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ABSTRACT

We present the design, implementation, and evaluation of RFu-

sion, a robotic system that can search for and retrieve RFID-tagged

items in line-of-sight, non-line-of-sight, and fully-occluded settings.

RFusion consists of a robotic arm that has a camera and antenna

strapped around its gripper. Our design introduces two key innova-

tions: the first is a method that geometrically fuses RF and visual

information to reduce uncertainty about the target object’s loca-

tion, even when the item is fully occluded. The second is a novel

reinforcement-learning network that uses the fused RF-visual in-

formation to efficiently localize, maneuver toward, and grasp target

items. We built an end-to-end prototype of RFusion and tested it

in challenging real-world environments. Our evaluation demon-

strates that RFusion localizes target items with centimeter-scale

accuracy and achieves 96% success rate in retrieving fully occluded

objects, even if they are under a pile. The system paves the way

for novel robotic retrieval tasks in complex environments such as

warehouses, manufacturing plants, and smart homes.

CCS CONCEPTS

· Computer systems organization → Robotics; Sensor net-

works; · Computing methodologies→ Robotic planning.
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1 INTRODUCTION

The past few years have witnessed mounting interest in sensing

technologies for robotic perception and automation. Remarkable

progress in vision systems has enabled robots to perceive, locate,

and grasp items in unstructured environments like warehouses,

homes, and manufacturing plants [12, 33, 54]. This progress has

motivated large companies like Amazon, Uniqlo, and FedEx to adopt

piece-picking robots [6, 16, 31], and it has led to the emergence of

various piece-picking robotic start-ups with a collective valuation

of multi-billion dollars [27]. All of this is driven by the enormous

potential of picking robots in applications spanning e-commerce

fulfillment, warehouse automation, and agile manufacturing.

A standard robotic task across many of these use cases involves

retrieving target items in cluttered environments [4, 5, 37, 51]. E-

commerce robots need to retrieve customer orders from under a
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Figure 1: RFusion. The system fuses RF and visual sensor data (from wrist-mounted
camera and antenna) to locate, maneuver toward, and grasp items in line-of-sight,
non-line of sight objects, and fully-occluded settings.

pile. Similarly, furniture assembly robots need to retrieve certain

tools (e.g., wrench), before they can start assembling furniture [22].

The process of searching for and retrieving a target item is efficient

when the item is visible. However, if the target item is fully occluded,

robotic systems that rely on cameras cannot perceive it, and resort

to a time consuming search process.

Motivated by the desire to efficiently search for and retrieve

fully occluded objects, researchers have considered the use of radio

frequency (RF) localization [2, 7, 10, 45]. Because RF signals can

traverse everyday occlusions, these systems can identify and lo-

cate items of interest through occlusions and instruct the robot to

navigate toward them, making the search process more efficient.

However, existing systems that leverage RF localization for grasping

make restrictive assumptions (about the objects and the environ-

ment) which limit their practicality. For example, state-of-the-art

proposals like RFGrasp [2] and RFCompass [45] can only work with

simple objects and require prior knowledge of the object’s shape

and/or orientation. In addition, these systems require a separate,

dedicated infrastructure for RF localization and calibration. As a

result, they can only work in constrained environments that have al-

ready been instrumentedwith the required infrastructure. Our work

is motivated by a similar desire to bring the benefits of RF localiza-

tion to robotic grasping, but aims to deliver an infrastructure-less,

shape-independent, and orientation-independent grasping system.

We present RFusion, a fully-integrated robot that enables prac-

tical and efficient grasping in line-of-sight, non-line-of-sight, and

fully-occluded settings. Similar to past work that leverages RF local-

ization, RFusion assumes that target objects are tagged with RFIDs

and uses the RFID signals to sense the objects of interest through

occlusions. Unlike past systems, it is the first to integrate both the

RF localization module and the camera into the robotic arm itself

(as shown in Fig. 1), eliminating the requirement for instrumenting

the environment with a separate infrastructure as well as any asso-

ciated calibration process. With the camera and RFID localization

antenna both integrated onto the robot’s end-effector, the system

can exploit the arm’s mobility to localize and grasp the target item

https://doi.org/10.1145/3485730.3485944
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Figure 2: RF-Visual Sensor Fusion, Control, and Grasping. (a) shows geometric fusion, combining RF measurements with visual point clouds to identify candidate locations
for the target RFID-tagged item. (b) demonstrates how RL-based RF-Visual control narrows down the candidate locations (marked in red). (c) illustrates the robot successfully
grasping the target item after decluttering its vicinity.

independent of its shape or orientation.

The key challenge in designing RFusion arises from the uncer-

tainty about the target object’s location and the environment. In

particular, since the target object may be hidden or outside the

camera’s field of view, the robot can not visually perceive it. More-

over, since the robot has a single wrist-mounted antenna (not a

separate RFID localization infrastructure), it cannot directly localize

the RFID. In principle, one could instruct the robot to maneuver

its arm to scan the 3D environment in order to accurately localize

the RFID; however, such an approach would be time-consuming

and inefficient [7]. Yet, in the absence of accurate localization, the

uncertainty region would be larger and the robot would need to

grasp many objects in a pile before it finally picks up the target

object [4, 5]. In other words, the uncertainty again results in a

time-consuming and inefficient retrieval process.

RFusion overcomes these challenges via two new primitives:

(a) DenseRF-VisualGeometric Fusion (ğ3):RFusion’s first prim-

itive aims to reduce uncertainty about the target item’s location by

iteratively fusing RF and visual information. In particular, rather

than treating RF and vision as independent perception modules,

RFusion geometrically fuses them. Fig. 2(a) illustrates this idea. The

antenna mounted on the robot’s wrist estimates the time-of-flight

to the RFID on the target item and maps it to a round-trip distance

(by accounting for the speed of propagation of RF signals). Given

the round-trip distance from the antenna to the target item, we

can localize the RFID to a spherical surface centered around the an-

tenna, depicted as a transparent blue sphere in Fig. 2(a). In parallel,

RFusion uses the depth map obtained from its wrist-mounted cam-

era to construct a 3D point cloud, corresponding to the occupied

regions in its visual field of view, shown in Fig. 2(b). By geometri-

cally intersecting the RF-computed sphere with its 3D point cloud,

RFusion can narrow down the target object’s location to only a

handful of candidates, shown in red in Fig. 2(a-b). RFusion extends

this high-level idea with techniques to account for regions outside

its field of view and for the resolution of localization.

(b) RF-Visual Reinforcement Learning (ğ4): Given the candi-

date locations from geometric fusion, one might assume that in-

structing the robot to simply approach the region where the candi-

date locations are most concentrated may be optimal. In practice,

such an approach may lead to poor localization accuracy due to

Dilution of Precision (DoP). DoP is a well-known concept in GPS

positioning and is the main reason why GPS does not perform well

in canyons (or in streets with tall buildings). When a GPS receiver

is in a canyon, it only obtains measurements from satellites close

to each other in the sky, resulting in much poorer localization pre-

cision than when it obtains measurements from satellites that are

further apart from each other. A similar problem arises for RFusion.

If the robot moves its gripper directly toward the candidate loca-

tions, its vantage points (analogous to satellites) would be close

to each other, resulting in poor localization accuracy. Yet, if the

robot moves its gripper further away from the candidate locations

to obtain better localization accuracy, it would increase its overall

trajectory for grasping since it needs to make its way back to the

object for grasping. This results in poor overall efficiency.

To address this tradeoff, we cast it as a trajectory minimization

problem, and solve it using a custom-designed RF-visual reinforce-

ment learning network. Reinforcement learning is suitable for this

problem since it enables minimizing a cumulative cost (trajectory)

after multiple actions (vantage points). To simplify the learning

problem, RFusion decomposes the candidate locations into non-

overlapping uncertainty regions that account for the resolution

of RF sensing and the camera’s depth map. This decomposition

enables us to efficiently train the network entirely in simulation

on a large number of scenarios. Once trained, the network can

be used by a physical robot to identify the optimal next vantage

point, instruct its gripper to move to the corresponding location,

and iterate through the process, narrowing down the candidates

until it has localized the target object. This can be seen in Fig. 2(b)

where the candidate regions (in red) shrink over time as the robot

collects measurements from new vantage points.

We build on the above two primitives to design an end-to-end

system capable of grasping complex objects, even if they are oc-

cluded under a pile. RFusion uses the vantage points identified by

its learning network to localize the target item’s RFID. Then, it feeds

the location estimate as an attention mechanism to a vision-based

grasping network. If the target item is under a pile, the robot can

automatically remove items stacked above it, set them aside, and

proceed to retrieving the item of interest. Once RFusion success-

fully retrieves the target object (as shown in Fig. 2(c)), it senses

the proximity of the object’s RFID to its wrist-mounted antenna



RFusion: Robotic Grasping via RF-Visual Sensing and Learning SenSys’21, November 15–17, 2021, Coimbra, Portugal

and declares task completion. We elaborate on these techniques

in ğ4.3-ğ5 and describe how RFusion can recover from errors arising

from RF polarization mismatch and outlier measurements.

We built an end-to-end prototype of RFusion. Our implemen-

tation reproduces a state-of-the-art RFID localization system [30]

on BladeRF software radios [38]. The system also uses a UR5e ro-

bot [44] with an Intel RealSense D415 depth camera and log-periodic

antennas mounted on its wrist (as shown in Fig. 1).

We ran over 400 real-world experimental trails to evaluate the

system. Our evaluation demonstrates the following:
• RFusion can accurately grasp complex items in line-of-sight and

non-line-of-sight settings, under occlusions, and across different

orientations. It achieves centimeter-scale median localization

accuracy in each of the x/y/z dimensions, and succeeds in 96% of

trials across different scenarios.

• We implemented a scanning baseline using RFusion’s wrist-

mounted antenna (i.e., an antenna-array baseline). The baseline

achieves the same localization accuracy as RFusion’s full imple-

mentation, albeit achieves only 50% of RFusion’s efficiency (i.e.,

it requires 2× more travel distance for localization and grasping).

• We also performed ablation studies to assess the benefits of

RF-visual’s geometric fusion and reinforcement learning net-

work. Our studies demonstrate that these components contribute

equally to RFusion’s efficiency gains over the baseline.

Demo Video: rfusion.media.mit.edu

Contributions: RFusion is the first robotic system that grasps oc-

cluded objects using a single fully-integrated in-hand RF-visual

end-effector. The system introduces two key innovations ś dense

RF-visual geometric fusion and RF-visual reinforcement learning ś

to plan efficient trajectories for localization, grasping, and retrieval.

The paper also contributes a prototype implementation and eval-

uation of RFusion in practical real-world environments spanning

line-of-sight, non-line-of-sight, and fully-occluded settings.

2 SYSTEM OVERVIEW

RFusion is a system that can efficiently search for and retrieve

RFID-tagged items in its workspace. It consists of a robotic arm

with a wrist-mounted antenna and a wrist-mounted depth camera

(RGB-D). The system works with standard passive UHF RFID tags

and common robotic arms with 6 degrees of freedom. It can retrieve

RFID-tagged items in line-of-sight as well as those occluded under

a pile or in low-lighting conditions.

RFusion can operate with any number of UHF RFID tags in

the environment. We focus on scenarios where the robot needs to

retrieve a specific item (or an ordered list of items); thus, we assume

that the robot knows the identifier of the target item’s RFID. In

practice, the mapping between an item and its identifier is listed in

(online) databases provided by the manufacturer or distributor. We

note that RFusion does not need to know exactly where the RFID

is attached to the item, nor does it know where the RFID or target

item are in its workspace.

The system starts by using its wrist-mounted antenna to selec-

tively query the RFID on the target item. It then uses the RFID’s

measured response to compute the round-trip distance to the tag

by leveraging state-of-the-art RFID positioning techniques. Since

a single round-trip distance is not sufficient for localization, the

robot fuses RF and visual information in order to efficiently localize,

maneuver toward, and grasp the target object. It operates in 3 steps:

• Dense RF-Visual Geometric Fusion (ğ3): Given the round-

trip distance to the RFID, the robot maps that distance to a spher-

ical ring centered around the wrist-mounted antenna. Subse-

quently, it geometrically intersects this spherical ring with the

RGB-D data obtained from the wrist-mounted camera, resulting

in a list of candidate locations.

• RF-VisualReinforcement Learning (ğ4):Next, the robot needs

to move its gripper to a new location in order to collect new RF

and visual measurements. To do this, we trained a reinforcement

learning network that uses the history of RF and visual mea-

surements to determine the optimal next vantage point to which

the gripper should move. The robot moves to this new location,

takes measurements, and repeats this step until it has sufficient

confidence in its estimate location of the RFID-tagged item.

• RF-Visual Grasping (ğ5): Once a sufficiently-accurate location

has been determined, RFusion uses the location estimate to grasp

the object. After grasping, the wrist-mounted antenna can make

an additional RFID measurement to verify that the target item

has indeed been successfully grasped, and if not, attempt more

grasps until the item of interest has been picked up.

3 DENSE RF-VISUAL GEOMETRIC FUSION

In this section, we describe RFusion’s first component. This com-

ponent fuses RF and visual information to reduce the uncertainty

about the target item’s location, even when the item is fully oc-

cluded. For simplicity of exposition, we describe RF-visual fusion

using the example shown in Fig. 3. The figure depicts a scenario

with a pile of objects on a table. The RFID-tagged target item (de-

picted using a green rectangle) is in the middle of the pile, hence

occluded from the camera’s field of view. The figure also shows the

wrist-mounted antenna (pictured using a green trapezoid) andwrist-

mounted camera. We describe the fusion process in three steps:

Step 1: RF-based Spherical Ring: First, RFusion uses the wrist-

mounted antenna to estimate the time-of-flight to the RFID on the

target item (similar to [30]). It then maps the time-of-flight to the

round-trip distance 𝑑 by accounting for the speed of propagation

of RF signals. This distance measurement limits the tag’s possible

location to the surface of a sphere centered on the antenna. Part of

this sphere is shown as the dotted arc in Fig. 3a. Since the distance

estimate has a certain resolution 𝛿 ,1 it constrains the tag’s location

to the blue 3D region shown in the figure. Geometrically, this means

that we can narrow the tag’s position 𝑃𝑇𝑎𝑔 to a spherical ring

centered around the in-hand antenna’s location 𝑃𝐴𝑛𝑡 , such that

the true antenna-tag round-trip distance must be within 𝛿 of the

estimated round-trip distance 𝑑 . Eq. 1 formalizes this idea:��2∥𝑃𝑇𝑎𝑔 − 𝑃𝐴𝑛𝑡 ∥ − 𝑑
��
< 𝛿 (1)

Step 2: Constructing a Dense 3D Point Cloud: Although RFu-

sion can narrow the possible tag region down to the blue sphere in

Fig. 3a, this region can be large. Next, RFusion fuses visual infor-

mation to further reduce its uncertainty about the target’s location.

The wrist-mounted camera captures a depth image of the work

space and maps this image to a 3D point cloud. This point cloud

is depicted with a thick black line in Fig 3b. Note that because

1𝛿 represents that uncertainty of a given RF measurement. We choose 3.5cm which
corresponds to the 90th percentile of the round-trip accuracy of the system

https://rfusion.media.mit.edu
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(a) RF Distance Measurement (b) Surface Depth Map (c) Dense Point Cloud

Figure 3: Dense RF-Visual Geometric Fusion. (a) The antenna takes a distance measurement 𝑑 which has a margin of error 𝛿 and maps it to a spherical ring. (b) The depth
camera is only able to observe the surface points of a pile, so the surface intersection region does not include the tagged item. (c) The known region between the surface and the
largest plane (the table) is filled to create a dense point cloud. Now the intersection region includes the location of the tagged item.

the figure only shows a cross-sectional view, the intersection only

appears as a line. One challenge is that the camera only obtains

what is called a 2.5D image, which measures the distance to the

closest surface for each of its pixels. In principle, RFusion can di-

rectly intersect this surface point cloud with the blue spherical ring,

resulting in the intersection region represented in red. However,

such an approach would allow only finding tag candidate locations

that are already in the line-of-sight of the camera and would miss

all objects that are behind occlusions (such as the green tag here

which sits below the surface of the pile).

To address this problem, RFusion extracts the largest plane in its

visual field of view, which, in our case, corresponds to the tabletop

as shown in the bottom of Fig. 3c in black. This plane represents the

furthest possible surface on which the target item can be. Fig. 3c

shows how RFusion transforms its original surface point cloud into

a dense point cloud by filling in the empty space from the surface

point cloud to the largest plane (tabletop). The largest plane surface

is also extended to allow intersections outside the field of view;

this enables RFusion to localize objects not in in its initial field of

view. We now have a dense point cloud 𝑝𝑝𝑡𝑐𝑙𝑜𝑢𝑑 that contains all

candidate locations based on the visual information.

Step 3: Dense RF-Visual Fusion: Next, RFusion geometrically

intersects the spherical ring from Eq. 1 with the dense point cloud

to identify all the candidate locations for the RFID-tagged item.

The intersection is depicted using the dotted red region in Fig. 3c,

demonstrating a significant reduction in the robot’s uncertainty

about the target object’s location. Mathematically, we can narrow

down the tag’s location to the set 𝐼 of all points 𝑝𝑝𝑡𝑐𝑙𝑜𝑢𝑑 that satisfy:

∀𝑝𝑝𝑡𝑐𝑙𝑜𝑢𝑑 ∈ 𝐼 :
��2∥𝑝𝑝𝑡𝑐𝑙𝑜𝑢𝑑 − 𝑃𝐴𝑛𝑡 ∥ − 𝑑

��
< 𝛿 (2)

We make two additional remarks:

• In very simple scenarios, the geometric fusion algorithm alone

may be sufficient to localize the target item. For example, if the

table has a small number of target items and the spherical ring

intersects with only one of them, RFusion can localize the item

immediately using geometric fusion. In contrast, neither vision

alone nor RF alone is sufficient to localize in one shot.

• RFusion performs two more optimizations to reduce the com-

putational complexity of the subsequent stages. Specifically, it

sub-samples the dense point cloud by 60% relative to the highest

possible resolution of the camera. Moreover, to eliminate outliers

from errors in the vision sensor, it clusters the viable point cloud

intersections 𝐼 using k-mean clustering.2 Instead of all points in 𝐼 ,

the set of cluster centers𝐶 represents the possible item locations

in the subsequent stages of RFusion’s design.

4 RF-VISUAL REINFORCEMENT LEARNING

In the previous section, we discussed how RFusion uses geometric

fusion to narrow down the possible object location to a region of

candidates. However, to grasp and retrieve an item, a single accurate

location is needed. Hence, RFusion needs to collect measurements

from different vantage points. One approach is to simply instruct

the robot to move toward the center of the region containing the

candidate locations, and to collect measurements along the way.

However, such an approach would result in bad localization ac-

curacy due to the narrow spacing between antenna measurement

positions. Another approach is to maximize the antenna aperture by

obtaining measurements from the furthest possible locations in the

workspace. While this will improve the localization accuracy, it will

also increase the traveled distance to the grasping point, making

the system inefficient. On top of this, RFusion can only partially

observe the environment through its wrist mounted camera, which

yields additional uncertainty about the environment.

To address these problems, RFusion introduces a reinforcement

learning (RL) framework that uses visual data and RFmeasurements

to identify an efficient trajectory for collecting vantage points. A

general RL framework uses an agent that takes observations of the

environment, determines an appropriate action, and applies that

action in the environment. In this section, we first explain how

RFusion leverages RF-Visual Encoding to enable sample-efficient

training of the RL agent. After that, we discuss how this encoding is

factored into the RL Network for training. Finally, we will describe

the localization process based on visual and RF data.

4.1 RF-Visual Encoding

The goal of RFusion’s RL agent is to choose optimal vantage points

to take measurements from in order to minimize the traveled dis-

tance prior to grasping and maximize the localization accuracy. At

a high level, this means that the RL agent should find antenna posi-

tions that both move the robot arm closer to the target item (whose

location isn’t fully known) and reduce the localization uncertainty.

2Empirically, we found that 𝑘 = 4 performs well. Note that the clusters change across
subsequent fusion iterations.
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To efficiently train the RL agent on this task, we developed a feature

representation of the environment’s observation that encodes both

visual and RF data. Specifically, we have three feature categories

that provide the necessary information for optimizing the trajec-

tory: 1) RF Features 2) Visual Features and 3) Positional Features.

RF Features: To obtain an accurate position estimate, one needs

to take many distance measurements over a wide aperture due to

dilution-of-precision (DOP) [11, 46]. In Fig. 4, two distance mea-

surements from two vantage points are illustrated in red and blue.

The solid lines represent the distance measurements (𝑑1, 𝑑2), and

the dotted lines represents the error margin of 𝛿 . The green area in

the middle represents the uncertainty about the tag location that is

caused by the resolution of distance estimation. The uncertainty

can be approximated by (𝜎𝑥 , 𝜎𝑦) along x and y axes. In Fig. 4(a), the

distance measurements are obtained from nearby vantage points

and the uncertainty area is large. In contrast, in Fig. 4(b), the dis-

tance measurements are obtained from further vantage points, so

the uncertainty area is smaller. Here, we illustrated the DoP concept

in 2D for simplicity, but it easily extends to 3D.

(a) Poor DOP (b) Good DOP
Figure 4: RF-DOP. Dilution-of-precision measures the uncertainty of positioning
due to the antenna vantage points. Solid lines represent the distance measurements
(𝑑1, 𝑑2 ,) and dotted lines represent the error margin 𝛿 . The green areas represent the
uncertainty about the tag location that is caused by the possible errors inmeasurements.
In (a), the antenna vantage points are close, leading to a large uncertainty𝜎𝑥 . (b) shows
how well located vantage points lead to a good DOP and lower uncertainty.

Our above formulation described the DOP assuming we have

full knowledge of the tagged item’s ground-truth location. How-

ever, when we are optimizing the robot’s trajectory for localization,

the tagged item’s location is unknown. To deal with this uncer-

tainty, we approximate the DOP using the geometric center of the

candidates identified using RF-visual fusion in ğ3.3 The DOP is

composed of three values, (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧), which represent the RF un-

certainty along the corresponding axes. Intuitively, a large 𝜎 along

a given axis indicates a high uncertainty in that direction, and thus,

a need to take additional measurements in new positions along that

axis. We formally specify the DOP calculation in Eqs. 3-5 where

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) correspond to the location of the antenna at vantage

point 𝑖; (𝑥𝑢 , 𝑦𝑢 , 𝑧𝑢 ) correspond to the coordinates of the geometric

center of the candidates; 𝑁 is the number of vantage points that

RFusion has taken measurements from; and 𝑅𝑖 is half of the round

trip distance estimate of 𝑖th measurement.

𝐴 =



𝑥1−𝑥𝑢
𝑅1

𝑦1−𝑦𝑢
𝑅1

𝑧1−𝑧𝑢
𝑅1

𝑥2−𝑥𝑢
𝑅2

𝑦2−𝑦𝑢
𝑅2

𝑧2−𝑧𝑢
𝑅2

...
...

...
𝑥𝑁 −𝑥𝑢
𝑅𝑁

𝑦𝑁 −𝑦𝑢
𝑅𝑁

𝑧𝑁 −𝑧𝑢
𝑅𝑁



(3)

𝑄 =

(
𝐴𝑇𝐴

)−1
(4)

3This generalizes to scenarios where there are one or more disjoint candidate regions.

𝐷𝑂𝑃𝑅𝐹 =

√
𝑡𝑟 (𝑄) =

√
𝜎2𝑥 + 𝜎

2
𝑦 + 𝜎

2
𝑧 (5)

We summarize the RF Features as RF-DOP using (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧).
4

Notice that if RFusion relies entirely on RF features, it would require

at least 3 vantage points before it starts optimizing its trajectory.

Visual Features: By leveraging vision, RFusion can bootstrap its

RL network using a single vantage point. We formulate the uncer-

tainty of the geometrically fused region (from ğ3) using an intuition

similar to that of RF-DOP. Fig. 5 shows an example based on the

scenario described earlier. The red dots indicate the region of point

cloud candidates based on the results from Dense Geometric Fusion.

The green box is a bounding box of these candidates, with the box

axes aligned with the X,Y,Z coordinate axes. Similar to RF-DOP,

a large candidate region along a certain axis suggests a greater

uncertainty along that axis. Thus, the length of the bounding box

represents our visual uncertainty encoding: (Δ𝑋 , Δ𝑌 , Δ𝑍 ).

Figure 5: Visual Features. The visual features capture the uncertainty of the point
cloud candidate regions using a bounding box. A longer edge represents more uncer-
tainty in the corresponding dimension.

Positional Features: The position of the antenna relative to the

target location impacts the optimal trajectory. Intuitively, if the

antenna is near the item of interest, a small movement significantly

changes the angle of the measurement and sharply decreases DOP.

In contrast, if the antenna is far from the item, the same amount

of movement results in a smaller change in the angle of the mea-

surement, and the DOP will not improve as much. Thus, to reduce

the Visual and RF uncertainty while also encouraging movement

toward the final grasping location, we encode the candidate loca-

tions with respect to the robot’s gripper. Specifically, we calculate

a displacement vector as follows:

Displacement =
1

|𝐶 |

∑

𝑝𝑖 ∈C

𝑝gripper − 𝑝𝑖 (6)

where 𝑝gripper is the robot’s gripper location, and 𝑝𝑖 is the center

of cluster 𝑖 in the set of cluster centers 𝐶 .

4.2 RFusion Network
With a feature representation that encodes position uncertainty

from the observations, we now show how RFusion can leverage

reinforcement learning to optimize for efficient item retrieval.

In reinforcement learning, an agent is rewarded based on its

performance on a task. During training, the agent learns how to

maximize its reward, resulting in solving the task or optimization

problem. In the case of RFusion, we reward the agent based on

the traveled distance to the grasping point and the number of

vantage points until it successfully localizes the target item. We can

formulate the reward as:

𝑅 = 𝜁 − 𝛽𝑑total distance − 𝜂𝑁𝑎𝑐𝑡𝑖𝑜𝑛𝑠

4Note that𝑄 =

[
𝜎2
ij

]

𝑖 𝑗
where 𝑖 and 𝑗 correspond to the x, y, and z dimensions.
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where 𝜁 , 𝛽 , and 𝜂 are scalar weights.5 𝑁𝑎𝑐𝑡𝑖𝑜𝑛𝑠 is the number of

vantage points and 𝑑total distance is the overall traveled distance

from the initial pose until the grasping point.

Next, we formalize the above RL network. At any given time t, the

RL agent is in state 𝑠𝑡 and uses a policy 𝜋 to decide on a robot action

𝑎𝑡 based on the input observations. In RFusion, the state 𝑠𝑡 consists

of the robot joint values (x𝑅𝑡 ∈ R
6), the round-trip distance from the

robot wrist to the RFID location (denoted as 𝑑), and the structure of

the pile(s) in theworkspace. The action space consists of movements

on a straight line from the current robot wrist location to a new

point on a 3D grid of 40𝑐𝑚×60𝑐𝑚×5𝑐𝑚 centered at the current robot

wrist location.6 For training, we simulated scene objects, depth

camera measurements, RF measurements, and robot movements,

such that the simulated environment’s state transitions are based

on the agent’s action.7 After each transition, RFusion’s observation

of the environment is updated, and the new state information 𝑠𝑡+1
is passed to the RL agent via the RF-Visual feature encoding. Once

the item is successfully localized, the agent is rewarded with 𝑟𝑡 ,
8

and the simulation trial ends. This RL problem can be solved using a

standardQ-Network, where𝑄 (𝑠𝑡 , 𝑎𝑡 ) estimates the expected reward

at the state 𝑠𝑡 when taking the action 𝑎𝑡 according to the policy

𝜋 (𝑠𝑡 ). Q-learning is the process used to update the 𝑄 values, and it

can be defined as:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎

𝑄 (𝑠𝑡+1, 𝑎) −𝑄 (𝑠𝑡 , 𝑎𝑡 )]

where 𝑟𝑡 is the reward the agent receives after 𝑎𝑡 , 𝛼 is learning rate,

𝛾 is discount factor. The agent is trained across episodes until the tar-

get item is localized. Thus, the RL network enables RFusion to learn

a policy that optimizes the robot trajectory for successful grasping.

4.3 Robust Localization

Next, we describe how RFusion localizes the target.

Robust Trilateration: Recall that each distance measurement

from a vantage point constrains the tag’s location to a sphere. With

only three distance measurements, we can localize a tagged item by

intersecting the three spheres (but the localization accuracy may

be poor). Once additional measurements are made, the trilateration

problem becomes over-constrained, and can be solved using robust

least-squares with outlier rejection [26].

Handling Tag Orientation: Up until now, we have ignored the

impact of the tag’s orientation on RFusion’s ability to sense and

localize it. However, RFusion uses compact linearly polarized an-

tennas mounted on its wrist. These antennas cannot get distance

measurements when they are perpendicular to the tag direction due

to polarization mismatch. To overcome this, RFusion detects and

compensates for polarization mismatch.9 Specifically, it measures

the signal-to-noise ratio (SNR) of the tag’s received signal. If the

SNR is below a threshold (3dB), RFusion rotates the gripper until the

SNR improves. This approach ensures that RFusion can accurately

measure the tag’s location regardless of its initial orientation.

5In our implementation, we set the hyper-parameters 𝜁 = 5, 𝛽 = 1, and 𝜂 = 0.1.
6The range of the grid is limited by the expected mechanical reach of the robot, and is
evenly divided in each of the x, y, and z directions; hence, the 3D grid steps are 10, 15,
2.5 cm in x, y, z directions.
7The full simulation environment used for training is detailed in ğ6.2.
8𝑟𝑡 = 𝑅 when the object is grasped, and zero otherwise.
9We also experimented with circularly polarized antennas. However, these were bulkier
and more difficult to mount. Also, their phase estimates were impacted by orientation,
making it difficult to use them for orientation-robust localization.
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Figure 6: RF-Visual Grasping. RFusion uses the GG-CNN grasping network to
calculate a grasping affordance map of the scene based on the RGB-D information. A
binary mask is used to focus the attention of the system on objects near the target
item. RFusion performs the best grasp from this attention-based affordance map, and
declarers task completion or re-attempts grasping based on the ID of the grasped item.

5 RF-VISUAL GRASPING
Once RFusion has localized the target RFID, it proceeds to the grasp-

ing phase. Here, it faces two challenges: first, even if the target item

is in LOS, the RFID’s location alone is not enough for grasping. This

is because grasping complex objects (e.g., a screwdriver) doesn’t

just require any location on the object, but also a grasping strategy.

Second, the target item may be occluded under a pile, necessitating

a decluttering process prior to retrieval.

To deal with these challenges, RFusion feeds the RFID’s estimated

location as an attention mechanism to a state-of-the-art vision-

based grasping network. This approach allows RFusion to inherit

the benefits of that network while extending it to retrieve occluded

items. Fig. 6 illustrates this idea through an example scenario. After

RFusion localizes the RFID, the robot moves its gripper above the

object in the x-y plane. The wrist-mounted camera captures an RGB-

D image and feeds it to a deep convolutional neural network called

GG-CNN [32]. The network outputs predicted grasping qualities,

grasping angle, and gripper width for each pixel in the image. Since

RFusion knows the target’s location, it knows that it should either

directly grasp the target item or removewhat is on top of it. To do so,

we apply a circular binarymask centered at the item’s location to the

quality map, and select the highest quality grasp within this mask.10

Grasping Verification: RFusion can verify whether it has picked

up the target item. To do so, after grasping, the robot can measure

the target item’s RFID response. Since a grasped item is expected

to be in the gripper (and close to the antenna), the measurement

can be used to determine if it was successful. If RFusion determines

that it has grasped a non-target item (e.g., clutter), the robot can

discard the item. The robot can repeat this process until it succeeds.

Recovering from Errors: An unsuccessful grasping attempt (e.g.,

due to grasping a wrong item or clutter) might inadvertently move

the target item. To detect this, RFusion can obtain a new distance

measurement before re-attempting to grasp. If the measurement

indicates that the target item has moved from its previous location

(but still not in the robot’s gripper), RFusion can perform another

localization round to discover the item’s new location.

6 IMPLEMENTATION
6.1 Real-World Setup

Physical Setup:We implemented RFusion on a Universal Robots

UR5e robot [44] with a Robotiq 2F-85 gripper [41], an Intel Re-

alsense D415 depth camera [18], and Nuand BladeRF 2.0 Micro

10RFusion can also adapt the radius of the mask to the target object’s dimensions.
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(A) LOS, Scattered (B) LOS, 1 Pile (C) NLOS, 1 Pile (D) NLOS, 2 Piles (E) NLOS, Big + Small Pile
Figure 7: Evaluation Scenarios. The target item is unoccluded in (A) and B, and under a pile in (C)-(E).

software radios [38]. We mounted the camera and two WA5VJB

Log Periodic PCB antennas (850-6500 MHz) [20] around the robot’s

wrist, using a 3D printed fixture as shown in Fig. 1. The system

is tested with standard off-the-shelf UHF RFID tags (the Smartrac

DogBone RFID tags with Monza R6-P Chips [17]) attached to stan-

dard everyday objects, office supplies, and kitchen items including

gloves, plastic bottles, toys, tape rolls, stress balls, chalk boxes, and

thread skeins. Each RFID tag costs around 3-5 cents.

RFID Localization: To obtain 1D distance estimates from the

wrist-mounted antennas to the RFIDs, we reproduced a state-of-the-

art RFID localization system on BladeRF software radios [30]. In

contrast to the prior system which requires installing multiple an-

tennas to obtain a tag’s 3D location, our system is limited to a single

transmit-receive antenna pair mounted on the wrist. Hence, we can

only estimate the round-trip distance to an RFID (i.e., 1D localiza-

tion).11 The 1D localization implementation requires two BladeRF

software radios: the first implements the standard EPC Gen2 pro-

tocol and transmits a signal within the ISM band (at 910 MHz)

to power up the RFIDs; the second is clock-synchronized to the

first and transmits a low-power signal, hopping its frequency from

950MHz-1200MHz in 27MHz steps to produce a wide-band chan-

nel estimate of the tag’s channel. Each hopping sequence requires

150 ms and is used to estimate the round-trip distance to the tag. A

Mini-Circuits ZAPD-21-S+ splitter (0.5-2.0 GHz) splits the received

signal between the two BladeRFs. Our implementation performs

two additional optimizations to improve localization accuracy over

previous work. First, we discard channel estimates whose SNR is

below 3 dB so that the bad measurements do not negatively impact

localization. Second, if more than 10 frequencies are below the SNR

threshold, we repeat the wideband estimation up to 4 times before

moving the gripper to another vantage point.

Control Software:The systemwas developed and tested onUbuntu

16.04 and ROS Kinetic. We used a ROS-native inverse kinematic

solver, MoveIt [13], to control the UR Robot Driver package [43].

The solver is invoked whenever the robot needs to move to a new

pose, as provided by the RL-network ğ4 or the grasping network ğ5.

We used ROS for all inter process communications between the

controller, camera, and BladeRFs.

6.2 Simulation
Recall from ğ4 that RFusion can be trained entirely in simulation.

We built a simulation environment to train the RL-network to

optimize the robot trajectory for localization and grasping. We used

CoppeliaSim [3] for the simulation environment and Bullet Physics

2.83 for the physics engine. We simulated the tool of the UR5 robot,

attached to a simulated camera and antenna.

We created 200 different scenes with 0-3 piles of 35 objects in the

simulation. For example, in the case of 3 piles, we randomly specify

11Since Tx and RX are separate, the sphere described in ğ3 is a spheroid with 2 foci.

3 pile locations in the workspace. Each object is randomly allocated

to a pile and dropped from a random pose centered around the

pile center. For each training episode, we randomly choose one

of the 200 scenes and then a random object in the scene to be the

item of interest, which gives us 7000 possible different training

episodes (200 scenes× 35 objects). In each iteration of an episode, a

round trip distance is calculated based on the simulated antenna and

tag’s positions. Gaussian noise is added to this distance to simulate

real RF measurement errors. The simulated camera also captures a

depth image from the scene. This depth image is used to create a

point cloud for RF-Visual fusion. The observation of the scene is

fed to the RFusion Network, and the simulated robot’s tool moves

based on the result of the Q-Network. When the location estimates

converge or too many measurements are made, the episode ends,

the Q-Network is rewarded, and a new episode starts.

6.3 Learning Networks
RF-Visual RL Network: We implemented the Q-Network with

PyTorch [40]. Adam optimizer was used for training. The reward

discount factor was set to 0.9. The buffer size and minimum buffer

size for training were set to 1500. The batch size of 128 was used

for training. The network was trained for 11000 iterations. The

training was performed on a machine running Ubuntu 16.04 with

graphics card RTX 2080Ti, Intel Core i9, and 64 GB DDR4 RAM.

RF-Visual Grasping Network: For grasping, we implemented

GG-CNNnetwork, whose code and pre-trainedweightswere adopted

from [35]. The RF-based attention described in ğ5 is implemented as

a 5 cm circular binary mask centered at the RFID estimated location.

7 EVALUATION
We evaluated RFusion in a multi-path-rich indoor environment,

placing our target items on top of a wooden table under piles of ob-

jects. The environment is a standard office building, fully furnished

with tables, chairs, and computers. Similar to prior localization

systems for piece-picking robots [2, 4, 5], the robot’s workspace

measures roughly 0.7m × 1m × 0.3m atop a wooden table.

Evaluation Scenarios:We evaluated RFusion in five different cat-

egories of scenarios with varying levels of complexity as shown

in Fig. 7. Each scenario had one or more target items (each tagged

with an RFID) in addition to 5-15 non-target items to distract from

or hide the targets. The scenarios included both line-of-sight (LOS)

and non-line-of-sight (NLOS) settings where there were 0-2 distinct

piles of objects on the table. In NLOS settings, the item of interest

was fully occluded by at least another larger item in the pile.

Ground truth:Weused theOptiTrack [39] system to obtain ground

truth tag location. In NLOS scenarios, we recorded ground truth

location before covering the item of interest with other objects.

Because the tag is rectangular, we calculated localization accuracy

by measuring the distance to the closest point on the tag.
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(b) Traveled Distance vs Number of Vantage Points
Figure 8: Impact of the Number of Vantage Points. The figure plots (a) the local-
ization error and (b) the traveled distance vs the number of vantage points used.

8 MICRO-BENCHMARKS

We performed micro-benchmark experiments to understand the

impact of different parameters on RFusion’s overall performance.

8.1 Number of Vantage Points
Recall from ğ4.3 that RFusion needs at least three vantage points

to compute an RFID’s 3D location. In our first micro-benchmark

experiment, we varied the number of vantage points in order to

understand the impact of increased vantage points on localization

accuracy and traveled distance.

We performed 16 experimental trials in 10 different scenarios,

spanning all five categories described in ğ7. In each of these trials,

RFusion was allowed to obtain RFID channel measurements from

up to 13 vantage points. For a given number of vantage points, we

used all the available measurements to estimate the RFID’s location

as discussed in ğ4.3. We computed the localization error as the

Euclidean distance between the RFusion-estimated location and

the ground-truth RFID location. We also computed the traveled

distance as the total distance traversed by the gripper from its initial

vantage point all the way to the grasping point.

Fig. 8 plots the localization error and traveled distance as a func-

tion of number of vantage points. The solid red line shows the

median and the purple dotted line shows the 90th percentile. We

make the following remarks:

• Fig. 8(a) shows that as the number of vantage points increases,

the median and 90th percentile error both decrease until a certain

level, then plateau. In particular, the 90th percentile drops from

3.5 cm to around 2 cm, and the median drops from 1 cm to 0.43 cm

with 13 vantage points. This is expected since more measure-

ments enable higher localization accuracy but with diminishing

returns. More importantly, the plot shows that the RFusion’s me-

dian localization accuracy is around 1 cm even with only three

vantage points, yet the 90th error requires 6 measurements before

it reaches 2 cm and plateaus.

• Fig. 8(b) shows that as the number of vantage points increases,
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Figure 9: Stopping Criteria. The figure plots the median traveled distance for differ-

ent stopping criteria. Error bars denote the 10th and 90th percentile.

the median and 90th percentile traveled distance consistently

increase. This is expected because collecting vantage points re-

quires moving the gripper to additional locations, thus increasing

the overall traveled distance.

The above findings show that one could always collect measure-

ments from 6-7 vantage points to get higher localization accuracy.

However, doing so would incur additional overhead on the traveled

distance, reducing the overall efficiency of RFusion’s grasping and

retrieval process. This motivates the need for a mechanism that

enables RFusion to determine when the target item has been suffi-

ciently localized for grasping while avoiding unnecessary overhead.

8.2 Selecting a Stopping Criterion
The goal of our second micro-benchmark experiment was to iden-

tify the stopping criterion for RFusion’s RL network. The stopping

criterion defines when the system accepts its RFID-estimated loca-

tion as correct, prompting it to stop collecting measurements from

additional vantage points and proceed to the grasping phase. One

option is to always collect measurements from a fixed number of

vantage points, e.g., six vantage points to meet the 90th percentile

error of 2-cm as per the above micro-benchmark. However, fixing

the number of vantage points to six would not be ideal since it

incurs unnecessary overhead (traveled distance). As shown in ğ8.1,

more than half the trials require no more than 3 vantage points to

achieve 1 cm localization accuracy. Ideally, we would like to iden-

tify a stopping criterion that achieves accurate localization (1-2 cm)

using the minimum number of vantage points.

We investigated six potential stopping criteria using the same

16 trials from the above experiment. We defined each stopping

criterion by the amount of change in the tag’s estimate location

across 2-3 consecutive vantage points. For example, a stopping

criterion of (1 cm, 3×) corresponds to a change in the estimate

location of less than 1 cm across the past three consecutive vantage

points. We tested the following stopping criteria: (1 cm, 3×), (4 cm,

3×), (6 cm, 3×), (1 cm, 2×), (4 cm, 2×), (6 cm, 2×). We computed

both the traveled distance and the localization error across the trials

whenever each stopping criterion is met.

Fig. 9 shows the median traveled distance of the system for the

different stopping criteria. The error bars indicate the 10th and 90th

percentile. We make the following remarks:
• Stopping criteria that require three consecutive vantage points,

rather than two, incurs an additional distance overhead of 20-75%.

This is expected since more vantage points requires the gripper

to move to a new pose, increasing the overall traveled distance.

• When the number of consecutive vantage points is fixed, stopping

criteria that require a smaller change in location estimate also
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Figure 10: Retrieval Efficiency. The figure plots the mean efficiency of target re-
trieval vs RFID localization accuracy. Error bars denote the 95% confidence interval.

require a longer traveled distance. For example, a 1 cm threshold

requires 20% more traveled distance over a 4 cm threshold. This is

expected since a smaller change is a more stringent requirement.

• Interestingly, we noticed that across all six stopping criteria, RFu-

sion achieved a localization accuracy of around 1 cm, making

them all equally desirable from a localization perspective.

Since the median localization accuracy across the different stop-

ping criteria was similar, and the traveled distance was lower (i.e.,

more efficient) for more relaxed criteria, we selected (4 cm, 2×) as

our stopping criterion for RFusion’s final implementation12 and

used it for all the subsequent performance evaluation in ğ9.

8.3 Retrieval Efficiency vs Localization Error
The goal of our final micro-benchmark experiment was to assess

the impact of localization error on the efficiency of item retrieval.

Higher retrieval efficiency indicates that RFusion succeeds in grasp-

ing the target item using a smaller number of grasping attempts.

Mathematically, we define retrieval efficiency as 1
# of grasping attempts

.

Note that the denominator only includes attempts where the robot

successfully picks up any item in the workspace (i.e., we discard

attempts where it fails to grasp any item). This allows us to isolate

the performance of our contribution from that of the pre-trained

grasping network [32].13

We ran 120 trials in total. Across all trials, the environment was

cluttered with many distractor objects, but the target item was

unoccluded from the camera (i.e., in its line-of-sight). This allowed

us to assess the impact of localization error rather than pile com-

plexity on the retrieval efficiency. Moreover, to avoid randomness

in localization arising from RL-network and to focus on retrieval

efficiency, we did not use the network to perform RFID localization

in this micro-benchmark experiment. Instead, we obtained the tag’s

ground truth location from the OptiTrack system, then artificially

added different amounts of errors (1, 2, 4, or 8 cm) to the RFID’s

location before feeding the erroneous location into RFusion’s grasp-

ing network. This enabled us to control the errors and understand

their impact on retrieval efficiency. In each trial, RFusion’s grasping

network performed grasping given the erroneous location, and

measured the retrieval efficiency as described above.

Figure 10 plots the mean retrieval efficiency with different levels

of localization error, as well as the 95% confidence intervals. As

expected, a smaller localization error results in the highest efficiency

of retrieval, and the grasping efficiency drops off as the accuracy of

the estimated location decreases. The 1 cm error has the highest

12We chose (4 cm,2×) over (6 cm,2×) because its 90th percentile accuracy is better.
13An efficiency metric that accounts for all grasping attempts would be the product of
the reported retrieval efficiency and the grasping efficiency of the grasping network.
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Figure 11: Localization Accuracy. The plots show a CDF of localization accuracy
along the X, Y, and Z dimensions.

mean efficiency at 67%. The mean efficiencies for 2, 4, and 8 cm

are 63%, 56%, and 46% respectively. Interestingly, this result shows

that even with 8 cm localization error, RFusion would only need

two attempts (on average) before it successfully picks up the target

item. At the same time, a higher localization accuracy of 1-2 cm

would further boost its efficiency.

9 PERFORMANCE RESULTS

To evaluate RFusion’s overall performance, we ran experiments

across all five scenarios described in ğ7.

9.1 Localization Accuracy
We first evaluated RFusion’s accuracy in localizing RFID-tagged

items. We conducted 105 trials. In each trial, the RFID-tagged target

item was placed in a randomly chosen position in the workspace.

The robot started from a randomly chosen initial pose, and per-

formed geometric fusion, RF-visual control, and grasping as de-

scribed in ğ3- ğ5. We computed the localization error as the eu-

clidean distance between the RFusion-estimated location and the

ground-truth location obtained from the OptiTrack system.

Figure 11 shows the CDF of the localization error along the x,

y, and z dimensions across all the scenarios and trials. The figure

shows that RFusion’s median errors along x, y, and z dimensions

are 0.1 cm, 0.26 cm, and 0.6 cm respectively. Note that the error

along z axis is slightly larger because the robot wrist could only

move and take measurements within a 20cm range in z direction,

while it was able to take measurements within a 75cm and 1m range

in x and y direction. The figure also shows that RFusion achieves

90th percentile errors of 3.07 cm, 2.85 cm, and 2.16 cm along the x,

y, and z dimensions respectively. These results demonstrate that

RFusion can achieve centimeter level positioning accuracy, match-

ing or exceeding that of state-of-the-art systems [29, 30]. However,

unlike these prior systems that require an infrastructure to localize,

RFusion can perform accurate localization in an infrastructure-less

manner, by relying entirely on the wrist-mounted antenna.

9.2 Traveled Distance

Recall from ğ4.2 that RFusion’s controller optimizes the robot’s trav-

eled distance for localization and grasping. Our second experiment

evaluated the distance traveled by RFusion’s gripper and compared

it to a baseline and to partial implementations of RFusion.

We conducted 140 trials. In each trial, we placed an RFID-tagged

target item in a randomly chosen locationwithin the robot’s workspace.

We computed the distance traveled by the gripper from its initial

position until the first grasping point.

(a) Baseline Comparison: Since antenna arrays are standard in

RFID localization, we implemented a baseline that uses RFusion’s
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Figure 13: Decomposing RFusion’s Gains. The figure plots the median (a) distance and (b) localization

error for RFusion and its partial implementations. Error bars denote the 10th and 90th percentile.

wrist-mounted antenna to obtain measurements from a 2D array

of vantage points. The baseline moves the gripper to 9 predefined

vantage points spanning the maximum aperture reachable given

the robot’s control constraints (the aperture is 40 cm in the y di-

mension and 55 cm in the x-dimension).14 Once the system has

obtained measurements from all 9 vantage points, it uses them to

localize the RFID using the same method described in ğ4.3, and then

moves its gripper to the estimated grasping point. We evaluated the

baseline in the same scenarios as RFusion, with each experimental

trial mirroring the same initial conditions as an RFusion trial. We

computed the localization error and the traveled distance for both

RFusion and the baseline as described earlier.

Fig. 12 shows the CDF of the traveled distance of RFusion (purple)

and the baseline (in orange). We make the following remarks:

• The median traveled distance for RFusion and the baseline are

1.18 m and 2.31 m respectively. This shows that RFusion improves

the traveled distance by a median of 2× over the baseline.

• The 90th percentile traveled distance of RFusion and the baseline

is 1.8 m and 2.45 m respectively. This shows that RFusion not

only improves the median but also the 90th percentile by 36%.

• We also computed the localization error for both RFusion and

the baseline. Interestingly, the baseline achieves slightly better

localization error (1.02 cm) than RFusion (1.18 cm), likely due to

the baseline’s larger aperture. This is expected according to the

micro-benchmark experiment in ğ8.1, which demonstrated that

more vantage points slightly improve localization performance.

These results show that RFusion can optimize its trajectory to

localize and grasp the item of interest and that this improvement in

efficiency does not cost a noticeable loss in localization accuracy.

(b) Decomposing RFusion’s Gains: Next, we wanted to quantify

the gains from each of RFusion’s key primitives (geometric fusion

and RL-based control). To do this, we built and evaluated two partial

implementations of RFusion:

• RFusion (RL, No Vision): In this partial implementation, the ro-

bot does not use any visual information for localization. Since

RF-DOP (from ğ4.1) requires at least three measurements, this

implementation randomly chooses three initial vantage points

for each experimental trial. After the third vantage point, it uses

the same RL-based controller as RFusion to determine its next

vantage points (but relying only on RF features). The stopping

criteria in this implementation is the same as RFusion.

14To avoid errors caused by polarization, we fixed the tag’s orientation to align it with
the wrist-mounted antenna. We only did that for the baseline and not for RFusion,
since our system has a mechanism to recover from orientation errors.

• RFusion (No RL, Vision): In this partial implementation, the robot

starts from a random initial pose and performs geometric fusion

similar to RFusion’s full implementation. Then, instead of per-

forming RL to identify its vantage points, it intelligently selects

four vantage points based on the candidate regions identified in

geometric fusion. Specifically, it computes the mean of the candi-

date regions and identifies four vantage points at the corners of a

0.6 m square centered on the mean. This implementation stops af-

ter the fifth measurement (to allow for outlier rejection described

in ğ4.3). In this implementation, localization is constrained using

RF-Visual Geometric Fusion similar to RFusion.
Figure 13a plots the median traveled distances for RFusion and

the partial implementations. Error bars indicate 10th and 90th per-

centiles. We make the following remarks:
• The partial implementations RFusion (No RL, Vision) and RFusion

(RL, No Vision) have a median travel distance of 1.63 m and

1.76 m respectively. Interestingly, both partial implementations

outperform the baseline of Fig. 12, which has a median of 2.31 m.

This demonstrates the value of each sub-component individually.

• RFusion travels a median distance of 1.18 m from initial position

to the grasping point, outperforming both the partial implementa-

tions and the baseline. This demonstrates the value of combining

both sub-components in RFusion’s overall design.

• RFusion and both its partial implementations achieve a 90th per-

centile travel distance of 1.8-2.01 m, again outperforming the

baseline’s (2.45 m).
Fig. 13 plots themedian localization error for RFusion and the par-

tial implementations. Error bars indicate 10th and 90th percentiles.

We make the following remarks:
• RFusion and the partial implementations all achieve similar me-

dian localization accuracies of 0.75-1.1 cm.

• RFusion and its partial implementation that uses RL both achieve

a 90th percentile localization accuracy of 2-3 cm. In contrast, RFu-

sion (No RL, Vision) has a muchworse 90th percentile localization

error of 26.22 cm. This is because this partial implementation has

a pre-defined stopping criterion and a fixed number of vantage

points, which prevent it from adapting to scenarios where the

system is not confident in its RFID location estimate.

• Interestingly, the localization error is slightly lower in RFusion’s

partial implementation with no vision (0.75 cm) than its full

implementation (1.1 cm). This is because without a camera, the

robot needs to travel a longer distance to be confident in its

estimate of the object location,15 and the longer distance results

in higher localization accuracy (as per Fig. 8). A natural question

15This result shows that RFusion’s RL network is robust to potential RF errors and
uncertainties as it achieves high accuracy even with RF alone.
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Figure 14: Retrieval Efficiency. The figure plots the median number of picks to grasp

the target item in 5 different scenarios. Error bars denote 10th and 90th percentile.

is whether we should incentivize the full implementation to take

more measurements to achieve higher accuracy. Based on ğ8,

there is negligible benefit from marginally higher accuracy, but

significant efficiency benefits in shortening the traveled distance.

Overall, these results demonstrate that RFusion benefits from

both of its sub-components and can avoid large localization er-

rors by travelling longer distances if needed. Moreover, the median

traveled distance of RFusion is significantly less than the partial im-

plementations, demonstrating the benefits of combining RL-based

control and RF-Visual geometric fusion in one system. These results

were demonstrated across a wide range of locations in the work

space, scenario types, and tag orientations, which also demonstrates

the performance in practical, unstructured environments.

9.3 Retrieval Efficiency
Next, we evaluated RFusion’s efficiency in retrieving a target item

from its work space. Recall from ğ8.3 that the grasping network uses

the target item’s location as an attention mechanism. Moreover,

because the antenna can estimate its distance to the RFID, it can

determine when it has picked up the target item. Hence, RFusion

makes successive grasping attempts until it determines that the

target object has been picked up. In scenarios where it picks up an

item other than its target, the item is moved to the side; this allows

RFusion to deal with scenarios when the object is under a pile.

To evaluate retrieval efficiency, we used the same experimental

trials described in ğ9.1 and measured the number of picks required

until RFusion grasps the object of interest. Unlike RF localization,

which is minimally impacted by the complexity of the scenario,

the number of picking attempts is dependent on complexity. For

example, if the target object is under a pile, RFusion needs to first

grasp and set aside the occluding item(s) on top of it before it

can grasp the target. Hence, here we report the number of picks

separately for each of the evaluated scenarios.

Fig. 14 plots the median number of picks across the five different

scenarios (and the error bars represent the 10th and 90th percentile

number of picks). We sort the scenarios in increasing order of

complexity on the x-axis, and the dashed vertical line separates the

LOS and NLOS scenarios.16 We make the following remarks:
• In the simplest scenario, where the items are scattered and in

line-of-sight, RFusion almost always requires only one pick. This

shows that combining RFusion’s high localization accuracy with

attention-based grasping results in high retrieval efficiency.

• In the more cluttered LOS scenario (with 1 pile), RFusion requires

a median of 1.5 picks to extract the target item. This is because

16Similar to ğ8.3, we only counted the grasps where the robot successfully picks up
any item to factor out inefficiencies from the pre-trained grasping network [32].

even though the item is in line-of-sight, the pile is dense. Hence,

in some scenarios, the robot may need to pick up a nearby item to

declutter the target’s vicinity prior to picking it up. Alternatively,

even a small localization error might result in focusing the robot’s

attention to an adjacent item. Nonetheless, the grasping efficiency

remains very high with a median overhead of 0.5 picks.

• Across all NLOS scenarios, the median is always at or higher

than 2 picks. This is expected because here the target item is

occluded by at least one other item. Thus, in order to retrieve

the target item, the robot first needs to grasp and remove the

occluding item. Impressively, in the scenario where there are two

piles, RFusion successfully achieves the optimal picking strategy

of only 2 picks.

• Finally, the scenario with one large NLOS pile has the highest

median picks for retrieval (3 picks). Indeed, the median extraction

process for this scenario is more difficult than that of two piles.

This is because all scenarios have similar number of items (10-

15), but when there is a single large pile, all items are stacked on

top of each other. Thus, RFusion may need to grasp and remove

multiple occluding items before it can retrieve its target item.
These results demonstrate that RFusion’s efficiency of item re-

trieval is primarily dependent on the number of items covering the

target item rather than on the complexity and number of piles in

the workspace. This is because RF-Visual Geometric Fusion and

RFID localization quickly eliminate distractor piles, thus allowing

the system to efficiently retrieve the target item.

Here, it is also worth comparing RFusion to prior systems that

rely only on vision for retrieving occluded objects. When dealing

with piles of the same size and complexity as those tested here,

state-of-the-art vision systems require a median of 6.5 picks [5], i.e.,

twice that of RFusion. This demonstrates that RFusion’s ability to

leverage RFID localization doubles the retrieval efficiency.

9.4 Robustness to Orientation
Recall that RFusion relies on a linearly-polarized antenna mounted

on the robot’s wrist and that it rotates and adjusts the gripper

and antenna’s orientation to achieve good SNR for estimating the

RFID’s channel. In this section, we report RFusion’s robustness to

variations in the orientation of RFID-tagged objects.

To evaluate the robustness to orientation, we ran 48 experimen-

tal trials, placing the RFID-tagged item in a different location and

orientation in the workspace. We varied the tag’s orientation from

0-180° at 30° intervals. (Since the tag is linearly polarized, 0° and

180° are the same; similarly 30° and 210°.) We also implemented

a variant of RFusion that does not adjust its gripper orientation

(i.e., the variant does not have the orientation module described

in ğ4.3). We evaluated this variant in the same scenarios as RFu-

sion’s full implementation (i.e., with the same initial conditions for

the robot pose, tag position, and tag orientation). We computed the

localization accuracy of both systems across orientations.

Table 1 shows the median localization error across tag orienta-

tions for both RFusion and its variant implementation. It shows

that RFusion achieves centimeter-level accuracy regardless of the

tag’s orientation. In contrast, the implementation without antenna

rotation fails to localize any tag at 60°, 90°, or 120°. This is expected

since when the tag and antenna polarization are close to orthogonal,

the SNR of the channel estimate is low, resulting in poor localiza-

tion accuracy. The results shows the value of RFusion’s ability to



SenSys’21, November 15–17, 2021, Coimbra, Portugal Tara Boroushaki, Isaac Perper, Mergen Nachin, Alberto Rodriguez, Fadel Adib

detect and recover from orientation mismatches and its ability to

perform robust, orientation-agnostic RFID localization.

Tag Orientation

0° 30° 60° 90° 120° 150°

RFusion 1.09 1.35 1.62 1.41 2.72 2.6

w/o Rotation 1.81 0.41 Failed Failed Failed 1.1

Table 1: Localization Error (in cm) vs Tag Orientation.

9.5 End-to-End Success Rate
Finally, we evaluated RFusion’s end-to-end success rate. A trial is

considered successful if RFusion can successfully retrieve the target

item in any given experimental trial. To penalize highly inefficient

scenarios, we abort the retrieval task and declare the task unsuc-

cessful if RFusion fails to grasp any item within three consecutive

grasping attempts. We ran 50 trials across the five scenarios ex-

plained in ğ7. Table 2 shows RFusion’s success rate across these

scenarios, demonstrating that RFusion aborts grasping in only 2

out of 50 trials, thus achieving an overall success rate of 96%.

LOS: Scattered 1 pile NLOS: 1 pile 2 piles Big+small pile

10/10 10/10 9/10 9/10 10/10
Table 2: End-to-end Success Rate.

10 RELATED WORK

RFusion builds on past work in robotic grasping and RFID local-

ization, and is the first to enable grasping occluded objects using a

fully-integrated RF-visual sensing robot.

(a) Vision-based Robotic Grasping. The past decade has wit-

nessed remarkable progress in deep-learning vision models that

enable robots to grasp complex objects [21, 34, 52, 53]. The majority

of grasping systems aim at improving the efficiency and speed of

grasping all objects, and typically focus on maximizing the num-

ber of picks per hour. Recently, researchers have started tackling

the problem of mechanical search, where the goal is to retrieve a

specific target object from a pile (e.g., to retrieve a tool or prioritize

fulfillment) [4, 5, 37, 51]. However, these systems often suffer from

low efficiency when the object of interest is under a pile; in such

scenarios, the target object is invisible to the robot’s camera, neces-

sitating a time-consuming search and decluttering process until the

item becomes visible for recognition and grasping. RFusion directly

builds on this line of work and extends it to operate efficiently even

when the target object is fully occluded.

(b) RFIDs for Robotic Grasping. RFusion builds on prior work

that explored the potential of using RFIDs to aid in robotic grasping.

Pioneering research in this space focused on using the received

signal strength (RSS) to locate the object of interest [8ś10]. These

systems performed a raster scan where the antenna is moved near

the object of interest as it measures the RSS of the RFID on the

object; subsequently, the object is localized bymapping it to the loca-

tion where the RSS is highest. However, because RSS is significantly

impacted by the orientation of the tag and the presence of multi-

path, these systems required the object of interest to be in a known

orientation in line-of-sight and could not demonstrate grasping in

dense clutter or when the object was under a pile. As techniques

for RFID positioning improved in subsequent years, researchers

explored the potential of using antenna arrays and time-of-flight in

order to locate and grasp RFID-tagged objects, even in multipath-

rich and non-line-sight environments [2, 45]. However, these prior

systems could only operate in environments instrumented with an

RFID localization and/or calibration infrastructure. For example,

RF-Compass requires the robot and RFID localization system to be

calibrated with respect to each other using a dedicated Vicon mo-

tion capture system [45]. Moreover, these systems either couldn’t

deal with orientation or required careful placement of multiple

RFIDs on the target object (which does not represent practical RFID

deployments). Similar to these prior systems, RFusion builds on

state-of-the-art RFID localization systems that measure time-of-

flight in multipath rich and non-line-of-sight environments [30].

In contrast to these past systems, the antenna is integrated directly

onto the robot’s end-effector, eliminating the need for a complex

setup with a separate motion capture system, and overcoming ori-

entation issues with a single RFID tag by using antenna motion.

(c) RFID Localization using Mobile Platforms. Prior work has

investigated the problem of RFID localization by placing a reader on

mobile platforms [14, 36, 42, 45, 46]. In these systems, the reader is

typically mounted on a Roomba robot and moved over few meters

to collect measurements (similar to a synthetic aperture radar)

and perform antenna-array based localization [46]. As we showed

in ğ9.2, such an approach would be much less efficient than RFusion.

(d) Sensor Fusion for RFID Localization. RFusion is related to

prior work that performs sensor fusion to localize RFIDs [9, 15, 19,

47]. In these systems, the RFID is typically already visible to a cam-

era and the goal is to improve its localization accuracy by matching

visual information and the measured RFID channel (generally for

a moving tag). As a result, these methods cannot be applied for

the RFusion task when the RFID of interest is static and/or fully-

occluded. Researchers have also considered other forms of sensor

fusion (inertial+RF) for RFID localization [50], but these systems

require specialized tags in motion and, unlike RFusion cannot work

with off-the-shelf UHF RFID tags. As a result, they are not suitable

for the problem of grasping (static) objects tagged with off-the-shelf

RFIDs. Finally, RFusion builds on prior work on RF-optical fusion in

the sensors community [1, 24, 25, 28, 48, 49] and RL in the robotics

community [23, 52], and develops the first RL framework capable

of fusing RF and vision for robotic grasping and localization.

11 CONCLUSION
This paper presents RFusion, the first robot that fully integrates

RF and vision to grasp and retrieve items in line-of-sight, non-line-

of-sight, and fully-occluded settings. RFusion’s design introduces

novel primitives for RF-visual sensing and learning. By applying

these primitives to the robotic grasping problem, our prototype

demonstrates remarkable efficiency in performing highly complex

robotic tasks in scenarios where neither RF nor vision alone would

be efficient. As the research evolves, it would be interesting to com-

bine the system with other actions (e.g., allowing the robot to push

occluding objects) and explore how alternative reinforcement learn-

ing networks (e.g., continuous actor-critic instead of discrete) may

further boost its efficiency. More fundamentally, RFusion’s primi-

tives are general and highlight new directions for sensor fusion and

multi-sensory learning, with exciting applications spanning robot

manipulation, scene understanding, and autonomous navigation.
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