. Repeating these procedure we get a Hamiltonian cydgrinvith the desired
properties. [

The following two propositions are analogous to Proposition 2 and 3.

Proposition 4. The optimal value of HCP problem on a directed forest is the sum of the
optimal values of HCP of its individual tree components

In the following proposition we assume a non-trivial case when the degree of the root
r in the treeT is at least 1. Also, the types of children of the root are assumed to be with
respect to the subtrees they generate.
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Proposition 5. Given a rooted directed tre€r’, r), letr1, ..., ry be the children of r and
let Ty, ..., T; be the subtrees emanating from them. Xg{ (Xout) be the set of children
connected with r by the edges incomingaatgoing from r. Then

1. If there is a childr’ € X;, of type(1, out) and a childr” € Xyt of type(d, in), then
(T, r) is type(0, in), (0, out and H(T) = —1+ Y4_, H(T).

2. If there is a childr’ € Xjp of type(1, out) and all the children inX gyt are type(0, in)
(by convention it includes the case wheggyt = ¥), then(T, r) is type(0, in), (1, out)
andH(T) =Y H(T;).

3. If all the children inXj,, are type(0, out) (or Xj, = ¥) but there is a child” € Xyt of
type(l, in), then(T, r) is type(d, in), (0, out) and H(T) = Zle H(T;).

4. Finally, if all the children inXj, are type(0, out) (or Xj = ) and all the children in
Xoutare type(0, in) (or Xout="9), then(T, r) is type(d, in), (1, out) and H(T) =1+
YL H(T).

Remark. As in the case of undirected graphs, the recursion above leads to a linear time
algorithm for solving HCP in directed trees.

Proof. We consider four cases from the claim of the proposition.

Casel: Assume that there is a child € Xj of type (1, out) and a child-” € Xgyt of
type (1, in). W.l.o.g. letr’ = r1 andr” = r, be these children. Lef, ..., C; be optimal
Hamiltonian cyclesitGr,,i =1, ..., d oflengthH (7;) such thatC1 has an edge of weight
1 outgoing fromry in 71 and C,; has an edge of weight 1 incoming &g in T,. Delete
these two edges frofi; andC,. Delete one arbitrary directed edge of length 1 from each
Co, ..., Cq_1. After that connect the path iy obtained fromCy with the path in7y
obtained fronC, by two edges of weight O through the root vertdguch edges exist since
r' € Xjp andr” € Xoyt) and connect remaining paths in any orderdoy- 1 edges of
weight 1 into a Hamiltonian cycle i 7. Clearly, these new Hamiltonian cycle has length
exactly—1 + Zle H(T;) since we deleted one edge of weight 1 from every subtree and
added exactlyl — 1 edges of weight one to the Hamiltonian cycle. One the other hand,
-1+ Zle H(T;) is a lower bound for every Hamiltonian cycle @iy, since, by Lemma
2 this Hamiltonian cycle must contain a Hamiltonian path for e&cbf length at least
H(T;) — 1 andd — 1 edges of weight 1 between subtrees. Moreover, we can achieve this
lower bound only if Hamiltonian path uses two edges of weight 0 incident to the toot
connect two subtrees. Therefore, pdit ) has typeg0, in) and (0, out).

Case2: Assume that there is a child € Xj of type (1, out) and all children inX gyt
have typg(0, in), assume that' = r1. Then deleting the edge of weight 1 outgoing frem
in C1, and arbitrary edge of weight 1 from each, ..., C4, connecting the Hamiltonian
path inCy with the rootr by the directed edge, r) of weight 0 and all other Hamiltonian
paths into one cycle bgt edges of weight 1 we get a cycle of length exa@[\f=1 H(T;).
To complete the proof we need to prove that

e There is no Hamiltonian cycle i&y of weight—1 + Zle H(T)).
e There is no Hamiltonian cycle i@y of WeightZ;’=l H (T;) which uses a directed edge
of weight 1 incoming ta.
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Assume on the contrary that there is a tQun G of weight—1 + Zle H(T;). Then
as we noticed in the previous paragraph it must use two edges of weight 0 incident to the
rootr. Let T; be the subtree connected by edge of weight 0 outgoing from the.rében
directed subpath through the subtfgen a cycleC cannot have length less thah(7;)
since otherwise connecting two endpoints of such path we will either get a tour of weight
less thanH (T;) or the tour of weight exactlyd (7;) but with edge of weight 1 incoming to
r; and then(T;, r;) would be of type(1, in) andr; € Xqut. Therefore, we have at least one
subtre€el; which contributesd (T;) to the length ofC. By adding at leasH (7;) — 1 for all
other trees and — 1 to connect all subtours into one Hamiltonian cycle we get that the tour
length is at IeasEf’:1 H(T;). Contradiction.
Using the same argument we can show that there is no Hamiltonian €yinl&  of
weighth=1 H (T;) which uses a directed edge of weight 1 incoming tsssume that there
is such a cycl€. Then it must use the edge of length 0 outgoing frosince otherwise the
weight of C will be at least 1- Zfl:l H (T;). Applying previous argument we get that there
is at least one subtreég whose contribution to weight df is at leastH (7;). By adding
at leastH (T;) — 1 for all other trees and to connect all subtours and the raanto one
Hamiltonian cycle we get that the tour length is at leasgt Ele H(T;). Contradiction.
Case3: We omit the proof for this case since it is completely symmetric to the Case 2.
Cased: Assume that all children i, are of type(0, out) and all children inX gyt are of
type (0, in). We can easily obtain a Hamiltonian cycleGry by deleting one edge of length
oneineaclC;,i =1, ..., d addingd + 1 edges of weight 1 and connecting resulting paths
andr into Hamiltonian cycle inG 7. Clearly, the length of this cycle is & Zle H(T;)
and it has edges of weight 1 incoming to and outgoing fraand therefore, what we need
to show is that there is no Hamiltonian cycle @iy of length Zle H(T;) or less. The
argument is very similar to the one in the previous cases. Assume that there is a tour of
length smaller than % Zflzl H(T;). It cannot have two edges of weight 1 incidentrto
since otherwise this cycle has the weight at Ieasthlzl(H(T,-) — 1) +d — 1. Suppose
it has exactly one edge of weight 0 incidenttd.et 7; be a subtree connected by this edge
with the root and assume thate Xj,. The subpath of Hamiltonian cycle in this subtree
must have the length at lea8i(7;) sincer; has typg0, out) and therefore adding (7;) — 1
for all other subtrees andledges of weight one to connect subtours in different subtrees
we get 1+ Zle H(T;), again. Finally, if there are two edges of weight 0 incident o
a Hamiltonian cycle then lef, and7; be subtrees connected by these edges with the root
r. Therefore, they will contributéf (7;) and H (T;) to the length of the Hamiltonian cycle
plus H (T;) — 1 for all other trees and — 1 to connect all paths in subtrees into one cycle.
Again, we obtain & Y, H(T;). O

The following symmetry property will be useful in analyzing the random instances of
HCP.

Proposition 6. Given a directed rooted tre€T’, r) consider the tree7’, r) obtained by
reversing the direction of every edge in T. Then the optimal value of the HCP for T and
are the same andnoreover an optimal solution forT’ can be obtained from an optimal
solution for T by reversing the directions of all the newly added edges. Firfatlgvery

s =0,1,if (T, r)is type(s,in) ((s, out)), then(7, r) is type(s, out) ((s, in)).
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Proof. The proof follows immediately from the definition of HCP and types.

3. Hamiltonian completion of a Poisson tree
3.1. Undirected graphs

One of the classical results of the theory of random graphs states that, w.h.p., a random
graphG (n, c/n) for ¢ < 1 consists mostly of disconnected trees and some small cycles, with
only constantly many nodes belonging to cydlgs In other words, w.h.p., a nodevhich
is selected randomly and uniformly from the set of all nodes, belongs to a component which
is a tree. Moreover, if we takieas a root of this tree, each node of this tree has outdegree
distributed according to a Poisson distribution with paramefgienoted Poig)), in the
limit asn — oo. Namely, ifj is any node of this tree, thgrhask >0 children with the
probability (c* /k!)e=¢, in the limit asn — oo. Then the expected outdegree for each node
is c and the expected size of this tree ig-T 4+ 2 + ... =1/(1—¢).

Motivated by this, in the present section we analyze the Hamiltonian completion of a
random Poisson tre&—a randomly generated tree with outdegree distribution (Ppis
Whenc < 1 such a Poisson tree is finite with probability one and therefore its optimal value
of the HCP is also finite, with probability one. LBt= H (T') denote the optimal (random)
value of the HCP of a Poisson trdewith parameterc. Let alsoN = N(T) denote the
number of nodes in the Poisson tfeeand lett € {0, 1} be the type of this tree. We denote
by go(x, y) andg1(x, y) the generating function of the joint distribution @¥, H), when
the root of the tree is type 0 or type 1 respectively. That is

go(x.y)= > x"y"ProbN=m, H=h.t=0), (14)
m>=1h>1

g1(x, y) = Z x"y"ProfN =m, H = h,t = 1}. (15)
m=21h>1

The summation starts with>1 since, by assumption, Hamiltonian completion of an
isolated node is 1. Given an arbitrary two-dimensional random varialite 22 with a
generating functiomz (x, y) = > _ ., <o X" ¥"Prob(Z = (m, h)}, observe then, that
the deterministic variables= (1, 1), Z=(1, 0) andZ = (1, —1) have generating functions
xy,x andx/y, respectively. The following fact is a classical result from the probability
theory.

Proposition 7. Let Z1, ..., Z; € 22 be independent random variables with generating
functionsgz, (x, y), ..., gz (x, y), respectively. Then the generating functign(x, y) of

Z=3%h<j<iZiis[licj<i8z:(x, ).
We now state and prove the main result of this subsection.

Theorem 4. The generating functiong = go(x, y), g1 =g1(x, y) defined in(14)and(15)
satisfy the functional equatiorf®), (3) and the functional inequaliti4), for all 0 < ¢ < 1,
x,y € [0, 1].
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Proof. The inequality (4) follows from

go(x.y) +g1(x.y)= Y x"y"ProtN =m, H=h)

m>=1h>1
< Y ProbN=m H=h}=1.
mh>1
We now prove (2), (3). Letandry, ..., rx denote the root and the children of the root of

our Poisson tree with parametgrespectively. Lelv, H, r denote the number of nodes, the
HCN and the type of the root noderespectively. Also leN;, H;, t; denote the number of
nodes, HCN and the type of the rooted subttEer;), generated by nodes, respectively,
fori =1,2,..., K, assumingk > 0. WhenK = 0 these quantities are not defined. Then
N=1+ Z,-K:l N;. Note, that conditioned oK = k > 0, each triplet(N;, H;, t;) has the
same distribution a&V, H, t), and, moreover, these tripletd;, H;, t;) have independent
probability distributions. Whek = 0, we have by conventioN =1, H =1 andr = 1. We
now fix k£ > 0 and condition on the evet = k. We will consider the casg& =0 later. We
have,K = k, with probability (c*/ k!)e~. Let pg (p1) be the probability that the roothas
type 0 (1). We consider the following cases:

1. t; = 0 for all 1<i<k. This event occurs with probability(’g. In this case, applying
Theorem 3H =1+ Y _, H; andr = 1. We also have/ =1+ "X | N;. Thus, condi-
tioning on this event we hawev, H) = (1, 1) + Zf-‘zl (Ni, H;). Applying Proposition
7, and recalling that the generating function of the deterministic véttdy is xy, we
obtain

ga1x, K =k,t1i=tr=---=t=0)
=xy [] eolx.ylti=0)=xygh(x, ylt=0). (16)
1<i<k

The last equality follows from the fact that the generating functigiconditioned on
the event that the treg is type 0 is the same for all childres, . . ., r; and is the same
as the generating functigg of the entire rooted tre€ conditioned on the type= 0.
Moreover, in this casgo(x, y|K =k, 11 =--- =1, =0) =0, since, from Proposition 3,
the rootr is type 1.

2. tji,=1,1,=0,i # igfor someip. This event occurs with probabililgplpé_l.Then, from
Theorem 3 we havél = 3", H; andr = 1. Thus(N, H) = (1,0) + Y5, (N;, H)).
Using Proposition 7 we obtain

g1, VK =k, tip=1,1; =0, # io) = xg1(x, y|t = Dgg *(x, y[r =0). (17)

Again, in this casgo(x, y|K =k, tj, =1,4, =0, i # ip) =0.
3. There exists exactly>2 children for whicht; = 1. This event, which we denote by
E;, occurs with probability(’;.) p{pé‘j. Note that this event can only occur when

k>2.From Theorem 3 we havé = -1+ Zle H; andr = 0. Using Proposition 7 we
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obtain
x i
sobe.yIK =k Ej =" g1(x, ylt =Dgg ' (x, ylt =0) (18)
andgi(x, y|K =k, E;) =0.

If K =0, which occurs with probability &, we have by definitiotv =1, H =1,7r=1.
Thengi(x, y) =xy andgo(x, y) =0. We now combine this with (16)—(18) and uncondition
the eventk = k to obtain

k
- c - k k
g1(x,y) =xye “ + E € “(xygo(x, ylt =0)pg

k>1
+xgr(x, ylt = DgdHx, ylt = Okpapg ™, (19)
k
ko x e k i
gox,y) =Y s ‘ Z ~g1(x, ylt=1gq ’(x,y|t=0)<j)lﬂipo !
k>2 2< <k

(20)

Note, thatgo(x, y|t = 0)po = go(x, y) andgi(x, y|t = 1)p1 = g1(x, y). Using binomial
expansion for the (20), we obtain that

Y eleyl =D ye=0) (L) plpg
2<j <k
= (g0(x, ¥) + g1(x, Y)F — gb(x, y) — kg (x, )gg t(x, ).
Then we obtain from (19), (20)
gilx,y) = Xyecgo(x’y)_c + xcg(x, y)ecgo(x’y)_c (21)

and

k
go(x. y) =§ > T € (g0l y)+ga(r, 3 —gh(x. y)—kga (. y)gh H0x. 1)
k=2

X . . N~ _ —C
= = (e80TI _a™¢ _ ¢(go(x, ¥) + g1(x, )€ )

X . . . N
-3¢ NN _e7¢ _ cgo(x, y)e )

X
— = ega(x, y)(eF T — g7
y

X , X X
= 5 ecgo(x,y)+cg1(x,y)—0_; ecgo(X»y)—C_; cgq(x, y)esoxn=c, (22)

We rewrite the results as

_xyngO(x’y)_c
gl(-xa )’) - l—_ xce‘go(x’y)_c ]

(23)

go(x, y) = ’;C e80(E )¢ (8105) _ 1 _ ¢ (x, ). (24)

This completes the proof of the theorent]
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3.2. Directed graphs

We now analyze the case when our randomly generated tree is a directed graph. The setup
is the same as in Subsection 3.1, except for every edge is directed. The direction is chosen at
random equiprobably from each of the two possibilities and independently for all the edges
and independently from other randomness in the tree. As in the undirected\Vcages
denote the number of nodes, the value of the Hamiltonian completion and the type of the root
of the tre€T, respectively, and/;, H;, t; stand for the same for children of the root. Again we
haveN=1+}". N;. The type takes one of the four valugg, 0), (0, 1), (1, 0), (1, 1) which
are short-hand notations f@o, in), (0, out)), ((0, in), (1, out)), ((1, in), (0, out)), ((1, in),

(1, out)), respectively.

For every pair(v, w) € {0, 1}, let p,,, denote the probability that the rophas type

(v, w). Also for every(v, w) € {0, 1}° we introduce the generating function

gl )= Y x"Y'ProfN =m, H=h,1= (v, w)}. (25)
m=1h=>1

From Proposition 6 and since the two directions of each edge are equiprobable, it follows
thatgoi(x, y) = g10(x, y), As in Subsection 3.1, our next goal is deriving equations which
bind the three generating functions.

Theorem 5. The generating functiongo(x, y), go1(x, ¥), g11(x, y) satisfy the functional
Eqgs.(7), (8), (9),for all x € [0, 1], y € (0, 1] and the functional inequalit{10).

Proof. Letr andry, ..., rg denote the root and the children of our random ffewith
the possibilityk = 0. Conditioned ork = 0, we have, by convention from Subsection 2.2,
g11(x, y|K =0) =xy andg,, (x, y|K = 0) = 0 for all othervw € {0, 1}.

We now fixk > 0 and consider the evekt=k. Further, we fixc1, ko >0 withk1 +ky =k
and consider the evehXjn| = k1, | Xoutl = k2. These two events occur with probability
(ck/khe < (kﬁ) 2. Furthermore, for every paiw, w) € {0, 1}2, consider the event that
the number of nodes iXjn, (Xout) of type (v, w) (the type is with respect to the generated
subtrees) igiN (jOUY. This event occurs with probability

in  .in  .in  .in out .out out out P"w e, (26)
(Joo Jo1 Jio Ji1 Joo Joi  J10 l_[

were for any non-negative integews, a1, az, az, aq, With a1 + a2 + asz + ag =
a . .
a, (al 0 a3 a4) denotes the standard combinatorial tertias!az!azlas!).
Next we consider four cases corresponding to the cases in Proposition 5. The argument

is very similar to the one in the proof of Theorem 4.

1. ]01 + ]11 >0, jout joUt. 0. Applying Proposition 5t is type (0,0), H = —1+
Zlglng,, and using Proposition 7 the corresponding conditioned generating
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function satisfies

X in__out
goox, yly == ] ei™™ (x,ylt = (v, w) (27)
v,w=0,1

andng(x y|-) =0 for all (vw) # (0, 0).
2. ji0 4 N~ o, jOuty jOUt_ o Thenr is type(0, 1) and

ou
g,y =x [] R = 0wy (28)
v,w=0,1

andng(x y|-) =0 for all (vw) # (0, 1).

3. jiN4 N —o, jOUty ;0Ut. o The analysis of this case is skipped since it corresponds
to computlngglo(x v), which is equal t@o1(x, y), as we observed above.

4. ji0 4 ;0 —o, jOUty ;OUt_ o Thenr is type(l, 1) and

0]

Q! (x, ylt = (v, w)) (29)

gnC,yl)=xy [] e
v,w=0,1

andg,, (x, y|-) =0 for all (vw) # (1, 1).

Next, we combine these equations to obtain defining,Qrix, y). For convenience, itis
easier to start witlg11(x, y). From (26) and (29) and recalling1(x, y|K = 0) = xy, we
obtain

k
_ —C [ S —k
guilx,y) =xye " + E o e (kl) 27 xy E ,

k=ki+kp>1 . .
1z JU'Q JRUthll? J:I%Ut:]J(.JIUtZO

ko )( ko )
N N .In N .out out -out .out
(Joo Jo1 Jio Ji1 Joo Joi  Jio J11
in out in, .out

L'Il+ 1U)+11L

< TT el gy ™ @yl = v w)).

v,w=0,1

We haveg,, (x, y|t = (v, w)) pyw = guw (x, ¥). Cancellingk!, k1!, k2! and using elementary
computations, we obtain

k
1
guilx, y) = Z & Cﬁ xy(2800(x, ¥) + g10(x, ¥) + goa(x, y)*
k=0
— xyec(Zgoo(x,y)+g10(x,y)+g01(x,y))/2—c_

We do_a similar computation fogo1 using (28). The sum corresponding to constraints
j('ﬂ +j11 >0, jo ”t+]°Ut O we representas a difference between the sum corresponding
to just jOUL4 jOUt_ ¢ and]01 + =0, jout ;out_ o, Simplifying as we did fog11,
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we obtain

k

1
go10x, ) = D -5 € rxl(2g00(x, ¥) + 2g01(x, ¥) + g10(x, ¥) + g1a(x, )"
k=1

— (2800(x. ¥) + go1(x, ¥) + g10(x, y))*]
— xec(2800(x,y)+2g01(x, y)+g10(x,y)+811(x,))/2—¢

— xe(@goolx,y)+go1(x,y)+g10(x.))/2—¢

To computeggp hote that the condltlor)01 + ]11 Jl out 4 ]°“t> 0 impliesk>2 The
SUMY_ in out, jingjin jout, jout o We representag,m jout=2.in sout; in_

Jow s Jow ]10 fvw Jow 0
Zhw n.jout;out_jout + th jout in_in_;out_;out_q Applying (27), we
obtain
ok o 1x k
goolx, )= D € 2% 5 L(28000x. ) + 2g01(x. ) + 2g10(x. ¥) + 2g11(x. 3))
k=2

— (2g00(x, ¥) + 2g01(x, ¥) + g10(x, ¥) + g11(x, y)*
— (2g00(x, ¥) + go1(x, ¥) + 2g10(x, ¥) + g11(x, y)*
+ (2g0o(x, ¥) + go1(x, ¥) + g10(x, Y)"1.

The terms in the right-hand side correspondingkte- 0,1 are equal to zero. There-
fore,

goo(x, y) = X ac(2g00(x.y)+2801(x.y)+2810(x.y)+2g11(x.Y)) /2—¢
y
_r ¢ (2g00(x, y)+go1(x, y)+2g10(x, y)+811(x,))/2—¢
y
2 gc(2go0(x,y)+2g01(x, y)+810(x, y)+g11(x, ) /2—c¢
y

4 X e¢(2g00(x, ¥)+go1(x,y)+g10(x,y))/2—¢ O

4. Hamiltonian completion of a random graph G (n, ¢/n)

In this section we complete the proof of Theorem 1. We do this by relating the HCP on
G(n, c/n) to the HCP on Poisson trees and applying the results of the previous section.
Let T denote a random Poisson tree, introduced in the previous section. As béfdier
denote the number of nodes, Hamiltonian completion and the type Tfie proposition
below relates the HCP on a sparse random gi@ph c¢/n), c <1 to the HCP on a tree
T. The statement and the derivation below applies to both the undirected and the directed
cases. We will indicate the distinctions when appropriate. We recallHltat ¢) denotes
the HCN of G (n, ¢/n).
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Proposition 8. The following convergence holds as»> oo:

E[H (1, )] _ i E[H|N = m]ProbN = m} _

n m
m=1

00, (30)

where the expectation and the probability on the right-hand side are with respect to the
(undirected or directedrandom Poisson tree. T

Proof. We decomposé& into its connected (weakly connected in case of directed graphs)
components. Denote the tree component§hyy. ., Tx and letP be the union of all non-
tree components. We know that the expected number of nodessirO (1). As a result
H(P) = 0(1). For every node =1, 2, ...,n, if i belongs to a tree component, denote
the component by (i). Otherwise sef'(i) = . By convention we puf (4) = 0. From
Propositions 2, 4,

HG)= Y H(T)+HP)= Y. [Z H(Tt)1{|Tt|=m}:|+H(P)

1<r<R 1<t<R Lm=1

_ Z Z H(T )T G) =m|} L HP), (31)

i=1 m=1 m
where we simply decompose the sum into the parts corresponding to the same size of the
tree, and in the last equality the division imcomes from the fact that each node of the tree
was counteantimes. After taking expectations and using symmetry we obtain
" FH(TW)LY|T Q)| =
fH Gy =n Y AHATOIMTAI=m 4 )

m

m=1

since the valu€[H (T (1)1{|T (1)| = m}] = E[H (T (1)||T (1)| = m}IProk(|T (1)| = m) is

the same for all nodeis But, w.h.p., the component containing node 1 is a tree, and, in
particular, it is a Poisson tré®(1), in the limit asn — oo. Therefore, its number of nodes,
Hamiltonian completion and type are distributed\asH, ¢ of a random Poisson tree with
parametex, introduced in the previous section. It now remains to show that the infinite
sum in the right-hand side of (30) is finite. Note that, trivially, for any ffeéf (T) <|T|.
Then

EIHUN =m}] ProbN = m)

As a result, the partial sum in (30) starting from= mg is at most ProfV >mgo}. We
know that the expected size of a Poisson tree/{d + ¢) < co. Using Markov inequality,
Pro N >mo}<1/((1 — ¢)mg), which converges to 0 agg increases. This completes the
proof.

We now complete the proof of Theorem 1 by expressing the sum in (30) through the
generating functiong(x, y), g(x, y) defined by (11) corresponding to the pé¥, H).
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Note that
glx,y)= Z x"y"ProblH = h, N = m},
glx,y)= Z x”’yhProb{H =h, N =m},

although they are not equal since the distributiorHois different in the undirected in
directed cases. Nevertheless, the remaining part of the proof is identical for both cases
and, therefore, we only consider the undirected case corresponding to generating function
g(x,y). The sumin (30) is equal to

ii ProkiH h,N = m} (32)

Functiong (x, y), g(x, y) when defined overf x, y <1 are uniform limits of polynomials,
and, as such, are infinitely often differentiable in this domain. Differentiating function
g(x, y) with respect tyand interchanging the order of summation and integration we obtain
0g(x, y)/0y=2_, n=1hx™y h=1pro N =m, H = h}. We now divide this function by to
obtain(1/x)(@g(x, y)/8y)=3_,, 41 hx™~y"~*ProffN=m, H=h}. For alarge constant
C>0wehave),, > hx" 1y ProfN=m, H=h}<Y ), - hProdH =h} — Oas

C — 00, sinceE[H]< E[N] < oo. Therefore, thefunctio[m,,@1hx’”‘1yh—lProb{N:

m, H = h} is also a uniform limit of its partial sums. Interchanging the integration and
summation we obtairfi(1/x)(0g(x, y)/0y) dx=>, 151 (h/m)x™ y"~IProt{N =m, H =

h}. Forx =y =1, the value of this function is exactly the right-hand side of(32). Since the
value of this function is 0 when = 0, we sety = 1 and obtain

/1 103g(x, y)
o x 0y

The left-hand side of this equation is the integral in (12). This completes the proof of
Theorem 1. O

dr= Y (h/m)ProN =m, H = h}.

y=1 mh>1

5. Numerical computations

This section is devoted to numerical computations of the integral in the right-hand sides of
(12), (13). We only do the computations for the case of undirected graphs. The computations
for the case of directed graphs is similar, except for we check, in addition, the uniqueness
of the solutions to (7), (8), (9), (10).

Fixing 0 < ¢ < 1, we perform the following computations. Welet={i /K,i=1,..., K}
andY ={i/K,i =1, ..., K} be the set of points of discretized the interf@l1] where
K is some large integer (we tooK = 1000). To compute (12) we compute functions
go(x, y), g1(x, ) using functional equations (2), (3), on a discretized unit square)

X x Y. The numerical computations g§, g1 is straightforward from (2), (3). We also check
that inequality (4) is satisfied (which is guaranteed by Proposition 1) Fldnel displays
the solution of the system of equations (2), (3) and inequality (49 £010.9.
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Function g(x,y)

0 o

Fig. 1. Generating function for the valee= 0.9.
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Fig. 2. The value of the HCN for different valuesof

For eachr € X we approximately compute the value of derivatiggx, y)/0y fory=1
using formula

K-1
g(x,l)—g(x, K )

1/K
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Next we define a step function

& (o0 1) K-1 . 1) K-1
8(x, sl —¢ :Kzgx, L
i/K i
forx e [(—1)/K,i/K]andi=1, ..., K. This function approximates/t (0g(x, y)/0y).

Then the integral of interest is approximately equal toﬁj‘ng‘(x) dx and can be computed
by the formula

K—1
g(x,l)—g<x, >

K
K?. : K

Fig. 2 shows values of the integral for various valuescdfetween 0 and 1. The value
approaches.07 asc approaches 1.

fx) =
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