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Abstract

Given a (directed or undirected) graphG, finding the smallest number of additional edges which
make the graph Hamiltonian is called the Hamiltonian Completion Problem (HCP).We consider this
problem in the context of sparse random graphsG(n, c/n) onn nodes, where each edge is selected
independently with probabilityc/n. We give a complete asymptotic answer to this problem when
c <1, by constructing a new linear time algorithm for solving HCP on trees and by using generating
function method. We solve the problem both in the cases of undirected and directed graphs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and the main result

Consider a (undirected or directed) graphG onn nodes. How many extra edges, which
are not originally present in the graph, do we need to add in order the make the graph
Hamiltonian? This is called the Hamiltonian Completion Problem (HCP), and the minimal
number of extra edges is defined to be the Hamiltonian Completion Number (HCN). Hamil-
tonicity itself is then a decision version of this problem—the problem of checking whether
the optimal value of HCP is zero. In particular, HCP problem is NP-hard. Several papers
studied HCP problem in various graphs with some special structures, for example trees and
line graphs of trees[1,6,5,3,10]. Specifically, a linear time algorithm for computing HCN
was constructed by Goodman et al.[6] for the case of undirected trees.
To the best of our knowledge HCP was never studied in the context or random graphs.

To the contrary, Hamiltonicity was investigated very intensively in a variety of random

E-mail addresses:gamarnik@watson.ibm.com(D. Gamarnik),sviri@us.ibm.com(M. Sviridenko).

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.05.001

http://www.elsevier.com/locate/dam
mailto:gamarnik@watson.ibm.com
mailto:sviri@us.ibm.com


140 D. Gamarnik, M. Sviridenko /Discrete Applied Mathematics 152 (2005) 139–158

graph models, starting from a classical work by Beardwood et al.[2] on optimal Travelling
Salesman tours in random planar graphs. We refer the reader to Frieze and Yukich[4] for
a very good survey on this subject. One of the most interesting results in this area was
obtained by Posa[9]. Solving a problem, which was open for 20 years, he showed that the
random graphG(n, c/n), where each edge is selected independently with probabilityc/n,
is Hamiltonian whenc�16 logn. Komlos and Szemeredi[8] later tightened this bound
by proving Hamiltonicity forc = logn. Essentially they showed that, asc is increasing
the random graph becomes Hamiltonian with high probability (w.h.p.) precisely when its
minimal degree becomes two, w.h.p., which occurs at the thresholdc= logn. Interestingly,
random regular graphs with degree at least three are Hamiltonian w.h.p.[7]. An interesting
open problem remains determining the threshold for Hamiltonicity in random subgraphs of
a binary cube{0,1}n, where edges between pairs of nodes with Hamming distance 1 are
included with probabilityp, and between all other pairs with probability 0. It is conjectured
that the threshold value isp = 1

2.
In this paper we study HCP problem in the context of sparse undirected and directed

random graphsG = G(n, c/n) on n nodes, where, in the undirected case, every edge
(i, j), i, j�n is included with probabilityc/n, independently for all edges, andc <1 is
some fixed constant. For the directed case, we take our undirected random graphmodel and
give every edge a random orientation, with equal probability1

2. Again we assumec <1.
It is well known [7], that such random graphs are disconnected w.h.p. Moreover, w.h.p.,
most of the (weak) components of this graph are trees. We obtain a complete asymptotic
solution of HCP in these graphs, asn → ∞. It is easy to see thatE[H(n, c)]=�(n), where
H(n, c) denotes the optimal value of the HCN andE[·] is the expectation operator. Indeed,
E[H(n, c)]=O(n), since we can simply plant a Hamiltonian tour. On the other hand, w.h.p.
there exists linearly many isolated nodes[7]. As a result, we need at least�(n) extra edges.
In this paperweprove theexistenceand compute the limit of limnE[H(n, c)]/n. Ourmethod
of proof is based on constructing a new and simple linear time algorithm for solving HCP
on trees. In the case of directed trees, our algorithm is, to the best of our knowledge, the
first algorithm for solving HCP on directed trees. As we mentioned above, such algorithms
exist for undirected graphs, and some of them have linear complexity. Yet we found that
these algorithms are not useful for the analysis of HCP in random graphs. Our algorithms
turn our to be far more amenable for the analysis of random instances, thanks to certain
recursive properties.
In order to state our main theorem, we need the following technical result.

Proposition 1. Fix an arbitrary valuec ∈ (0,1). For every pair 0�x <1,0�y�1
satisfying

1�y� max

{
1− xe−c

2
,
1+ x

2

}
(1)

the system of equations and inequalities in variablesg0, g1�0:

g1 = xyecg0−c

1− cxecg0−c
, (2)
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g0 = x

y
ecg0−c(ecg1 − 1− cg1), (3)

g0 + g1�1 (4)

has exactly one solution.

Proof. The existence of a solution will follows from the developments in later sections,
where we show that a generating function of a certain two-dimensional random variable
satisfies (2), (3), (4). We now prove uniqueness. Rewrite the Eq. (2) as

g1 − g1cxe
cg0−c = xyecg0−c (5)

and add to (3) multiplied byy to obtain

g1 + yg0 = xecg0+cg1−c − x(1− y)ecg0−c

which we rewrite as

g0 + g1 = xecg0+cg1−c − x(1− y)ecg0−c + (1− y)g0.

We introduce an independent variablet=g0 and consider a functionh(t) implicitly defined
by

h(t)= xech(t)−c − x(1− y)ect−c + (1− y)t . (6)

The functionh(t) stands forg0 + g1. Our first claim is that for all 0� t�1 there exists
exactly one solutionh(t) satisfyingh(t)�1, that is satisfying inequality (4). Indeed, the
left-hand side of (6) is a linear function ofh = h(t) taking values 0 and 1 whenh = 0,1
respectively. The right-hand side is a convex function ofh. Whenh= 0, its value isxe−c −
x(1− y)ect−c + (1− y)t�xe−c − x(1− y)�xe−c − (1− y)>0, by assumption (1). On
the other hand, whenh= 1, the corresponding value is at mostx + 1− y, which is strictly
smaller than 1, sincex <1 and therefore by assumption (1),y�(1+x)/2>x. Thus, indeed
there exists exactly one solutionh(t)�1 for all 0� t�1.
The rest of the argument is structured as follows. We obtained that each value ofg0

uniquely specifies the value ofg1 via g1 = h(t) − t = h(g0) − g0. We will show that,
moreover,g1 = h(t)− t is a decreasing function ofg0 = t . On the other hand observe that
(5) uniquely specifiesg1 as a function ofg0, and, moreover, this function is non-decreasing.
Therefore these two functions ofg0 can have at most one intersection, and the proof would
be completed.
Our next claim is that the functionh(t) satisfiesḣ(t)<1. This implies that the function

h(t)− t is strictly decreasing, and we would be done. Differentiating both sides of (6) and
rearranging we obtain

ḣ(t)(1− xcech(t)−c)= −x(1− y)cect−c + (1− y)�1− y.

Therefore

ḣ(t)� 1− y

1− xcech(t)−c
� 1− y

1− x
<1,

sincec <1, h(t)�1 and by (1),y >x. This completes the proof.�
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We will show later that the unique solutiong = g0 + g1 is in fact a generating function
of some two-dimensional random vector, corresponding to the HCP in undirected random
graphs. The corresponding sequence of equations and inequalities for directed random
graphs involves variablesg00, g01, g11 and is as follows:

g11= xyecg00+cg01−c, (7)

g01= xecg00+
3c
2 g01+ c

2g11−c − xecg00+cg01−c, (8)

g00 = x

y
ecg00+2cg01+cg11−c − 2x

y
ecg00+

3c
2 g01+cg11−c + x

y
ecg00+cg01−c, (9)

g00 + 2g01+ g11�1. (10)

Like in the undirected case, we will show that a certain generating function satisfies
these equations and inequalities. Therefore, this system has at least one solution for each
0<c<1, 0�x <1, 0�y�1. We were not able, unfortunately, to prove the uniqueness
of the solution, but our numerical computations do show the uniqueness. We leave the
uniqueness as an open question.
Wedefine functionsg0(x, y), g1(x, y)andg00(x, y), g01(x, y), g11(x, y)as theunique

solutions to the systems of equations and inequalities (2), (3), (4) and (7), (8), (9), (10)
respectively, (uniqueness conjectured in the second case) and let

g(x, y) ≡ g0(x, y)+ g1(x, y), ḡ(x, y)= g00(x, y)+ 2g01(x, y)+ g11(x, y).(11)

The main result of the paper is stated below.

Theorem 1. For c <1, the optimal value of the HCP for an undirected random graph
G(n, c/n) satisfies

lim
n→∞

E[H(n, c)]
n

=
∫ 1

0

gy(x,1)

x
dx, (12)

wheregy(x, y)=[�/�y]g(x, y).For a directed randomgraphG(n, c/n) the corresponding
value satisfies

lim
n→∞

E[H(n, c)]
n

=
∫ 1

0

ḡy(x,1)

x
dx, (13)

whereḡy(x, y)= [�/�y]ḡ(x, y). Both partial derivatives and integrals exist and are finite.

Observe that the value of[�/�y]g(x, y) for y=1 is completely determined by the values
of the functiong(x, y) in the region wherey is closed to the unity. This region, in particular,
is covered by the region specified by the constraint (1). This is why for the purposes of
solving the HCP, the uniqueness within the region (1) suffices.
The value of the integrals above can be computed approximately by numerical methods.

We will report the results of computations in Section 5. The rest of the paper is organized
as follows. In Section 2, we analyze HCN of a fixed deterministic tree. Two subsections
correspond to the cases of undirected anddirected graphs.Weobtain a linear timealgorithms
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for the optimal values of HCP in trees and we show that the optimal value of HCP for a
forest is the sum of the optimal values of its individual trees. In Section 3 we use a classical
fact from the theory of random graphs that a given fixed node of a random graphG(n, c/n)

belongs w.h.p. to a component which, in the limit asn → ∞, is a random Poisson tree.We
obtain an exact distribution of the optimal value of HCP of a random Poisson tree, via its
generating function.We use this result in Section 4, to complete the proof of Theorem 1. In
Section 5 we provide numerical results of the computing the limits (12), (13).

2. Hamiltonian completion of a tree

2.1. Undirected graphs

Let T be a non-random tree with a selected rootr ∈ T . We denote byH(T ) the HCN
of T. Note, that there are possibly several solutions which achieveH(T ). We say that the
rooted graph(T , r) is type 0, if foreveryoptimal solution, both edges incident tor in the
resulting Hamiltonian tour belong toT. Otherwise, the pair is defined to be type 1. We also
define the rootr to be type 0 (type 1), if(T , r) is type 0 (type 1). Any isolated nodei is
defined to be type 1, andH(i), for convenience, is defined to be 1, by definition.
An example of type 0 tree is a pathT = (r1, r2, . . . , rt ), wherer is any internal node

ri,2� i� t −1. Indeed, the HCN for this graph is 1—add edge(rt , r1), and this is a unique
optimal solution. The resulting Hamiltonian tourr1, r2, . . . , rt , r1 (or the reverse tour) uses
edges(ri−1, ri), (ri , ri+1) incident tor = ri , both of which belong to the tree. On the other
hand ifr = r1 (r = rt ), the pair(T , r) is type 1, since the generated tourT uses a new edge
(rt , r1) incident tor.
Consider the complete weighted graphGT on the same vertex set as the treeT, and define

weight of an edge to be 0 if this edge belongs to treeTand 1 otherwise.Then theHamiltonian
Completion Problem in treeT is equivalent to the Travelling Salesman Problem in graph
GT and the optimal value of a TSP tour inGT is equal to a number of edges we need to
add to make graphT Hamiltonian. We now prove an auxiliary lemma about a property of
the optimal Hamiltonian cycle inGT . Denote byT1, . . . , Td the subtrees generated by the
childrenr1, r2, . . . , rd of r in T.

Lemma 2. For any tour of lengthH in aGT which usess=0,1,2edges ofweight0 incident
to r (in other words edges incident to the root r in T) there is a tour inGT with length at most
H, which uses s edges of weight0 incident to r and visits each subtreeT1, . . . , Td exactly
ones, i.e. vertices of every subtreeT1, . . . , Td form contiguous segments of the Hamiltonian
tour inGT .

Proof. Indeed, if there are two such contiguous segmentsP1 = (i1, . . . , ip) and
P2 = (iq, . . . , im) belonging to the same subtreeTi and not connected by an edge in
a Hamiltonian cycle then at least three out of four edges incident to this segments in a
Hamiltonian cycle have weight 1 since there is at most one edge of weight 0 incident to
a subtreeTi . Assume, that(ip, ip+1), (iq−1, iq) and(im, im+1) are these edges. Therefore,
for P12 = ip+1, . . . , iq−1, the part of the Hamiltonian cycle betweenP1 andP2, and for
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P21 = im+1, . . . , i0, the part of the Hamiltonian cycle betweenP2 andP1, the new tour
P1, P2, P12, P21 has length at mostH since we took out three edges(ip, ip+1), (iq−1, iq)

and(im, im+1) of weight 1 and used instead edges(ip, iq), (im, ip+1) and(iq−1, im+1) of
weight at most 1. Repeating these procedure we get a Hamiltonian cycle inGT with the
desired properties.�

In the following result we related the optimal values of HCP on trees and forests.

Proposition 2. The optimal value of HCP on a forest is the sum of the optimal values of
HCP of its tree components.

Proof. The proof is almost exactly the same is of Lemma 2 above. We show that there
exists an optimal tour which visits each component of the forest exactly ones.�

The proposition below is the key technical result of this subsection. Here we assume a
non-trivial case when the degree of the rootr in T is at least 1.

Proposition 3. The following holds:

1. If there are at least two pairs out of(Ti, ri),1� i�d which are type1, then the pair
(T , r) is type0 andH(T )= −1+ ∑d

i=1H(Ti).
2. If exactly one of the pairs(Ti, ri) is type1, then(T , r) is type1andH(T )=∑d

i=1H(Ti).
3. If all of the pairs(Ti, ri) are type0, then(T , r) is type1 andH(T )= 1+ ∑d

i=1H(Ti).

Remark. An immediate corollary of the recursion above is a linear time algorithm (in size
n of the tree) for solving HCP on trees.

Proof. We consider the three cases from the claim of the proposition.
Case1: Assume that there are at least two pairs out of(Ti, ri) which are type 1. W.l.o.g.

let T1 andTd be two of these trees. LetC1, . . . , Cd be optimal Hamiltonian cycles inGTi ,
i = 1, . . . , d of lengthH(Ti) such thatC1 andCd have edges of weight 1 incident tor1
andrd . Delete these two edges fromC1 andCd . Delete one arbitrary edge of length 1 from
eachC2, . . . , Cd−1. After that connect the path inT1 obtained fromC1 with the path inTd
obtained fromCd by two edges of weight 0 through the root vertexxand connect remaining
paths in any order byd−1 edges of weight 1 into a Hamiltonian cycle inGT . Clearly, these
new Hamiltonian cycle has length exactly−1+ ∑d

i=1H(Ti) since we deleted one edge of
weight 1 from every subtree and added exactlyd−1 edges of weight one to theHamiltonian
cycle. One the other hand,−1+∑d

i=1H(Ti) is a lower bound for every Hamiltonian cycle
inGT , since, by Lemma 2 this Hamiltonian cycle must contain a Hamiltonian path for each
Ti of length at leastH(Ti)−1 andd−1 edges of weight 1 between subtrees. Moreover, we
can achieve this lower bound only if Hamiltonian path uses two edges of weight 0 incident
to the rootr to connect two subtrees. Therefore, pair(T , r) has type 0.
Case2: Assume that exactly one of the pairs(Ti, ri) is type 1 and assume that this is

(T1, r1). Then deleting the edge of weight 1 incident tor1 from C1, and arbitrary edge of
weight 1 from eachC2, . . . , Cd , connecting the Hamiltonian path inC1 with the rootr by
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the edge of weight 0 and all other Hamiltonian paths into one cycle byd edges of weight 1
we get a cycle of length exactly

∑d
i=1H(Ti). Since the constructed tour contains the edge

of weight 1 incident to the rootr, what we need to prove is that there is no Hamiltonian
cycle inGT of weight−1 + ∑d

i=1H(Ti). Assume on the contrary that there is such a
tourC. Then, as we noticed in the previous paragraph, it must use two edges of weight 0
incident to the rootr. Let Tk andTt be subtrees connected by these edges with the root.
Let (Tt , rt ) be the pair of type 0 since both of these pairs(Tk, rk) and(Tt , rt ) cannot be of
type 1. Then subpath through the subtreeTt in a cycleC cannot have length less thanH(Tt )
since otherwise connecting two endpoints of such path we will either get a tour of weight
less thanH(Tt ) or a tour of weight exactlyH(Tt ) but with edge of weight 1 incident to
rt and then(Tt , rt ) would be of type 1. Therefore, we have at least one subtreeTt which
contributesH(Tt ) to the length ofC, by adding at leastH(Ti) − 1 for all other trees and
d − 1 to connect all subtours into one Hamiltonian cycle. We get that the tour length is at
least

∑d
i=1H(Ti). Contradiction.

Case3: In the last case we assume that all of the pairs(Ti, ri) are type 0. Then we
can easily obtain a Hamiltonian cycle inGT by deleting one edge of length one in each
Ci, i = 1, . . . , d and addingd + 1 edges of weight 1 connecting resulting paths andx
into Hamiltonian cycle inGT . Clearly, the length of this cycle is 1+ ∑d

i=1H(Ti) and it
has an edge of weight 1 incident tor and therefore, what we need to show is that there is
no Hamiltonian cycle inGT of length

∑d
i=1H(Ti) or less. The argument is very similar

to the one in the previous paragraph. Assume that there is a tour of length smaller than
1+ ∑d

i=1H(Ti). It cannot have two edges of weight 1 incident tor since otherwise this
cycle has the weight at least 2+ ∑d

i=1 (H(Ti) − 1) + d − 1. Suppose it has one edge of
weight 1 incident tor. LetTt be a subtree connected by this edge with the root. The subpath
of Hamiltonian cycle in this subtreemust have the length at leastH(Tt ) and therefore adding
H(Ti)− 1 for all other subtrees andd edges of weight one to connect subtours in different
subtrees we get 1+ ∑d

i=1H(Ti), again. Finally, if there are two edges of weight 0 incident
to r in a Hamiltonian cycle then letTk andTt be subtrees connected by these edges with the
root r. Therefore, they will contributeH(Tk) andH(Tt ) to the length of the Hamiltonian
cycle plusH(Ti)− 1 for all other trees andd − 1 to connect all paths in subtrees into one
cycle. Again, we obtain 1+ ∑d

i=1H(Ti). �

2.2. Directed graphs

LetTbe a non-random directed acyclic rooted graph obtained from some undirected tree
by orienting its edges in some way. A graph is defined to be a directed forest if all of its
weakly connected components are directed trees. Given a directed treeT, let r ∈ T denote
the root of this tree, and, as above, letH(T ) denote the HCN ofT. We will say that the
rooted graph(T , r) is type(0,out), if for everyoptimal solution, the oriented edge outgoing
from r in the resulting Hamiltonian tour, belongs toT. In this case we will also say that the
root r is type(0,out). If pair (T , r) is not type(0,out), then it is said to be of type(1,out),
i.e. there is an optimal Hamiltonian tour such that the edge outgoing fromr does not belong
toT. If for everyoptimal solution, the edge incoming tor in the resulting Hamiltonian tour
belongs toT then the pair(T , r) has type(0, in) and, otherwise, the pair is said to be of type
(1, in).
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Any isolated nodei is said to be of type(1, in) and (1,out). For a later convenience,
H(i) is set to be 1, by definition. An example of type(0, in) ((0,out)) node is a directed
pathT = (r1, r2, . . . , rt ), wherer is a noderi,2� i� t (ri,1� i� t − 1). Indeed, the HCN
for this graph is 1—add edge(rt , r1), and this is a unique optimal solution. The resulting
Hamiltonian tourr1, r2, . . . , rt , r1 uses edges(ri−1, ri), (ri , ri+1) incident tor = ri , both
of which belong to the tree for any internal noderi . On the other hand ifr = r1 (r = rt ), the
pair (T , r) is of type(1, in) ((1,out)), since the generated tourT uses a new edge(rt , r1)
incident tor.
Consider the complete weighted directed graphGT on the same vertex set as the directed

treeT, and define weight of an edge to be 0 if this edge belongs to the directed treeT and
1 otherwise. Then the Hamiltonian Completion Problem for the graphT is equivalent to
Travelling Salesman Problem onGT and the optimal value of TSP tour onGT is equal to
the number of edges we need to add to make the directed graphT Hamiltonian. We now
prove an auxiliary lemma analogous to Lemma 2 about certain properties of the optimal
Hamiltonian cycles inGT . Denote byT1, . . . , Td the subtrees generated by children ofr
in T. (A child of r is any node connected withr by a directed edge oriented either to or
from r).

Lemma 3. For any tour of length H in aGT which usessin, sin = 0,1 incoming and
sout, sout= 0,1 outgoing edges of weight0 incident to r(or in other words edges incident
to a root r in directed tree T) there is a tour inGT of length at most H which also uses
sin incoming andsout outgoing edges of weight0 incident to r and visits each subtree
T1, . . . , Td exactly ones, i.e. vertices of any subtreeT1, . . . , Td form a contiguous segment
of Hamiltonian cycle inGT .

Proof. Indeed, if there are two such contiguous segmentsP1 = (i1 . . . , ip) and P2 =
(iq, . . . , im) belonging to the same subtreeTi and not connected by an edge in a Hamil-
tonian cycle then at least three out of four directed edges incident to this segments in a
Hamiltonian cycle have weight 1 since there is at most one edge of weight 0 incident to a
subtreeTi . Assume, that(ip, ip+1), (iq−1, iq) and(im, im+1) are these edges. Therefore, for
P12= ip+1, . . . , iq−1, the part of the Hamiltonian cycle betweenP1 andP2, and forP21=
im+1, . . . , i0, the part of theHamiltonian cycle betweenP2 andP1, the new tourP1, P2, P12,
P21 has length at mostH since we took out three edges(ip, ip+1), (iq−1, iq) and(im, im+1)

of weight 1 and used instead edges(ip, iq), (im, ip+1) and (iq−1, im+1) of weight at
most 1. Repeating these procedure we get a Hamiltonian cycle inGT with the desired
properties. �

The following two propositions are analogous to Proposition 2 and 3.

Proposition 4. The optimal value of HCP problem on a directed forest is the sum of the
optimal values of HCP of its individual tree components.

In the following proposition we assume a non-trivial case when the degree of the root
r in the treeT is at least 1. Also, the types of children of the root are assumed to be with
respect to the subtrees they generate.



D. Gamarnik, M. Sviridenko /Discrete Applied Mathematics 152 (2005) 139–158 147

Proposition 5. Given a rooted directed tree(T , r), let r1, . . . , rd be the children of r and
let T1, . . . , Td be the subtrees emanating from them. LetXin (Xout) be the set of children
connected with r by the edges incoming to(outgoing from) r. Then

1. If there is a childr ′ ∈ Xin of type(1,out) and a childr
′′ ∈ Xout of type(1, in), then

(T , r) is type(0, in), (0,out) andH(T )= −1+ ∑d
i=1H(Ti).

2. If there is a childr ′ ∈ Xin of type(1,out) and all the children inXout are type(0, in)
(by convention it includes the case whenXout= ∅), then(T , r) is type(0, in), (1,out)
andH(T )= ∑d

i=1H(Ti).
3. If all the children inXin are type(0,out) (or Xin = ∅) but there is a childr ′′ ∈ Xout of
type(1, in), then(T , r) is type(1, in), (0,out) andH(T )= ∑d

i=1H(Ti).
4. Finally, if all the children inXin are type(0,out) (or Xin = ∅) and all the children in
Xout are type(0, in) (orXout= ∅), then(T , r) is type(1, in), (1,out) andH(T )= 1+∑d
i=1H(Ti).

Remark. As in the case of undirected graphs, the recursion above leads to a linear time
algorithm for solving HCP in directed trees.

Proof. We consider four cases from the claim of the proposition.
Case1: Assume that there is a childr ′ ∈ Xin of type(1,out) and a childr ′′ ∈ Xout of

type(1, in). W.l.o.g. letr ′ = r1 andr ′′ = rd be these children. LetC1, . . . , Cd be optimal
Hamiltonian cycles inGTi , i=1, . . . , d of lengthH(Ti) such thatC1 has an edge of weight
1 outgoing fromr1 in T1 andCd has an edge of weight 1 incoming tord in Td . Delete
these two edges fromC1 andCd . Delete one arbitrary directed edge of length 1 from each
C2, . . . , Cd−1. After that connect the path inT1 obtained fromC1 with the path inTd
obtained fromCd by two edges of weight 0 through the root vertexr (such edges exist since
r ′ ∈ Xin andr ′′ ∈ Xout) and connect remaining paths in any order byd − 1 edges of
weight 1 into a Hamiltonian cycle inGT . Clearly, these new Hamiltonian cycle has length
exactly−1+ ∑d

i=1H(Ti) since we deleted one edge of weight 1 from every subtree and
added exactlyd − 1 edges of weight one to the Hamiltonian cycle. One the other hand,
−1+ ∑d

i=1H(Ti) is a lower bound for every Hamiltonian cycle inGT , since, by Lemma
2 this Hamiltonian cycle must contain a Hamiltonian path for eachTi of length at least
H(Ti) − 1 andd − 1 edges of weight 1 between subtrees. Moreover, we can achieve this
lower bound only if Hamiltonian path uses two edges of weight 0 incident to the rootr to
connect two subtrees. Therefore, pair(T , r) has types(0, in) and(0,out).
Case2: Assume that there is a childr ′ ∈ Xin of type (1,out) and all children inXout

have type(0, in), assume thatr ′ = r1. Then deleting the edge of weight 1 outgoing fromr1
in C1, and arbitrary edge of weight 1 from eachC2, . . . , Cd , connecting the Hamiltonian
path inC1 with the rootr by the directed edge(r1, r) of weight 0 and all other Hamiltonian
paths into one cycle byd edges of weight 1 we get a cycle of length exactly

∑d
i=1H(Ti).

To complete the proof we need to prove that

• There is no Hamiltonian cycle inGT of weight−1+ ∑d
i=1H(Ti).

• There is no Hamiltonian cycle inGT of weight
∑d
i=1H(Ti)which uses a directed edge

of weight 1 incoming tor.
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Assume on the contrary that there is a tourC in GT of weight−1+ ∑d
i=1H(Ti). Then

as we noticed in the previous paragraph it must use two edges of weight 0 incident to the
root r. Let Tt be the subtree connected by edge of weight 0 outgoing from the rootr. Then
directed subpath through the subtreeTt in a cycleC cannot have length less thanH(Tt )
since otherwise connecting two endpoints of such path we will either get a tour of weight
less thanH(Tt ) or the tour of weight exactlyH(Tt ) but with edge of weight 1 incoming to
rt and then(Tt , rt ) would be of type(1, in) andrt ∈ Xout. Therefore, we have at least one
subtreeTt which contributesH(Tt ) to the length ofC. By adding at leastH(Ti)− 1 for all
other trees andd−1 to connect all subtours into one Hamiltonian cycle we get that the tour
length is at least

∑d
i=1H(Ti). Contradiction.

Using the same argument we can show that there is no Hamiltonian cycleC in GT of
weight

∑d
i=1H(Ti)which uses a directed edge of weight 1 incoming tor.Assume that there

is such a cycleC. Then it must use the edge of length 0 outgoing fromr, since otherwise the
weight ofCwill be at least 1+∑d

i=1H(Ti). Applying previous argument we get that there
is at least one subtreeTt whose contribution to weight ofC is at leastH(Tt ). By adding
at leastH(Ti) − 1 for all other trees andd to connect all subtours and the rootr into one
Hamiltonian cycle we get that the tour length is at least 1+ ∑d

i=1H(Ti). Contradiction.
Case3: We omit the proof for this case since it is completely symmetric to the Case 2.
Case4:Assume that all children inXin are of type(0,out) and all children inXoutare of

type(0, in).We can easily obtain a Hamiltonian cycle inGT by deleting one edge of length
one in eachCi, i=1, . . . , d addingd +1 edges of weight 1 and connecting resulting paths
andr into Hamiltonian cycle inGT . Clearly, the length of this cycle is 1+ ∑d

i=1H(Ti)

and it has edges of weight 1 incoming to and outgoing fromr and therefore, what we need
to show is that there is no Hamiltonian cycle inGT of length

∑d
i=1H(Ti) or less. The

argument is very similar to the one in the previous cases. Assume that there is a tour of
length smaller than 1+ ∑d

i=1H(Ti). It cannot have two edges of weight 1 incident tor
since otherwise this cycle has the weight at least 2+ ∑d

i=1(H(Ti)− 1)+ d − 1. Suppose
it has exactly one edge of weight 0 incident tor. LetTt be a subtree connected by this edge
with the root and assume thatrt ∈ Xin. The subpath of Hamiltonian cycle in this subtree
must have the length at leastH(Tt ) sincert has type(0,out) and therefore addingH(Ti)−1
for all other subtrees andd edges of weight one to connect subtours in different subtrees
we get 1+ ∑d

i=1H(Ti), again. Finally, if there are two edges of weight 0 incident tor in
a Hamiltonian cycle then letTk andTt be subtrees connected by these edges with the root
r. Therefore, they will contributeH(Tk) andH(Tt ) to the length of the Hamiltonian cycle
plusH(Ti)− 1 for all other trees andd − 1 to connect all paths in subtrees into one cycle.
Again, we obtain 1+ ∑d

i=1H(Ti). �

The following symmetry property will be useful in analyzing the random instances of
HCP.

Proposition 6. Given a directed rooted tree(T , r) consider the tree(T̂ , r) obtained by
reversing the direction of every edge in T. Then the optimal value of the HCP for T andT̂

are the same and, moreover, an optimal solution forT̄ can be obtained from an optimal
solution for T by reversing the directions of all the newly added edges. Finally, for every
s = 0,1, if (T , r) is type(s, in) ((s,out)), then(T̂ , r) is type(s,out) ((s, in)).
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Proof. The proof follows immediately from the definition of HCP and types.

3. Hamiltonian completion of a Poisson tree

3.1. Undirected graphs

One of the classical results of the theory of random graphs states that, w.h.p., a random
graphG(n, c/n) for c <1 consistsmostly of disconnected trees and some small cycles, with
only constantly many nodes belonging to cycles[7]. In other words, w.h.p., a nodei which
is selected randomly and uniformly from the set of all nodes, belongs to a component which
is a tree. Moreover, if we takei as a root of this tree, each node of this tree has outdegree
distributed according to a Poisson distribution with parameterc (denoted Pois(c)), in the
limit as n → ∞. Namely, if j is any node of this tree, thenj hask�0 children with the
probability(ck/k!)e−c, in the limit asn → ∞. Then the expected outdegree for each node
is c and the expected size of this tree is 1+ c + c2 + . . .= 1/(1− c).
Motivated by this, in the present section we analyze the Hamiltonian completion of a

random Poisson treeT—a randomly generated tree with outdegree distribution Pois(c).
Whenc <1 such a Poisson tree is finite with probability one and therefore its optimal value
of the HCP is also finite, with probability one. LetH =H(T ) denote the optimal (random)
value of the HCP of a Poisson treeT with parameterc. Let alsoN = N(T ) denote the
number of nodes in the Poisson treeT, and lett ∈ {0,1} be the type of this tree. We denote
by g0(x, y) andg1(x, y) the generating function of the joint distribution of(N,H), when
the root of the tree is type 0 or type 1 respectively. That is

g0(x, y)=
∑

m�1,h�1

xmyhProb{N =m,H = h, t = 0}, (14)

g1(x, y)=
∑

m�1,h�1

xmyhProb{N =m,H = h, t = 1}. (15)

The summation starts withh�1 since, by assumption, Hamiltonian completion of an
isolated node is 1. Given an arbitrary two-dimensional random variableZ in Z2 with a
generating functiongZ(x, y) = ∑

−∞<m,h<∞ xmyhProb{Z = (m, h)}, observe then, that
the deterministic variablesZ=(1,1), Z=(1,0) andZ=(1,−1) have generating functions
xy, x andx/y, respectively. The following fact is a classical result from the probability
theory.

Proposition 7. Let Z1, . . . , Zi ∈ Z2 be independent random variables with generating
functionsgZ1(x, y), . . . , gZi (x, y), respectively. Then the generating functiongZ(x, y) of
Z = ∑

1� j� i Zi is
∏

1� j� i gZi (x, y).

We now state and prove the main result of this subsection.

Theorem 4. The generating functionsg0=g0(x, y), g1=g1(x, y) defined in(14)and(15)
satisfy the functional equations(2), (3)and the functional inequality(4), for all 0<c<1,
x, y ∈ [0,1].
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Proof. The inequality (4) follows from

g0(x, y)+ g1(x, y)=
∑

m�1,h�1

xmyhProb{N =m,H = h}

�
∑

m,h�1

Prob{N =m,H = h} = 1.

We now prove (2), (3). Letr andr1, . . . , rK denote the root and the children of the root of
our Poisson tree with parameterc, respectively. LetN,H, t denote the number of nodes, the
HCN and the type of the root noder, respectively. Also letNi,Hi, ti denote the number of
nodes, HCN and the type of the rooted subtree(Ti, ri), generated by nodesri , respectively,
for i = 1,2, . . . , K, assumingK >0. WhenK = 0 these quantities are not defined. Then
N = 1+ ∑K

i=1Ni . Note, that conditioned onK = k >0, each triplet(Ni,Hi, ti) has the
same distribution as(N,H, t), and, moreover, these triplets(Ni,Hi, ti) have independent
probability distributions.WhenK =0, we have by conventionN =1, H =1 andt =1.We
now fix k >0 and condition on the eventK = k. We will consider the caseK = 0 later. We
have,K = k, with probability(ck/k!)e−c. Letp0 (p1) be the probability that the rootr has
type 0 (1). We consider the following cases:

1. ti = 0 for all 1� i�k. This event occurs with probabilitypk0. In this case, applying
Theorem 3,H = 1+ ∑k

i=1Hi andt = 1.We also haveN = 1+ ∑K
i=1Ni . Thus, condi-

tioning on this event we have(N,H)= (1,1)+ ∑k
i=1 (Ni,Hi). Applying Proposition

7, and recalling that the generating function of the deterministic vector(1,1) is xy, we
obtain

g1(x, y|K = k, t1 = t2 = · · · = tk = 0)

= xy
∏

1� i�k
g0(x, y|ti = 0)= xygk0(x, y|t = 0). (16)

The last equality follows from the fact that the generating functiong0 conditioned on
the event that the treeTi is type 0 is the same for all childrenr1, . . . , rk and is the same
as the generating functiong0 of the entire rooted treeT conditioned on the typet = 0.
Moreover, in this caseg0(x, y|K = k, t1= · · · = tk = 0)= 0, since, from Proposition 3,
the rootr is type 1.

2. ti0=1, ti=0, i �= i0 for somei0. This event occurswith probabilitykp1p
k−1
0 . Then, from

Theorem 3 we haveH = ∑k
i=1Hi andt = 1. Thus(N,H)= (1,0)+ ∑k

i=1 (Ni,Hi).
Using Proposition 7 we obtain

g1(x, y|K = k, ti0 = 1, ti = 0, i �= i0)= xg1(x, y|t = 1)gk−1
0 (x, y|t = 0). (17)

Again, in this caseg0(x, y|K = k, ti0 = 1, ti = 0, i �= i0)= 0.
3. There exists exactlyj�2 children for whichtj = 1. This event, which we denote by

Ej , occurs with probability
(
k
j

)
p
j
1p

k−j
0 . Note that this event can only occur when

k�2. From Theorem 3 we haveH =−1+∑k
i=1Hi andt =0. Using Proposition 7 we
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obtain

g0(x, y|K = k,Ej )= x

y
g
j
1(x, y|t = 1)gk−j0 (x, y|t = 0) (18)

andg1(x, y|K = k,Ej )= 0.

If K = 0, which occurs with probability e−c, we have by definitionN = 1, H = 1, t = 1.
Theng1(x, y)=xy andg0(x, y)=0.We now combine this with (16)–(18) and uncondition
the eventK = k to obtain

g1(x, y)= xye−c +
∑
k�1

ck

k! e
−c(xygk0(x, y|t = 0)pk0

+ xg1(x, y|t = 1)gk−1
0 (x, y|t = 0)kp1p

k−1
0 ), (19)

g0(x, y)=
∑
k�2

ck

k! e
−c ∑

2� j�k

x

y
g
j
1(x, y|t = 1)gk−j0 (x, y|t = 0)

(
k

j

)
p
j
1p

k−j
0 .

(20)

Note, thatg0(x, y|t = 0)p0 = g0(x, y) andg1(x, y|t = 1)p1 = g1(x, y). Using binomial
expansion for the (20), we obtain that∑

2� j�k
g
j
1(x, y|t = 1)gk−j0 (x, y|t = 0)

(
k
j

)
p
j
1p

k−j
0

= (g0(x, y)+ g1(x, y))
k − gk0(x, y)− kg1(x, y)g

k−1
0 (x, y).

Then we obtain from (19), (20)

g1(x, y)= xyecg0(x,y)−c + xcg1(x, y)e
cg0(x,y)−c (21)

and

g0(x, y)= x

y

∑
k�2

ck

k! e
−c((g0(x, y)+g1(x, y))k−gk0(x, y)−kg1(x, y)gk−1

0 (x, y))

= x

y
(ecg0(x,y)+cg1(x,y)−c−e−c − c(g0(x, y)+ g1(x, y))e

−c)

− x

y
(ecg0(x,y)−c − e−c − cg0(x, y)e

−c)

− x

y
cg1(x, y)(e

cg0(x,y)−c − e−c)

= x

y
ecg0(x,y)+cg1(x,y)−c−x

y
ecg0(x,y)−c−x

y
cg1(x, y)e

cg0(x,y)−c. (22)

We rewrite the results as

g1(x, y)= xyecg0(x,y)−c

1− xcecg0(x,y)−c
, (23)

g0(x, y)= x

y
ecg0(x,y)−c(ecg1(x,y) − 1− cg1(x, y)). (24)

This completes the proof of the theorem.�



152 D. Gamarnik, M. Sviridenko /Discrete Applied Mathematics 152 (2005) 139–158

3.2. Directed graphs

Wenow analyze the casewhen our randomly generated tree is a directed graph. The setup
is the same as in Subsection 3.1, except for every edge is directed. The direction is chosen at
random equiprobably from each of the two possibilities and independently for all the edges
and independently from other randomness in the tree. As in the undirected case,N,H, t

denote the number of nodes, the value of theHamiltonian completion and the type of the root
of the treeT, respectively, andNi,Hi, ti stand for the same for children of the root.Againwe
haveN=1+∑

i Ni . The typet takes oneof the four values(0,0), (0,1), (1,0), (1,1)which
areshort-handnotations for((0, in), (0,out)), ((0, in), (1,out)), ((1, in), (0,out)), ((1, in),
(1,out)), respectively.
For every pair(v,w) ∈ {0,1}2, let pvw denote the probability that the rootr has type

(v,w). Also for every(v,w) ∈ {0,1}2 we introduce the generating function

gvw(x, y)=
∑

m�1,h�1

xmyhProb{N =m,H = h, t = (v,w)}. (25)

From Proposition 6 and since the two directions of each edge are equiprobable, it follows
thatg01(x, y)= g10(x, y), As in Subsection 3.1, our next goal is deriving equations which
bind the three generating functions.

Theorem 5. The generating functionsg00(x, y), g01(x, y), g11(x, y) satisfy the functional
Eqs.(7), (8), (9),for all x ∈ [0,1], y ∈ (0,1] and the functional inequality(10).

Proof. Let r andr1, . . . , rK denote the root and the children of our random treeT, with
the possibilityK = 0. Conditioned onK = 0, we have, by convention from Subsection 2.2,
g11(x, y|K = 0)= xy andgvw(x, y|K = 0)= 0 for all othervw ∈ {0,1}.
We now fixk >0 and consider the eventK=k. Further, we fixk1, k2�0 with k1+k2=k

and consider the event|Xin| = k1, |Xout| = k2. These two events occur with probability

(ck/k!)e−c
(
k
k1

)
2−k. Furthermore, for every pair(v,w) ∈ {0,1}2, consider the event that

the number of nodes inXin (Xout) of type(v,w) (the type is with respect to the generated

subtrees) isj invw (joutvw ). This event occurs with probability

(
k1

j in00 j in01 j in10 j in11

) (
k2

jout00 jout01 jout10 jout11

) ∏
v,w=0,1

p
j invw+joutvw
vw , (26)

were for any non-negative integersa, a1, a2, a3, a4, with a1 + a2 + a3 + a4 =
a,

(
a1

a
a2 a3 a4

)
denotes the standard combinatorial terma!/(a1!a2!a3!a4!).

Next we consider four cases corresponding to the cases in Proposition 5. The argument
is very similar to the one in the proof of Theorem 4.

1. j in01 + j in11 >0, jout10 + jout11 >0. Applying Proposition 5,r is type (0,0), H = −1+∑
1� i�k Hi , and using Proposition 7 the corresponding conditioned generating
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function satisfies

g00(x, y|·)= x

y

∏
v,w=0,1

g
j invw+joutvw
vw (x, y|t = (v,w)) (27)

andgvw(x, y|·)= 0 for all (vw) �= (0,0).
2. j in01 + j in11 >0, jout10 + jout11 = 0. Thenr is type(0,1) and

g01(x, y|·)= x
∏

v,w=0,1

g
j invw+joutvw
vw (x, y|t = (v,w)) (28)

andgvw(x, y|·)= 0 for all (vw) �= (0,1).
3. j in01 + j in11 =0, jout10 + jout11 >0. The analysis of this case is skipped since it corresponds

to computingg10(x, y), which is equal tog01(x, y), as we observed above.
4. j in01 + j in11 = 0, jout10 + jout11 = 0. Thenr is type(1,1) and

g11(x, y|·)= xy
∏

v,w=0,1

g
j invw+joutvw
vw (x, y|t = (v,w)) (29)

andgvw(x, y|·)= 0 for all (vw) �= (1,1).

Next, we combine these equations to obtain defining ongvw(x, y). For convenience, it is
easier to start withg11(x, y). From (26) and (29) and recallingg11(x, y|K = 0) = xy, we
obtain

g11(x, y)= xye−c +
∑

k=k1+k2�1

ck

k! e
−c

(
k

k1

)
2−kxy

∑
j invw ,joutvw :j in01 =j in11 =jout10 =jout11 =0

,

(
k1

j in00 j in01 j in10 j in11

) (
k2

jout00 jout01 jout10 jout11

)

×
∏

v,w=0,1

p
j invw+joutvw
vw g

j invw+joutvw
vw (x, y|t = (v,w)).

We havegvw(x, y|t= (v,w))pvw=gvw(x, y). Cancellingk!, k1!, k2! and using elementary
computations, we obtain

g11(x, y)=
∑
k�0

ck

k! e
−c 1

2k
xy(2g00(x, y)+ g10(x, y)+ g01(x, y))

k

= xyec(2g00(x,y)+g10(x,y)+g01(x,y))/2−c.

We do a similar computation forg01 using (28). The sum corresponding to constraints
j in01 +j in11 >0, jout10 +jout11 =0 we represent as a difference between the sum corresponding

to justjout10 + jout11 = 0 andj in01 + j in11 = 0, jout10 + jout11 = 0. Simplifying as we did forg11,
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we obtain

g01(x, y)=
∑
k�1

ck

k! e
−c 1

2k
x[(2g00(x, y)+ 2g01(x, y)+ g10(x, y)+ g11(x, y))

k

− (2g00(x, y)+ g01(x, y)+ g10(x, y))
k]

= xec(2g00(x,y)+2g01(x,y)+g10(x,y)+g11(x,y))/2−c

− xec(2g00(x,y)+g01(x,y)+g10(x,y))/2−c.

To computeg00 note that the conditionj in01 + j in11, j
out
10 + jout11 >0 implies k�2. The

sum
∑
j invw ,joutvw :j in01 +j in11 ,jout10 +jout11 >0

we represent as
∑
j invw ,joutvw

−∑
j invw ,joutvw :j in01 =j in11 =0

−∑
j invw ,joutvw :jout10 =jout11 =0

+ ∑
j invw ,joutvw :j in01 =j in11 =jout10 =jout11 =0

. Applying (27), we

obtain

g00(x, y)=
∑
k�2

ck

k! e
−c 1

2k
x

y
[(2g00(x, y)+ 2g01(x, y)+ 2g10(x, y)+ 2g11(x, y))

k

− (2g00(x, y)+ 2g01(x, y)+ g10(x, y)+ g11(x, y))
k

− (2g00(x, y)+ g01(x, y)+ 2g10(x, y)+ g11(x, y))
k

+ (2g00(x, y)+ g01(x, y)+ g10(x, y))
k].

The terms in the right-hand side corresponding tok = 0,1 are equal to zero. There-
fore,

g00(x, y)= x

y
ec(2g00(x,y)+2g01(x,y)+2g10(x,y)+2g11(x,y))/2−c

− x

y
ec(2g00(x,y)+g01(x,y)+2g10(x,y)+g11(x,y))/2−c

− x

y
ec(2g00(x,y)+2g01(x,y)+g10(x,y)+g11(x,y))/2−c

+ x

y
ec(2g00(x,y)+g01(x,y)+g10(x,y))/2−c. �

4. Hamiltonian completion of a random graphG(n, c/n)

In this section we complete the proof of Theorem 1. We do this by relating the HCP on
G(n, c/n) to the HCP on Poisson trees and applying the results of the previous section.
LetT denote a random Poisson tree, introduced in the previous section. As before,N,H, t

denote the number of nodes, Hamiltonian completion and the type ofT. The proposition
below relates the HCP on a sparse random graphG(n, c/n), c <1 to the HCP on a tree
T. The statement and the derivation below applies to both the undirected and the directed
cases. We will indicate the distinctions when appropriate. We recall thatH(n, c) denotes
the HCN ofG(n, c/n).
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Proposition 8. The following convergence holds asn → ∞:

E[H(n, c)]
n

→
∞∑
m=1

E[H |N =m]Prob{N =m}
m

<∞, (30)

where the expectation and the probability on the right-hand side are with respect to the
(undirected or directed) random Poisson tree T.

Proof. We decomposeG into its connected (weakly connected in case of directed graphs)
components. Denote the tree components byT1, . . . , TR and letP be the union of all non-
tree components. We know that the expected number of nodes inP is O(1). As a result
H(P ) = O(1). For every nodei = 1,2, . . . , n, if i belongs to a tree component, denote
the component byT (i). Otherwise setT (i) = ∅. By convention we putH(∅) = 0. From
Propositions 2, 4,

H(G)=
∑

1� t�R
H(Tt )+H(P )=

∑
1� t�R

[
n∑

m=1

H(Tt )1{|Tt | =m}
]

+H(P )

=
n∑
i=1

n∑
m=1

H(T (i))1{|T (i)=m|}
m

+H(P ), (31)

where we simply decompose the sum into the parts corresponding to the same size of the
tree, and in the last equality the division bymcomes from the fact that each node of the tree
was countedm times. After taking expectations and using symmetry we obtain

E[H(G)] = n

n∑
m=1

E[H(T (1))1{|T (1)| =m}]
m

+O(1),

since the valueE[H(T (1))1{|T (1)| =m}] = E[H(T (1))||T (1)| =m}]Prob(|T (1)| =m) is
the same for all nodesi. But, w.h.p., the component containing node 1 is a tree, and, in
particular, it is a Poisson treeT (1), in the limit asn → ∞. Therefore, its number of nodes,
Hamiltonian completion and type are distributed asN,H, t of a random Poisson tree with
parameterc, introduced in the previous section. It now remains to show that the infinite
sum in the right-hand side of (30) is finite. Note that, trivially, for any treeT, H(T )� |T |.
Then

E[H1{N =m}]
m

�Prob{N =m}.

As a result, the partial sum in (30) starting fromm = m0 is at most Prob{N�m0}. We
know that the expected size of a Poisson tree is 1/(1− c)<∞. Using Markov inequality,
Prob{N�m0}�1/((1− c)m0), which converges to 0 asm0 increases. This completes the
proof.
We now complete the proof of Theorem 1 by expressing the sum in (30) through the

generating functionsg(x, y), ḡ(x, y) defined by (11) corresponding to the pair(N,H).
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Note that

g(x, y)=
∑

xmyhProb{H = h,N =m},
ḡ(x, y)=

∑
xmyhProb{H = h,N =m},

although they are not equal since the distribution ofH is different in the undirected in
directed cases. Nevertheless, the remaining part of the proof is identical for both cases
and, therefore, we only consider the undirected case corresponding to generating function
g(x, y). The sum in (30) is equal to

∞∑
m=1

∞∑
h=1

hProb{H = h,N =m}
m

. (32)

Functionsg(x, y), ḡ(x, y)whendefinedover 0�x, y�1areuniform limits of polynomials,
and, as such, are infinitely often differentiable in this domain. Differentiating function
g(x, y)with respect toyand interchanging the order of summation and integrationweobtain
�g(x, y)/�y=∑

m,h�1 hx
myh−1Prob{N=m,H =h}.We now divide this function byx to

obtain(1/x)(�g(x, y)/�y)=∑
m,h�1 hx

m−1yh−1Prob{N=m,H=h}. For a large constant
C >0 we have

∑
m,h�C hx

m−1yh−1Prob{N =m,H =h}�∑
h�C hProb{H =h} → 0 as

C → ∞, sinceE[H ]�E[N ]<∞. Therefore, the function
∑
m,h�1 hx

m−1yh−1Prob{N=
m,H = h} is also a uniform limit of its partial sums. Interchanging the integration and
summationwe obtain

∫
(1/x)(�g(x, y)/�y)dx=∑

m,h�1 (h/m)x
myh−1Prob{N=m,H=

h}. Forx = y = 1, the value of this function is exactly the right-hand side of(32). Since the
value of this function is 0 whenx = 0, we sety = 1 and obtain∫ 1

0

1

x

�g(x, y)

�y

∣∣∣∣
y=1

dx =
∑

m,h�1

(h/m)Prob{N =m,H = h}.

The left-hand side of this equation is the integral in (12). This completes the proof of
Theorem 1. �

5. Numerical computations

This section is devoted to numerical computations of the integral in the right-hand sides of
(12), (13).We only do the computations for the case of undirected graphs. The computations
for the case of directed graphs is similar, except for we check, in addition, the uniqueness
of the solutions to (7), (8), (9), (10).
Fixing 0<c<1,weperform the following computations.We letX={i/K, i=1, . . . , K}

andY = {i/K, i = 1, . . . , K} be the set of points of discretized the interval[0,1] where
K is some large integer (we tookK = 1000). To compute (12) we compute functions
g0(x, y), g1(x, y) using functional equations (2), (3), on a discretized unit square(x, y) ∈
X×Y . The numerical computations ofg0, g1 is straightforward from (2), (3).We also check
that inequality (4) is satisfied (which is guaranteed by Proposition 1). TheFig. 1displays
the solution of the system of equations (2), (3) and inequality (4) forc = 0.9.
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Fig. 1. Generating function for the valuec = 0.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

c

H(c)

Fig. 2. The value of the HCN for different values ofc.

For eachx ∈ X we approximately compute the value of derivative�g(x, y)/�y for y=1
using formula

g(x,1)− g

(
x,
K − 1

K

)
1/K

.
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Next we define a step function

f (x)=
K

(
g(x,1)− g

(
x,
K − 1

K

))
i/K

=K2
g(x,1)− g

(
x,
K − 1

K

)
i

for x ∈ [(i−1)/K, i/K] andi=1, . . . , K. This function approximates 1/x (�g(x, y)/�y).
Then the integral of interest is approximately equal to the

∫ 1
0 f (x)dx and can be computed

by the formula

K∑
i=1

K2 ·
g(x,1)− g

(
x,
K − 1

K

)
i

.

Fig. 2 shows values of the integral for various values ofc between 0 and 1. The value
approaches 0.77 asc approaches 1.
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