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Abstract— We develop a monomial basis selection procedure
for sum-of-squares (SOS) programs based on facial reduction.
Using linear programming and polyhedral approximations, the
proposed technique finds a face of the SOS cone containing the
feasible set of a given SOS program. The identified face in turn
identifies a set of monomials that can be used to convert the SOS
program into a semidefinite program (SDP). The technique can
be viewed as a generalization of standard parsing algorithms
for monomial basis selection. As we illustrate with examples,
the proposed method can lead to smaller SDPs that are simpler
to solve.

I. INTRODUCTION

Proving non-negativity of multivariate polynomials plays
a crucial role in many areas. For instance, in Lyapunov
analysis, one can prove stability of a polynomial dynamical
system ẋ = f(x) by showing a polynomial Lyapunov
function V (x) satisfies

V (x) ≥ 0

−V̇ (x) = −∇V T (x)f(x) ≥ 0

for all x. Unfortunately, deciding if a polynomial is globally
non-negative is NP-hard. A popular alternative is to instead
show V (x) and −V̇ (x) are sums-of-squares, a sufficient
condition for non-negativity more easily checked.

To demonstrate a polynomial is a sum-of-squares, one can
solve a sum-of-squares program (SOS program)—a convex
optimization problem over the cone of polynomials that are
sums-of-squares. To solve an SOS program, one first converts
it into a semidefinite program (SDP) using an appropriately-
specified polynomial basis and then solves the resulting SDP
using, for instance, interior point methods (see, for example,
Chapter 3 of [1]). The number of polynomials in the basis
determines the size of the resulting SDP; hence, cleverly
selecting the basis using available problem structure is crucial
for solving the SOS program efficiently.

In this paper, we develop a new algorithm for basis
selection that generalizes and improves existing approaches,
possibly leading to smaller SDPs. While existing algorithms
(implemented in parsers such as [14], [6]) leverage poly-
nomial sparsity explicit in the problem description, our
technique goes further, leveraging additional sparsity implied
by the sum-of-squares constraint. For instance, given the
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problem of finding (c1, c2) ∈ R2 such that

g(x) = c1x
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2 − 3c1x

4
2

is a sum-of-squares, our procedure deduces that g(x) is
necessarily of the form

g(x) = c2x
2
1x

2
2.

To detect implicit sparsity, our procedure introduces a spe-
cific polyhedral approximation of the SOS cone and performs
an iteration of facial reduction, an iterative technique for
reducing the dimensionality of a given conic optimization
problem [2]. The cost of this iteration is the solution of a
modestly-sized linear program related to the approximation.
Repeating these steps yields our procedure.

This paper is organized as follows. Section II gives back-
ground information on SOS programming and a simple facial
reduction algorithm (Algorithm 1). Section III adapts this
algorithm to the problem of basis selection (Algorithm 2),
and contains a few relatively elementary (but to our knowl-
edge new) results on faces of the SOS cone. Section IV
compares our algorithm to existing approaches and Section V
concludes with examples arising in stability analysis.

A. Prior work

Techniques for efficiently converting SOS programs into
SDPs have been studied by many authors. Standard ap-
proaches involve picking a basis of monomials. An algorithm
for monomial basis selection which exploits polynomial
sparsity, based on Newton polytopes, is described in [10].
Other methods for exploiting sparsity are given in [5], [16],
[17] and [9]. An algorithm for simultaneously exploiting
sparsity and ideal structure was developed by the authors
in [12]. A method for leveraging symmetry is discussed in
[4]. Practical implementations of these types of techniques
are discussed in [7].

As discussed in [19], existing basis selection algorithms
can be interpreted as facial reduction of a particular SDP
formulated to solve a given SOS program. While our work is
of similar flavor, we use facial reduction to not only interpret
but to also generalize these algorithms. We will also work
directly at the level of polynomials and the sums-of-squares
cone. In other words, we perform facial reduction before the
SOS program is converted into an SDP.

Finally, the systematic use of approximations in facial
reduction algorithms for SDP is explored extensively in [13].
This paper extends these ideas to SOS programs.



II. PRELIMINARIES

In this section, we define our notation, formally define
SOS programs, and derive a simple facial reduction algo-
rithm we will adapt in the next section to the problem of
basis selection.

A. Notation
Let R[x]n,2d denote the vector space of polynomials in n

variables with real coefficients of degree 2d or less, and let
R[x]∗n,2d denote the corresponding dual space. We use multi-
index notation to write elements of R[x]n,2d as a summation
over a set N ⊂ Nn:

f(x) =
∑
α∈N

cαx
α, (1)

where cα is a real-valued coefficient and xα is shorthand
for the monomial xα1

1 · · ·xαn
n . For a polynomial f(x) of the

form (1), let N (f) denote its Newton polytope, defined as
the convex hull of exponents in N for which cα is non-zero.
Let eα denote the element of R[x]∗n,2d for which 〈eα, f〉
returns the coefficient of monomial xα for any polynomial
f in R[x]x,2d. For example, if f =

∑
α cαx

α, then 〈eα, f〉 =
cα. Finally, if f =

∑
i fi(x)2, let ci,β denote the coefficient

of fi(x) corresponding to xβ .
Let Σn,2d ⊆ R[x]n,2d denote the convex cone of polyno-

mials that are sums-of-squares, i.e. Σn,2d equals all polyno-
mials in R[x]n,2d that can be written in the form

∑
i f

2
i for

polynomials fi. If f is a sum-of-squares, we will sometimes
say simply that f is sos.

We also define notation for a more abstract setting useful,
in part, for deriving the facial reduction algorithm. Let E be
a finite-dimensional vector space with inner product 〈·, ·〉.
For a subset S of E , let S∗ denote its dual cone, i.e. the
set of linear functionals that are non-negative on S. Let S⊥

denote the orthogonal complement of the linear span of S.
Let convhullS and aff S denote the convex and affine hulls
of S. For an element s ∈ E , let s⊥ denote {s}⊥. Finally,
call a convex subset F of a convex cone K ⊆ E a face if it
satisfies

a+ b

2
∈ F and a, b ∈ K ⇒ a, b ∈ F .

B. Sums-of-squares programs and basis selection
An SOS program optimizes a linear function over an affine

subspace A of polynomials intersected with the cone of
sums-of-squares. It can be written as follows:

minimize
u

∑m
i=1 wiui

subject to f = g0(x) +
∑m
i=1 uigi(x) (f ∈ A)

f is sos (f ∈ Σn,2d),

where u ∈ Rm is the decision variable, gi(x) ∈ R[x]n,2d
are fixed polynomials generating A, and w ∈ Rm defines a
linear objective function.

This optimization problem can be converted into an SDP
by specifying a monomial basis for the polynomials fi
appearing in a sum-of-squares decomposition

f =
∑
i

f2
i .

Representing this basis using a finite set of monomial expo-
nents M ⊂ Nn and introducing an |M | × |M | (symmetric)
matrix decision variable Q yields the following SDP:

minimize
u,Q

∑m
i=1 wiui

subject to f = g0(x) +
∑m
i=1 uigi(x) (f ∈ A)

f =
∑

α,β∈M
qαβx

αxβ

Q � 0,

(2)

where the entries qαβ of Q are indexed by exponents in
M and the last two constraints imply that f =

∑
i f

2
i for

polynomials fi of the form
∑
β∈M ci,βx

β (as can be seen
by Cholesky-factorizing Q).

Picking the set M (preferably, of minimum cardinality)
so that the set of feasible f equals A ∩ Σn,2d is the job of
the parsing algorithms we seek to improve upon. Standard
techniques exploit the sparsity pattern of f assuming non-
zero ui. We will improve these techniques using the theory
of facial reduction, which we discuss in the next section.

C. Cone programming and facial reduction
Consider the general cone program

minimize 〈w, x〉 subject to x ∈ A ∩ K,

where K ⊆ E is a convex cone and A ⊆ E is an affine
subspace. This problem is said to be feasible if A∩K is non-
empty and strictly feasible if A ∩ relintK is non-empty. If
this problem is feasible but not strictly feasible, an element
of the dual cone K∗ certifies this fact and can be used to
formulate an equivalent problem over a lower dimensional
face of K. To see this, first consider the following lemma (a
proof of which can be found in [13]):

Lemma 1: Let K be a convex cone and A be an affine
subspace for which A ∩ K is non-empty. The following
statements are equivalent.

1) A ∩ relintK is empty,
2) There exists s ∈ K∗ \ K⊥ for which s⊥ contains A.
The vector s in statement (2) of the above is called a

reducing certificate for A ∩ K. Since intersection with s⊥

leaves A∩K unchanged, s defines an equivalent optimization
problem with feasible set A ∩ K ∩ s⊥. Since s is in K∗,
K∩ s⊥ has special structure. In particular, it is a face of K.
Since faces of convex cones are also convex cones, taking
F = K ∩ s⊥ yields an equivalent cone program:

minimize 〈w, x〉 subject to x ∈ A ∩ F .

Note these steps can be repeated if one can find a reducing
certificate for A ∩ F . Indeed, it may be possible to find a
chain of nested faces Fi

K = F0 ⊃ F1 ⊃ · · · ⊃ Fn−1 ⊃ Fn,

where each Fi contains A ∩ K. This is done by taking
Fi+1 = Fi ∩ s⊥i for an si ∈ F∗i \ F⊥i that is orthogonal to
A. Producing this chain is called facial reduction. A simple
algorithm for facial reduction is given in Algorithm 1 (which
closely resembles algorithms of [11] and [18]). In the next
section, we adapt this algorithm to the problem of selecting
a monomial basis.



Algorithm 1: Facial reduction algorithm for a cone
program with feasible set A ∩K.
Initialize: F0 ← K, i = 0
repeat

1) Find si ∈ F∗i \ F⊥i for which
s⊥i contains A (?)

2) Set Fi+1 = Fi ∩ s⊥i
3) Increment counter i

until (?) is infeasible;

III. BASIS SELECTION VIA FACIAL REDUCTION

In this section, we modify Algorithm 1 to compute mono-
mial bases for SOS programs. Given an affine subspace A of
polynomials, the modified algorithm finds a chain of faces
containing A∩Σn,2d, where each face can be represented (in
a specific way defined below) using a set of monomials Mi.
Letting Σ (Mi) denote the ith face, the algorithm introduces
a specific polyhedral approximation Σ̂ (Mi) to Σ (Mi) and
finds a reducing certificate si by solving a linear program.
From this reducing certificate, a new set of monomials Mi+1

is computed representing the face Σ (Mi+1) := Σ (Mi)∩s⊥i .
The resulting procedure is explicitly given by Algorithm 2.

Algorithm 2: Monomial selection algorithm for an SOS
program with feasible set A ∩ Σn,2d, where A :={
g0(x) +

∑m
j=1 ujgj(x) : u ∈ Rm

}
.

Input: Generators gj(x) of an affine subspace A, an
initial set of monomials M0 for which Σ (M0)
contains A ∩ Σn,2d

Output: A reduced set of monomials Mi for which
Σ (Mi) contains A ∩ Σn,2d

Initialize: i = 0
repeat

1) Find si ∈ Σ̂ (Mi)
∗ \ Σ̂ (Mi)

⊥ for which
s⊥i contains A by solving the LP:

Find si, λ≥0, p ∈ Σ̂ (Mi)
⊥

subject to∑
α∈M+

i
λ2α = 1

si = p+
∑
α∈M+

i
λ2αe2α

〈si, gj(x)〉 = 0 j ∈ {0, . . . ,m}

(?)

2) Set Mi+1 = Mi \ {α : λ2α > 0}
3) Increment counter i

until (?) is infeasible;

To explain the behavior of Algorithm 2, we begin by defining
types of faces that can be represented using monomial
exponents. We then show how the steps of Algorithm 2 relate
to the steps of Algorithm 1.

A. Types of faces

We consider two types of faces that can be represented
using a set M of monomial exponents. These faces are sets

Fig. 1: Example of a Type I face Σ (M). The affine span
of Σ (M) contains all polynomials with Newton polytope
contained in the shaded region. The square markers corre-
sponding to the set 2M+ and label non-negative coefficients.

of polynomials
∑
i f

2
i that arise by fixing a monomial basis

for the fi, i.e. they are sets of the following form:
Definition 1: For a subset M of Nn, let

Σ(M) :=

{∑
i

f2
i : fi =

∑
α∈M

cα,ix
α, cα,i ∈ R

}
.

We now give two conditions for which Σ(M) is a face of
Σn,2d, yielding two types of faces.

Theorem 1 (Type I Face): Let M be a finite subset of Nn
and let d := max {

∑n
i=1 zi : z ∈M}. If convhull(M) ∩

Nn = M , then Σ (M) is a face of Σn,2d.
Definition 2: For a subset M of Nn, let M+ be the subset

of points that cannot be written as the midpoint of distinct
points in M , i.e.

M+ := M \
{
α+ β

2
: α, β ∈M,α 6= β

}
.

Theorem 2 (Type II Face): Let M be a finite subset of Nn
and let β ∈M+. If Σ (M) is a face of Σn,2d, then Σ (M \ β)
is a face of Σn,2d.

We see that Type I faces arise by imposing conditions on
M and can hence be used to initialize Algorithm 2. A Type
II face, on the other hand, is defined recursively; if Σ (M) is
a face then Σ (M \ β) is a Type II face for any β in the set
M+. A Type II face will be the output of each iteration of
Algorithm 2. We now prove correctness of these theorems.

1) Proof of Theorem 1: To prove Theorem 1, we first re-
call a well-known result of [15] relating the Newton polytope
of a polynomial f =

∑
i f

2
i to the Newton polytopes of the

fi:
Lemma 2: If f(x) =

∑
i fi(x)2, then N (fi) ⊆ 1

2N (f).
From this result, we have the following lemma:

Lemma 3: Let N be a finite subset of Nn and let 2d :=
max {

∑n
i=1 zi : z ∈ N}. The set

{f : f is sos, N (f) ⊆ convhullN}

is a face of Σn,2d.
Proof: Suppose f is in the mentioned set and also

suppose that f = g + h for polynomials g =
∑
i gi(x)2



and h =
∑
i hi(x)2. Since f =

∑
i gi(x)2 +

∑
i hi(x)2, we

must have, per Lemma 2, that N (gi) and N (hi) are subsets
of 1

2N (f). But this implies that N (g) and N (h) are both
subsets of N (f), which shows g and h are in the mentioned
set, proving the claim.

We are now ready to prove Theorem 1. To do this, it
suffices to show that Σ (M) equals the set of sums-of-squares
polynomials f satisfying N (f) ⊆ convhull (M +M) when
M satisfies the hypothesis of Theorem 1. This is demon-
strated by the following.

Lemma 4: Let M be a finite subset of Nn. If
convhull(M) ∩ Nn = M , then

Σ (M) = {f : f is sos, N (f) ⊆ convhull(M +M)} .
Proof: We first note that convhull(M) =

1
2 convhull(M + M) for any finite set M . Hence, our
hypothesis implies that 1

2 convhull(M +M) ∩ Nn = M .
Now, suppose for some polynomial f =

∑
i f

2
i that

N (f) ⊆ convhull(M + M). This implies that N (fi) ⊆
1
2 convhull(M + M). But if 1

2 convhull(M + M) ∩ Nn =
M , then f is in Σ (M). In other words, Σ (M) contains
{f : f is sos, N (f) ⊆ convhullM +M}. The reverse con-
tainment is obvious.

2) Proof of Theorem 2: To prove Theorem 2, we show
Σ (M \ β) equals the set Σ (M) ∩ s⊥ for a particular s ∈
Σ (M)

∗ for any β ∈ M+. This shows that Σ (M \ β) is a
face of Σ (M). Since “is a face of” is a transitive relation,
it will follow that Σ (M \ β) is a face of Σn,2d whenever
Σ (M) is a face of Σn,2d, proving the result.

We begin by constructing the s ∈ Σ (M)
∗ of interest. To

do this, we need the following basic result, which essentially
follows from Proposition 3.7 of [3]:

Lemma 5: Let M be a finite subset of Nn and let β ∈ Nn
be an element of M+. If f =

∑
i f

2
i is in Σ (M), then f

can be written as

f =
∑
i(ci,β)2x2β + terms involving (M +M) \ 2β,

where fi =
∑
α∈M ci,αx

α.
Using this lemma, we see that for any β ∈ M+ and f ∈

Σ (M),
〈e2β , f〉 =

∑
i

(ci,β)2 ≥ 0.

In other words, e2β is in Σ (M)
∗, demonstrating Σ (M)∩e⊥2β

is a face of Σ (M). We now show Σ (M \ β) equals this face,
which proves Theorem 2.

Lemma 6: Let M be a finite subset of Nn and let β ∈ Nn
be an element of M+. The following relationship holds:

Σ (M) ∩ e⊥2β = Σ (M \ β) .

Proof: If f is in Σ (M \ β) for β in M+, then f does
not have a term involving x2β by definition of M+, i.e.
〈e2β , f〉 = 0. To see the reverse inclusion, suppose f is in
Σ (M) ∩ e⊥2β , i.e.

〈e2β , f〉 =
∑
i

(ci,β)2 = 0.

This shows ci,β vanishes for all i which demonstrates f is
in Σ (M \ β).

B. Step #1: Find reducing certificate

At each iteration i, the first step of Algorithm 1 finds a
reducing certificate si ∈ F∗i orthogonal to A, which requires
solving a cone program over F∗i . Despite the special structure
of Σ (Mi), optimizing over Σ (Mi)

∗ is expensive—hence, it
is impractical for a basis selection algorithm to implement
this step directly. In addition, the set Σ (Mi) ∩ s⊥i is not in
general a set of the form Σ (Mi+1)—i.e. for arbitrary si,
the set Σ (Mi) ∩ s⊥i cannot be represented using a set of
monomials Mi+1. To resolve these issues, the first step of
Algorithm 2 searches for si using an inner approximation
of Σ (Mi)

∗. This subset is defined as the dual cone of
a polyhedral outer approximation of Σ (Mi) given by the
following.

Lemma 7: Let M be a finite subset of Nn. The following
polyhedral cone

Σ̂ (M) :=
{
f ∈ aff(Σ (M)) : 〈e2α, f〉 ≥ 0 ∀α ∈M+

}
has dual cone

Σ̂ (M)
∗

=

{ ∑
α∈M+

λ2αe2α : λ2α ≥ 0

}
+ Σ (M)

⊥
,

and the following inclusions hold:

Σ (M) ⊆ Σ̂ (M) Σ̂ (M)
∗ ⊆ Σ (M)

∗
.

Replacing Σ (M)
∗ with Σ̂ (M)

∗ reduces the search for
reducing certificates to a linear program, given explicitly
as LP (?) in Algorithm 2. Supposing A ∩ Σ̂ (M) is non-
empty, it is easy to see (using Lemma 1) that this LP is
feasible if and only if A ∩ relint Σ̂ (M) is empty–i.e. if the
inequalities defining Σ̂ (M) cannot be strictly satisfied. In
other words, Algorithm 2 finds a reducing certificate if a
specific relaxation of the SOS program is not strictly feasible.

C. Step #2: Compute new face

The second step of Algorithm 1 computes a new face
via the intersection Fi ∩ s⊥i . It turns out for a face of the
form Σ (Mi) and reducing certificate si ∈ Σ̂ (Mi)

∗, this
intersection equals Σ (Mi \ Λ) for some Λ ⊆ Mi. In other
words, this step is implemented in Algorithm 2 by removing
particular elements of Mi. Consider the following.

Lemma 8: Let M be a finite subset of Nn and take Λ to
be any subset of M+. If for λ2α > 0 and p ∈ Σ (M)

⊥ we
have that

s = p+
∑
α∈Λ

λ2αe2α,

then
Σ (M) ∩ s⊥ = Σ (M \ Λ) .

Proof: If f is in Σ (M) then 〈s, f〉 = 0 if and only if
〈e2α, f〉 = 0 for each α ∈ Λ. This follows since e2α is in
Σ (M)

∗ for each α ∈ Λ. In other words,

f ∈ Σ (M) ∩ s⊥ ⇒ f ∈ Σ (M) ∩
(
∩α∈Λe

⊥
2α

)
.

Using Lemma 6 to compute the intersection on the right
shows that f is in Σ (M \ Λ). The reverse inclusion follows
since Λ is a subset of M+.



D. Extension to multiple SOS constraints

It is common for an SOS program to contain several,
perhaps coupled, SOS constraints. In this setting, one is
interested in finding u ∈ Rm such that for j ∈ {1, . . . , q} the
polynomials pj(x) := gj0(x)+

∑m
k=1 ukgjk(x) are sums-of-

squares. Notice as u varies over Rm, the polynomials gjk(x)
generate an affine subspace A of the Cartesian product
R[x]n,2d1×· · ·×R[x]n,2dq . The set of feasible u is described
by the intersection of A∩K, where K is the product of SOS
cones Σn1,2d1 × · · · × Σnq,2dq .

With these observations, generalizing our algorithm is
straightforward. Given initial sets of monomial exponents
M1

0 , . . . ,M
q
0 for each SOS constraint (where M j

0 ⊂ Nn),
one can compute a chain of faces

Fi := Σ
(
M1
i

)
× · · · × Σ (Mq

i ) ⊆ K

by finding si (orthogonal to A) in the Cartesian product
Σ̂
(
M1
i

)∗×· · ·×Σ̂ (Mq
i )
∗. Given si, a new face Fi+1 is then

computed by projecting si onto Σ̂
(
M j
i

)∗
and computing

M j
i+1 via Lemma 8 for each j.

IV. COMPARISON TO PREVIOUS WORK

In this section, we study monomial selection algorithms
described in [10], [5], [7], and [16]. As we show, these meth-
ods can be viewed as a variant of our proposed algorithm in
a precise sense: the set of monomials they identify equals the
set of monomials identified by Algorithm 2 if it is modified
to search over particular subsets of Σ̂ (Mi)

∗. In Section IV-
A, we define this subset for the Newton polytope-based
algorithm given in [10]. In Section IV-B, we do the same
for algorithms based on the notion of diagonal consistency
described in [5], [7], and [16].

We perform this analysis imposing the following condi-
tions on the subspace A and the initial set of monomials
M0:
• Condition 1. The affine subspace consists of a single

polynomial g0(x) ∈ R[x]n,2d, i.e. A := {g0(x)}, where
the vertices of N (g0) are vectors of even integers.

• Condition 2. The initial set of monomial exponents M0

contains all monomials of degree d or less.

A. Monomial selection via Newton polytopes

Suppose Condition 1 holds. In this case, the monomial
selection algorithm in [10] picks a set of monomials M equal
to 1

2N (g0) ∩ Nn. Algorithm 2 will output the same set of
monomials if it is restricted to a subset of Σ̂ (Mi)

∗ corre-
sponding to vertices of convhullMi. Consider the following.

Proposition 1: Suppose Conditions 1-2 hold and that the
search step (?) of Algorithm 2 is modified to

Find si ∈ R(Mi)N for which s⊥i contains A (?),

where

R(M)N := {e2α : α is a vertex of convhullM} .

Then, the output of Algorithm 2 equals 1
2N (g0) ∩ Nn.

Proof: Let M denote the output. We first show M is a
superset of 1

2N (g0) ∩Nn. We proceed by induction on Mi,
the sets of monomials computed at iteration i. Condition 2
implies the base case holds, i.e. M0 is a superset. Suppose
Mi is a superset and let α be the vertex of convhullMi

removed at iteration i, i.e. e2α is orthogonal to A and
Mi+1 = Mi \ α. Since the vertices of N (g0) are even,
convhullMi contains 1

2N (g0). This implies α is either a
vertex of 1

2N (g0) or not in 1
2N (g0). But if α is a vertex of

1
2N (g0), then 2α is a vertex of N (g0) and 〈e2α, g0〉 6= 0,
i.e. e2α is not orthogonal to A. Hence, α is not in 1

2N (g0)
and Mi+1 is also a superset of 1

2N (g0) ∩ Nn.
We now show that M cannot be a strict superset of

1
2N (g0)∩Nn. If this were the case, then at least one vertex β
of convhullM must lie outside of 1

2N (g0). But this implies
that 2β lies outside of N (g0) which implies 〈e2β , g0〉 = 0,
i.e. an element of R(M)N is orthogonal to A, contradicting
the termination criteria of the algorithm.

B. Monomial selection via diagonal consistency

Other algorithms for monomial selection given in [5] [16]
[7] are essentially based on the following observation: if a
diagonal element of a positive semidefinite matrix is zero,
then so is the entire corresponding row and column. Hence, if
the equality constraints in the SDP (2) require that a diagonal
entry of the matrix Q vanishes, i.e. if (assuming Condition
1) the implication∑

α,β∈M

qαβx
αxβ = g0(x)⇒ qζζ = 0 (3)

holds for some ζ ∈M , then ζ can be removed from M .
Following the terminology of Löfberg [7], we say ζ

is diagonally-inconsistent when (3) holds. Notice that two
things must happen for this implication to hold. First, ζ
must be in M+, otherwise matching coefficients for the
term x2ζ does not completely determine the value of qζζ .
Two, 〈e2ζ , g0(x)〉 must vanish, i.e. e2ζ must be orthogonal
to A = {g0(x)}. With these two observations, the following
is immediate:

Proposition 2: Suppose Conditions 1-2 hold and that the
search step (?) of Algorithm 2 is modified to

Find si ∈ R(Mi)C for which s⊥i contains A (?),

where
R(M)C :=

{
e2α : α ∈M+

}
.

Then, the output of Algorithm 2 contains no diagonally-
inconsistent monomials.

C. Comparison and simple example

We now give a concrete and extremely simple example
comparing Algorithm 2 with the aforementioned techniques.
Consider the SOS program:

Find u ∈ R
subject to f(x) = x2

1x
4
2 + u · (1− x4

1x
2
2) is sos.



Let MN , MC and Mproposed denote 1
2N (f), the set of diag-

onally consistent monomials, and the output of Algorithm 2,
respectively. The sets MN and MC (which we compute
supposing u is non-zero) equal

MN = {(0, 0), (1, 1), (1, 2), (2, 1)}
MC = {(0, 0), (1, 2), (2, 1)}

whereas Algorithm 2 outputs

Mproposed = {(1, 2)},

leveraging the fact u vanishes if f is a sum-of-squares.

V. EXAMPLES

We conclude with examples from stability analysis, show-
ing the practical utility of our technique. The sets MN , MC
and Mproposed are defined as in the previous simple example.

A. Stability of Van Der Pol Oscillator
Consider a quadratic Lyapunov function

V (x) =

(
x1

x2

)T (
15 −5
−5 10

)(
x1

x2

)
and the polynomial vector field(

ẋ1

ẋ2

)
=

(
−x2

x2x
2
1 + x1 − x2

)
corresponding to a time reversed Van Der Pol oscillator.
This system has an equilibrium point at the origin. The ρ-
sublevel set of V is contained in the region of attraction if
the following SOS program is feasible.

Find λ(x)

subject to f(x) = λ(x)V̇ (x) + (xTx)(V (x)− ρ) is sos.

Using a basis of all monomials of degree 4 or less for the
polynomial λ(x) and computing MN and MC supposing
each coefficient is non-zero gives

MN = MC = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1)}
Mproposed = {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),

(2, 1), (2, 2), (3, 1)}.
B. Stable oscillations of the Moore Greitzer model

In [8], Manchester and Slotine study the Moore Greitzer
model, a simplified model of the surge-stall dynamics of a jet
engine. Using SOS programming, they establish bounds on a
perturbation for which the model exhibits stable oscillations.
The specific SOS program appears in Section VI-A of [8],
and is stated in terms of so-called SOS matrix constraints
(which can be converted into standard SOS constraints),
polynomial matrices W (x) and Li(x) and a polynomial
α(x). The set of monomial exponents computed for each
SOS constraint is summarized in Table I for various degrees
of W (x), Li(x) and α(x), where the column labeled “de-
gree” contains the tuple (degW, degLi,degα). Formulating
these SOS programs using the aid of MATLAB code refer-
enced in [8] and computing Mproposed using a variant of
our algorithm modified to handle multiple SOS constraints
(as discussed in Section III-D) yields the results shown.

degree |M |N |M |proposed
(4, 2, 2) (6, 6, 6, 6, 3, 20, 21) (6, 2, 6, 4, 3, 14, 19)
(6, 4, 4) (12, 12, 12, 12, 6, 32, 33) (12, 2, 12, 9, 6, 20, 30)
(8, 6, 6) (20, 20, 20, 20, 10, 46, 47) (20, 6, 20, 16, 10, 30, 43)
(10, 8, 8) (30, 30, 30, 30, 15, 62, 63) (30, 12, 30, 25, 15, 42, 58)

TABLE I: Comparison of our method to Newton polytope-
based techniques for the Section V-B example, which con-
tains seven SOS constraints.
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