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Abstract

Wireless signals, such as Wi-Fi, are traditionally used for communications. In this the-
sis, we show that these signals can also be used as sensing tools that enable us to learn
about our environment without physically reaching out to the various objects in it. Specif-
ically, as these signals travel in the medium, they traverse occlusions like walls and bounce
off different objects and humans before arriving at a receiver; hence, they carry information
about the environment. This thesis presents algorithms and software-hardware systems
that extract this information to deliver a variety of new sensing capabilities.

We deliver four fundamental contributions: We present the first design that uses Wi-Fi
signals to see through walls, enabling us to detect people behind walls by relying purely
on the reflections of Wi-Fi signals off their bodies. Next, we demonstrate how we can
use radio frequency (RF) reflections to track people’s 3D locations and gestures in indoor
environments without requiring them to wear or carry any devices. Beyond localizing
people, we introduce the first system that can recover human silhouettes through walls;
the captured silhouettes enable us to track the 3D positions of human limbs and body parts
and to distinguish between different people behind a wall. Finally, we show how smart
environments can monitor their inhabitants breathing and heart rates by relying purely on
how the human body modulates reflected RF signals.

To deliver these contributions, we exploit physical properties of RF signals, work across
software-hardware boundaries, and introduce new systems and new algorithms that re-
quire redesigning the entire computing stack, from the hardware to the applications. We
implement and evaluate these systems demonstrating how they can enable many new
real-world applications including baby monitoring, elderly fall detection, non-invasive vi-
tal sign tracking, gesture control, and human identification through walls.

Thesis Supervisor: Dina Katabi
Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1

Introduction

This thesis explores the use of wireless signals to sense the human body and the environ-

ment. Our techniques all leverage the basic physical principles of radio frequency (RF)

signals. As RF signals travel in indoor environments, they reflect off different objects –

including the human body – before arriving at a receiver. Hence, they carry information

about the environment. In this dissertation, I present techniques that extract information

from the reflected RF signals to solve a variety of sensing problems and deliver new sens-

ing capabilities.

Specifically, I design systems that send wireless signals, capture their reflections from

the environment, and analyze these reflections. Based purely on how human motion in-

teracts with these wireless signals, I show how to 1) accurately localize people in indoor

environments, 2) track human gestures in mid-air and enable users to control smart en-

vironments through these gestures, 3) extract human breathing and heart pulses from a

distance, and 4) achieve sufficient resolution (from wireless signals) to recover a human

silhouette from behind a wall.

One of the key advantages of my sensing approach is that it does not require any phys-

ical contact with the human body. This enables us to address major societal challenges

on multiple fronts. On the health front, noncontact sensing of vital signs – like breathing

and heart rate – would enable us to monitor neonates and premature babies, whose sensi-

tive skin gets damaged with traditional electrodes. It also allows us to monitor the health

1
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progress of infectious disease (e.g., Ebola) patients without requiring physical contact with

these patients, which can be threatening to the caregiver’s life. On the energy front, our

ability to track people’s locations indoors would enable us to tune heating and cooling in

order to reduce energy consumption. More generally, non-contact sensing of the human

body enables many applications in health-care, computer graphics, ubiquitous computing,

surveillance, and user interaction. Finally, even though in this thesis I focus on the human

body, my techniques can generalize to sense the entire environment using wireless signals.

⌅ 1.1 Wireless Signals as a Sensing Modality

In spirit, this research advances a long-standing desire to sense humans and the environ-

ment through various means including ultrasound, radar, terahertz, and vision techniques.

The advantage of using RF signals, however, is that they traverse occlusions, enabling us

to sense the human body through walls while leveraging low-cost massively-produced RF

components. The key challenge in extracting semantics from these signals is that we live

in a sea of RF waves which interact with each other and with the environment in complex

ways. These signals bounce off all walls, furniture, and humans indoors, resulting in a

plethora of reflections. These reflections are typically referred to as the “multi-path effect”;

they are particularly challenging in indoor environments since reflectors are all close to

each other. The problem of sensing human bodies using RF is exacerbated by two addi-

tional challenges: first, human body reflections are very weak, and second, our bodies are

not rigid and their reflective surfaces change with motion.

Overcoming the above challenges requires designing new algorithms that exploit a

model of human motion and the human body in indoor environments. For example, to

prevent multi-path reflections from introducing errors, we design Hidden Markov Models

that account for practical constraints on the velocity of human motion. Furthermore, to

factor in the deformability of the human body with motion, we introduce a coarse skeletal

model that recovers a human silhouette by regularizing measurements over time, exploit-

ing the radar cross section of different human body parts.

Beyond algorithmic innovations, addressing the above challenges requires designing

software-hardware systems that allow fine-grained control over the structure of the trans-
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mitted and received RF signals. For example, to sense breathing and heartbeats, I built

radio front-ends that can isolate such minute movements from other sources of motion

in the environment. Additionally, to scale my designs for tracking multiple people, I de-

ployed and coordinated multiple radios at very fine time granularity; in order to achieve

this coordination, I implemented new tight synchronization techniques at both the hard-

ware and software layers.

The combination of these algorithms and hardware-software systems enables us to

sense the human body using wireless signals. Our designs have three key properties that

make them particularly powerful: First, they make no assumption about the environment

they operate in and can effectively deal with multipath without any prior knowledge of

that environment. Second, these systems are built using resources that are available to

consumers, such as Wi-Fi and other low-power wireless technologies. Third, they are all

implemented in practice; these implementations and are empirically evaluated to demon-

strate their feasibility and high accuracy.

⌅ 1.2 Systems Developed

This dissertation chronicles the evolution of these technologies starting with the most basic

capability we first developed: the ability to simply sense the presence of a person behind a

wall using RF signals without placing a sensor on his or her body. As the thesis progresses,

I describe how we were able to move from that basic capability to being able to capture

a human figure - i.e., coarse skeleton - through occlusions like walls, and accurately track

a person’s breathing and heart rate without placing any sensor on his or her body. Be-

low, I highlight the contributions of each of these systems in chronological order of their

development:

1. Detecting Humans through Walls with Wi-Fi: I present Wi-Vi, the first system that uses

Wi-Fi signals to detect people through walls without any device on their bodies and by

relying purely on Wi-Fi reflections. The primary challenge in designing Wi-Vi comes from

reflections from the wall itself, which are 10,000-100,000x stronger than the reflections from

humans behind the wall. To overcome this challenge, our key insight is to treat the wall’s

reflection as interference in the context of sensing humans. This insight enables us to
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(a) Person Moving in a Room (b) WiTrack’s Output

Figure 1-1: Through-Wall Localization from RF Reflections. WiTrack localizes people by rely-
ing purely on RF signals reflected off their bodies. (a) shows a person who is moving in a room
different than the room WiTrack is placed in; the person does not wear or carry any wireless de-
vice. (b) shows the output of WiTrack; the red dot indicates where WiTrack localizes the person
at the corresponding point in time. The spiral on the ground is only there to show the level of
accuracy. Full video is available at: https://www.youtube.com/watch?v=sbFZPPC7REc

adapt techniques from MIMO (multiple-input multiple-out) communications for interfer-

ence cancellation. Specifically, we encode our transmitted Wi-Fi signals across multiple

antennas to cancel interference from the wall’s reflection, as well as from all static objects

in the environment. This enables us to sense minute reflections from a person’s body be-

hind the wall. In Chapter 3, I elaborate on this technique, and prove that our iterative

algorithm for cancelling static reflectors (including the wall) converges exponentially fast,

enabling us to detect people behind a wall in real time. I further present a prototype im-

plementation of Wi-Vi and demonstrate that it can detect movements of people through

different wall materials, including concrete, by relying purely on Wi-Fi reflections off their

bodies.

2. 3D Localization from Human Body Reflections: This dissertation also demonstrates how

we can accurately localize the human body based purely on RF reflections, even if the

person is behind a wall; a sample output of our system is shown in Fig. 1-1. RF-based

localization is a classical research area in wireless networking, spanning over two decades

of academic research [30, 44, 86, 119, 119, 130, 160, 170]. Traditional localization tech-

niques require a user to hold or wear a wireless device. In contrast, I present WiTrack,

the first system that enables 3D localization of the human body in indoor environments

without requiring users to hold or wear any device. Moreover, WiTrack achieves the

https://www.youtube.com/watch?v=sbFZPPC7REc
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same (centimeter-scale) accuracy as prior state-of-the-art localization systems which re-

quire users to wear or carry devices. WiTrack opens up RF localization to numerous new

applications where it is either infeasible or inconvenient for a user to hold or wear a de-

vice including elderly fall detection, intrusion detection, smart homes, and search & rescue

missions.

The fundamental challenge in designing WiTrack arises from the recursive nature of re-

flections in indoor environments, whereby each person’s reflections bounce off all furni-

ture and building structures – potentially multiple times – before arriving at a receiver.

Unlike perfectly static reflections addressed in Chapter 3, these secondary and tertiary re-

flections are dynamic and move with the human body resulting in a “ghosting effect”. To

overcome this challenge, we observe that a person’s direct reflection arrives earlier in time

than indirect reflections; furthermore, indirect reflections vary significantly when mea-

sured from different vantage points indoors. Building on these observations, Chapter 4

presents our design of a software-controlled time-of-flight RF sensor that enables us to

tease apart the various reflections spatially. Additionally, it elaborates on how we ana-

lyze these time-of-flight measurements to learn and identify human reflections and discard

non-human reflections; our analysis incorporates Hidden Markov Models that account for

practical constraints on the continuity of human motion. Chapter 5 describes how we can

move from single-person to multi-user localization through an iterative stochastic algo-

rithm that is inspired by successive interference cancellation, an algorithm widely used

in wireless communications. It also presents a prototype implementation and evaluation

which demonstrates that we can achieve centimeter-scale localization by relying purely on

RF reflections off the human body.

3. Capturing a Human Figure through Walls: Beyond localizing the human as a single point

in space, this thesis demonstrates how we can capture a human figure – i.e., a coarse skele-

ton – through occlusions from RF reflections, as shown in Fig. 1-2. Capturing the skeleton

of a human body enables many applications in computer graphics, ubiquitous computing,

surveillance, and user interaction [61, 62, 71, 116, 125, 127, 132, 153, 154]. Existing ap-

proaches for skeletal acquisition, like the Xbox Kinect, either require a user to stay within

the devices’ line-of-sight and cannot track him across rooms, or they require the subject to

wear on-body sensors. In contrast, I present RF-Capture, the first system that can capture
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Figure 1-2: Capturing a Human Silhouette Through Walls. We use RF signals in order to
capture a human figure (i.e., coarse skeleton) through walls. (a) shows a person who is occluded
by a wall from our sensors. (b) shows the output of our sensors; the output shows the person’s
captured skeleton in the form of a heatmap, where the background is in navy blue and the
different body parts are in red, orange, and yellow. Full video is available at: https://www.
youtube.com/watch?v=7LTr02cJkiA

a coarse human skeleton through walls, without requiring the subject to wear any sensor.

The key challenge in designing RF-Capture is that human body parts are specular when

imaged with signals whose frequencies traverse walls – i.e., human body parts act as pure

mirrors at these frequencies. As a result, due to the laws of reflections, RF sensors capture

only a subset of human body parts and cannot recover a human silhouette. Our solution to

this problem exploits the fact that due to human motion, consecutive RF snapshots tend to

expose different body parts and diverse perspectives of the same body part. By exploiting

the radar cross section of different body parts and incorporating a coarse model of the

human body, we show in Chapter 6 how we can regularize these measurements over time

to capture a coarse skeleton with the person’s head, chest, arms, and feet. We further

demonstrate how capturing such a skeleton enables us to distinguish between different

subjects behind a wall and even trace a person’s hand as he writes large letters in the air.

4. Smart Homes that Monitor Breathing and Heart Rate: Finally, this dissertation demon-

strates how we can enable smart environments to accurately monitor a person’s breathing

and heart rate without any body contact. A sample output of our system – when it is

used to monitor the vital signs of a sleeping baby – is shown in Fig. 1-3. To provide this

capability, we exploit the fact that wireless signals are affected by motion in the environ-

https://www.youtube.com/watch?v=7LTr02cJkiA
https://www.youtube.com/watch?v=7LTr02cJkiA


1.3. BEYOND THE DEVELOPED SYSTEMS 7

Figure 1-3: Vital Sign Monitoring with Wireless Signals. Our system captures the breathing
and heart-rate of a baby in realtime without body contact. Full video is available at: https:
//www.youtube.com/watch?v=3Atky2Jt_-4

ment, including chest movements due to inhaling and exhaling and bodily vibrations due

to heartbeats.

The key challenge in sensing these movements is that breathing and heart rate cause

millimeter-scale variations, and hence can be easily overshadowed by any other source

of movement in the environment. To overcome this challenge, we build on our earlier

chapters on RF-localization and skeletal capture. Specifically, we re-formalize our localiza-

tion technique as a filter – i.e., we use localization as a filter to isolate the reflected signals

arriving from different locations in the environment, enabling us to boost the SINR (signal-

to-interference-and-noise ratio) of each of the sources of motion. Chapter 7 elaborates on

this reformulation and describes our algorithms to classify vital-sign-induced movements

and discard other movements. It also presents our prototype implementation and demon-

strates how we can accurately track users’ breathing and heart rates based purely on RF

reflections of their bodies, even when these users are 8 meters away from the device or in

a different room.

⌅ 1.3 Beyond the Developed Systems

In this thesis, I focus on using wireless signals to sense the human body and enable new

applications. The presented techniques generalize along multiple dimensions. First, my

algorithmic contributions are not tied to a specific implementation technology. For exam-

ple, the multi-antenna cancellation algorithm – which I use in Chapter 3 to cancel a wall’s

reflection – can be used to increase the dynamic range of a variety of (phase-based) imag-

https://www.youtube.com/watch?v=3Atky2Jt_-4
https://www.youtube.com/watch?v=3Atky2Jt_-4
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ing modalities. Second, my systems’ abilities to sense extend beyond the human body to

any moving object indoors. For example, I have successfully experimented with tracking

an iRobot Create robot. Additionally, I have successfully used my vital-sign monitoring

technique (of Chapter 7) to sense the breathing of a turkey embryo through its egg shell.

Fundamentally, this dissertation explores the use of wireless signals as a sensing modal-

ity to solve a variety of societal and technological challenges. Nonetheless, the synergies

I identify between RF systems and a number of computer science communities (Vision,

Graphics, HCI, etc.) extend beyond the problems I address in this thesis. This dissertation

lays the foundation for an on-going exploration, and I believe that as our understanding of

wireless signals in these contexts evolves, the sensing capabilities will expand and grow.



CHAPTER 2

Background & Related Work

The desire for using wireless signals to sense the environment dates back to the develop-

ment of military radar and sonar systems in WWII [134]. These systems were originally

designed for detecting and tracking large metallic objects in open spaces, like airplanes in

the sky or tanks on the ground [36, 94].

Over the past two decades, there has been increasing interest in using military radar

in urban warfare for detecting humans through walls [10, 55, 84, 135, 156, 171]. Multi-

ple advances have been made for enabling these systems to detect humans through dense

walls like concrete. However, the state-of-the-art system in this space, which was devel-

oped by the MIT Lincoln Lab [40, 121], consists of a large (8-foot long) antenna array that

is mounted on a truck. The system transmits high-power signals in military spectrum to

detect people behind a wall. It detects humans as blobs moving in a dim background (see

the video at [11] for a reference).

The research presented in this dissertation builds on this past literature and is also

motivated by a desire to sense humans using wireless signals. However, bringing these

technologies to everyday life and delivering new consumer applications raises new chal-

lenges, which we address in this thesis:

1. Indoor Multipath: The first challenge arises from indoor multipath. Specifically, in indoor

environments, wireless signals reflect off all objects in the environment, not just the human

9
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body, including secondary and tertiary reflections off multiple objects. All of these reflec-

tions arrive at a receiver, making it hard to associate incoming reflections with a person in

the environment. As a result, past work on see-through-wall radar has been mostly tested

in an open field with an erected wall [40, 121]. Work tested on human subjects in indoor

environments outputs a radar image with blobs in the environment [84, 171]; this includes

commercial products like Xaver-100, Xaver-400, Xaver-800, and Range-R [79]. Academic

research has shown that these systems suffer from a well known problem called the “ghost-

ing effect” – i.e., the appearance of many ghost humans due to multipath [32, 121]. This

effect does not prevent these systems from detecting humans, but precludes them from

distinguishing between humans and multi-path reflections and hence curbs their ability to

localize humans in real indoor environments. In contrast, in this dissertation, we introduce

algorithms that enable us to deal with indoor multipath and accurately localize humans

indoors. Our algorithms account for practical constraints on human motion, which are in-

corporated into Hidden Markov Models (e.g., Kalman filters), as we describe in Chapter 4.

We also design stochastic techniques that allow us to track multiple people by learning

how human reflections evolve in indoor environments over time, as we describe in Chap-

ter 5.

2. Human Body Deformation: Another major challenge this research addresses arises from

the deformation of a human body due to motion. Specifically, as humans move, their

body parts move in a loosely coupled manner and their reflective surfaces change due to

motion. Such behavior is different from standard radar targets, like airplanes and tanks,

which have rigid bodies. Without addressing body deformation, one cannot reconstruct

a human figure or track human limbs to enable gesture control. This is why past systems

that aimed at reconstructing a human body demonstrated their results on a doll covered

with foil and required an antenna array larger than the imaged object [181]. In contrast,

our designs incorporate skeletal models that factor in the deformation of the human body;

this enables us to capture the human figure and track human gestures. Furthermore, we

miniaturize our design into a compact array about twice the size of a Kinect (in Chapter 6),

as opposed to a large array that is of the size of the human body.

3. Consumer Resources: Finally, most past radar systems were designed for the military.

These systems typically transmit high-power in military reserved spectrum [40, 171, 176].
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In contrast, our designs are operate within FCC regulations for consumer electronics. This

enables small, cheap devices that are available to ordinary users.

Furthermore, our designs extend beyond addressing these challenges to delivering

full-fledged systems. Our systems can automatically discover the number of humans in the

environment, identify intervals in time corresponding to the desired human movements

(e.g., gestures/breathing/heartbeats), and discard the undesired movements, preventing

them from introducing estimation errors.

Besides radar systems, past work on thermal and infrared imaging techniques also

shares our desire in extending human vision beyond the visible electromagnetic range, al-

lowing us to detect objects in the dark or in smoke. These techniques operate by capturing

infrared or thermal energy reflected off the first obstacle in line-of-sight of their sensors.

However, cameras based on these technologies cannot see through walls because they have

very short wavelengths (few m to sub-mm) [145], unlike our designs which employ signals

whose wavelengths are few cm and hence can traverse walls.1

Beyond prior literature which shares our vision in using wireless signals to sense hu-

mans, there is more focused related work that deals with individual applications and sub-

components of our different systems. We summarize that work below and describe it in

details in the corresponding chapters:

• Indoor Localization: The topic of indoor localization has received much attention from

the wireless networking community over the past two decades [30, 44, 86, 119, 119, 120,

130, 159, 160, 170]. Past work focused on localizing networked devices using their wireless

signals. Thus, in order to localize users, these past systems required the users to wear or

carry wireless devices. In contrast, this dissertation shows how we can localize users by

relying purely on the reflections of RF signals off their bodies. Prior to our work, the net-

working community made few attempts to localize or detect people even when they don’t

carry a wireless device. These proposals either require deploying dozens to hundreds of

sensors and detect users as they cross a link between these sensors affecting their signal

strength [165], or require an extensive calibration phase during which a person stands in all

1The longer the wavelength of an electromagnetic wave is, the lower its attenuation is [140]. Infrared and
thermal imaging devices employ signals whose wavelengths are very close to visible light; hence, they do not
penetrate building materials such as wood or concrete.
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possible locations in the area of interest to create a database of signal measurements [129].

Our designs are intrinsically different from these systems. While these past proposals rely

on mapping between current measurements and a database, our designs directly extract

the exact location from signal reflections. In §4.1, we elaborate on past literature on RF-

localization in the networking community.

• Capturing Human Skeleton: Recent work in the computer graphics community has pro-

posed techniques for seeing around corners. These proposals image hidden objects by

using light that bounces off corner reflectors in a scene [74, 90, 150]. In contrast, our work

uses RF signals that traverse occlusions rather than image around them. As such, our de-

signs do not require the placement of corner reflectors in the scene. Furthermore, unlike

these past systems, we do not require the hidden shape to be fully static during the acqui-

sition time, and hence evaluate our systems on real human subjects. In §6.1, we describe

these past proposals in details and and elaborate on our differences with their techniques.

• Noncontact Vital Sign Monitoring: Recently, the mounting interest in technologies for

well-being has led researchers to investigate approaches for noncontact vital sign moni-

toring. However, past proposals either require placing a sensor (e.g., accelerometer, RF

sensor, etc.) in very close proximity to the user’s chest [57, 58, 59, 96] or have to ensure that

there is no other source of motion in the environment (e.g., breathing of other humans,

fans, etc.) [6, 28, 52, 57, 58, 59, 88, 113, 179]. Additionally, recent work proposed using

vision-based techniques for noncontact vital sign monitoring; however, these techniques

require the person to face a camera which analyzes video feeds to monitor subtle changes

(e.g., in color) due to heartbeats [31, 169]. In contrast, our research enables us to monitor

a person’s breathing and heart rate even when the person is behind a wall or in a com-

pletely different room. In §7.1, we elaborate on the evolution of these noncontact vital sign

monitoring systems.

Finally, the research presented in this dissertation has spurred significant follow-up

work in the networking and mobile systems communities, and led to the exploration of

various wireless systems for numerous tasks including gesture recognition [21, 85, 117],

passive localization [164, 172], activity recognition [133, 162, 163], and breath monitor-

ing [99, 157].



CHAPTER 3

Sensing Motion Through Walls with

Wi-Fi

For many years humans have fantasized about X-ray vision and played with the concept

in comic books and sci-fi movies. This chapter explores the potential of using Wi-Fi sig-

nals and recent advances in MIMO communications to build a device that can capture

the motion of humans behind a wall and in closed rooms. Law enforcement personnel

can use the device to avoid walking into an ambush, and minimize casualties in standoff

and hostage situations. Emergency responders can use it to see through rubble and col-

lapsed structures. Ordinary users can leverage the device for gaming, intrusion detection,

privacy-enhanced monitoring of children and elderly, or personal security when stepping

into dark alleys and unknown places.

The concept underlying seeing through opaque obstacles is similar to radar and sonar

imaging. Specifically, when faced with a non-metallic wall, a fraction of the RF signal

would traverse the wall, reflect off objects and humans, and come back imprinted with a

signature of what is inside a closed room. By capturing these reflections, we can image

objects behind a wall. Building a device that can capture such reflections, however, is dif-

ficult because the signal power after traversing the wall twice (in and out of the room) is

reduced by three to five orders of magnitude [41]. Even more challenging are the reflec-

tions from the wall itself, which are much stronger than the reflections from objects inside

13
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the room [41, 121]. Reflections off the wall overwhelm the receiver’s analog to digital con-

verter (ADC), preventing it from registering the minute variations due to reflections from

objects behind the wall. This behavior is called the “Flash Effect” since it is analogous to

how a mirror in front of a camera reflects the camera’s flash and prevents it from capturing

objects in the scene.

So how can one overcome these difficulties? The radar community has been investi-

gating these issues, and has recently introduced a few ultra-wideband systems that can

detect humans moving behind a wall, and show them as blobs moving in a dim back-

ground [121, 173] (see the video at [11] for a reference). Today’s state-of-the-art system

requires 2 GHz of bandwidth, a large power source, and an 8-foot long antenna array

(2.4 meters) [40, 121]. Apart from the bulkiness of the device, blasting power in such a

wide spectrum is infeasible for entities other than the military. The requirement for multi-

GHz transmission is at the heart of how these systems work: they separate reflections off

the wall from reflections from the objects behind the wall based on their arrival time, and

hence need to identify sub-nanosecond delays (i.e., multi-GHz bandwidth) to filter the

flash effect.1 To address these limitations, an initial attempt was made in 2012 to use Wi-Fi

to see through a wall [42]. However, to mitigate the flash effect, this past proposal needs

to install an additional receiver behind the wall, and connect the receivers behind and in

front of the wall to a joint clock via wires [42].

The objective of this chapter is to enable a see-through-wall technology that is low-

bandwidth, low-power, compact, and accessible to non-military entities. To this end, the

chapter introduces WiVi,2 a see-through-wall device that employs Wi-Fi signals in the

2.4 GHz ISM band. WiVi limits itself to a 20 MHz-wide Wi-Fi channel, and avoids ultra-

wideband solutions used today to address the flash effect. It also disposes of the large

antenna array, typical in past systems, and uses instead a smaller 3-antenna MIMO radio.

So, how does WiVi eliminate the flash effect without using GHz of bandwidth? We

observe that we can adapt recent advances in MIMO communications to through-wall

imaging. In MIMO, multiple antenna systems can encode their transmissions so that the

signal is nulled (i.e., sums up to zero) at a particular receive antenna. MIMO systems use

this capability to eliminate interference to unwanted receivers. In contrast, we use nulling

1Filtering is done in the analog domain before the signal reaches the ADC.
2WiVi stands for Wi-Fi Vision.
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(a) Antenna Array (b) ISAR

Figure 3-1: A Moving Object as an Antenna Array. In (a), an antenna array is able to locate
an object by steering its beam spatially. In (b), the moving object itself emulates an antenna
array; hence, it acts as an inverse synthetic aperture. WiVi leverages this principle in order to
beamform the received signal in time (rather than in space) and locate the moving object.

to eliminate reflections from static objects, including the wall. Specifically, a WiVi device

has two transmit antennas and a single receive antenna. WiVi operates in two stages. In

the first stage, it measures the channels from each of its two transmit antennas to its receive

antenna. In stage 2, the two transmit antennas use the channel measurements from stage

1 to null the signal at the receive antenna. Since wireless signals (including reflections)

combine linearly over the medium, only reflections off objects that move between the two

stages are captured in stage 2. Reflections off static objects, including the wall, are nulled in

this stage. In §3.3, we refine this basic idea by introducing iterative nulling, which allows

us to eliminate residual flash and the weaker reflections from static objects behind the wall.

Second, how does WiVi track moving objects without an antenna array? To address this

challenge, we borrow a technique called inverse synthetic aperture radar (ISAR), which

has been used for mapping the surfaces of the Earth and other planets. ISAR uses the

movement of the target to emulate an antenna array. As shown in Fig. 3-1, a device using

an antenna array would capture a target from spatially spaced antennas and process this

information to identify the direction of the target with respect to the array (i.e., ✓). In

contrast, in ISAR, there is only one receive antenna; hence, at any point in time, we capture

a single measurement. Nevertheless, since the target is moving, consecutive measurements

in time emulate an inverse antenna array – i.e., it is as if the moving human is imaging the

WiVi device. By processing such consecutive measurements using standard antenna array

beam steering, WiVi can identify the spatial direction of the human. In §3.4.2, we extend

this method to multiple moving targets.

Additionally, WiVi leverages its ability to track motion to enable a through-wall gesture-
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based communication channel. Specifically, a human can communicate messages to a WiVi

receiver via gestures without carrying any wireless device. We have picked two simple

body gestures to refer to “0” and “1” bits. A human behind a wall may use a short se-

quence of these gestures to send a message to WiVi. After applying a matched filter, the

message signal looks similar to standard BPSK encoding (a positive signal for a “1” bit, and

a negative signal for a “0” bit) and can be decoded by considering the sign of the signal.

The system enables law enforcement personnel to communicate with their team across a

wall, even if their communication devices are confiscated.

We built a prototype of WiVi using USRP N210 radios and evaluated it in two office

buildings. Our results are as follows:

• WiVi can detect objects and humans moving behind opaque structural obstructions. This

applies to 8

00 concrete walls, 600 hollow walls, and 1.7500 solid wooden doors.

• A WiVi device pointed at a closed room with 6

00 hollow walls supported by steel frames

can distinguish between 0, 1, 2, and 3 moving humans in the room. Computed over 80

trials with 8 human subjects, WiVi achieves an accuracy of 100%, 100%, 85%, and 90%

respectively in each of these cases.

• In the same room, and given a single person sending gesture-based messages, WiVi cor-

rectly decodes all messages performed at distances equal to or smaller than 5 meters. The

decoding accuracy decreases to 75% at distances of 8 meters, and the device stops detect-

ing gestures beyond 9 meters. For 8 volunteers who participated in the experiment, on

average, it took a person 8.8 seconds to send a message of 4 gestures.

• In comparison to the state-of-the-art ultra-wideband see-through-wall radar [121], WiVi

is limited in two ways. First, replacing the antenna array by ISAR means that the angu-

lar resolution in WiVi depends on the amount of movement. To achieve a narrow beam

the human needs to move by about 4 wavelengths (i.e., about 50 cm). Second, in contrast

to [121], we cannot detect humans behind concrete walls thicker than 8

00. This is due to

both the much lower transmit power from our USRPs and the residual flash power from

imperfect nulling. On the other hand, nulling the flash removes the need for GHz band-

width. It also removes clutter from all static reflectors, rather than just one wall. This

includes other walls in the environments as well as furniture inside and outside the im-

aged room. To reduce clutter, the empirical results in past work are typically collected

using a person-height standing wall, positioned either outdoors or in large empty indoor



3.1. RELATED WORK 17

spaces [121, 173]. In contrast, our experiments are in standard office buildings with the

imaged humans inside closed fully-furnished rooms.

⌅ 3.1 Related Work

WiVi is related to past work in two major areas:

Through-wall radar. Interest in through-wall imaging has been surging for about a decade [10].

Earlier work in this domain focused on simulations [122, 156] and modeling [136, 137]. Re-

cently, there have been some implementations tested with moving humans [42, 121, 173].

These past systems eliminate the flash effect by isolating the signal reflected off the wall

from signals reflected off objects behind the wall. This isolation can be achieved in the

time domain, by using very short pulses (less than 1ns) [10, 174] whereby the pulse re-

flected off the wall arrives earlier in time than that reflected off moving objects behind

it. Alternatively, it may be achieved in the frequency domain by using a linear frequency

chirp [41, 121]. In this case, reflections off objects at different distances arrive with dif-

ferent tones. By analog filtering the tone that corresponds to the wall, one may remove

the flash effect. These techniques require ultra-wide bandwidths (UWB) of the order

of 2 GHz [41, 174]. Similarly, through-wall imaging products developed by the indus-

try [10, 12] hinge on the same radar principles, requiring multiple GHz of bandwidth and

hence are targeted solely at the military.

As a through-wall imaging technology, WiVi differs from all the above systems in that

it requires only few MHz of bandwidth and operates in the same range as Wi-Fi. It over-

comes the need for UWB by leveraging MIMO nulling to remove the flash effect.

Researchers have recognized the limitations of UWB systems and explored the poten-

tial of using narrowband radars for through-wall technologies [123, 124]. These systems

ignore the flash effect and try to operate in presence of high interference caused by re-

flections off the wall. They typically rely on detecting the Doppler shift caused by moving

objects behind the wall. However, the flash effect limits their detection capabilities. Hence,

most of these systems are demonstrated either in simulation [122], or in free space with no

obstruction [89, 101]. The ones demonstrated with an obstruction use a low-attenuation

standing wall, and do not work across higher attenuation materials such as solid wood
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or concrete [123, 124]. WiVi shares the objectives of these devices; however, it introduces

a new approach for eliminating the flash effect without wideband transmission. This en-

ables it to work with concrete walls and solid wood doors, as well as fully closed rooms.

The only attempt which we are aware of that uses Wi-Fi signals in order to see through

walls was made in 2012 [42]. This system required both the transmitter and a reference

receiver to be inside the imaged room. Furthermore, the reference receiver in the room has

to be connected to the same clock as the receiver outside the room. In contrast, WiVi can

perform through-wall imaging without access to any device on the other side of the wall.

Gesture-based interfaces. Today, commercial gesture-recognition systems – such as the

Xbox Kinect [16], Nintendo Wii [9], etc. – can identify a wide variety of gestures. The

academic community has also developed systems capable of identifying human gestures

either by employing cameras [105] or by placing sensors on the human body [47, 87]. Prior

work has also leveraged narrowband signals in the 2.4 GHz range to identify human ac-

tivities in line-of-sight using micro-Doppler signatures [89]. WiVi, however, presents the

first gesture-based interface that works in non-line-of-sight scenarios, and even through a

wall, yet does not require the human to carry a wireless device or wear a set of sensors.

⌅ 3.2 WiVi Overview

WiVi is a wireless device that captures moving objects behind a wall. It leverages the ubiq-

uity of Wi-Fi chipsets to make through-wall imaging relatively low-power, low-cost, low-

bandwidth, and accessible to average users. To this end, WiVi uses Wi-Fi OFDM signals in

the ISM band (at 2.4 GHz) and typical Wi-Fi hardware.

WiVi is essentially a 3-antenna MIMO device: two of the antennas are used for trans-

mitting and one is used for receiving. It also employs directional antennas to focus the en-

ergy toward the wall or room of interest.3 Its design incorporates two main components:

1) the first component eliminates the flash reflected off the wall by performing MIMO

nulling; 2) the second component tracks a moving object by treating the object itself as an

antenna array using a technique called inverse SAR.

WiVi can be used in one of two modes, depending on the user’s choice. In mode 1, it
3Directional antennas have a form factor on the order of the wavelength. At Wi-Fi frequencies, this corre-

sponds to approximately 12 cm.
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can be used to image moving objects behind a wall and track them. In mode 2, on the other

hand, WiVi functions as a gesture-based interface from behind a wall that enables humans

to compose messages and send them to the WiVi receiver.

In sections §3.3- §3.5, we describe WiVi’s operation in detail.

⌅ 3.3 Eliminating the Flash

In any through-wall system, the signal reflected off the wall, i.e., the flash, is much stronger

than any signal reflected from objects behind the wall. This is due to the significant atten-

uation which electromagnetic signals suffer when penetrating dense obstacles. Table 3-1

shows a few examples of the one-way attenuation experienced by Wi-Fi signals in common

construction materials (based on [3]). For example, a one-way traversal of a standard hol-

low wall or a concrete wall can reduce Wi-Fi signal power by 9 dB and 18 dB respectively.

Since through-wall systems require traversing the obstacle twice, the one-way attenuation

doubles, leading to an 18-36 dB flash effect in typical indoor scenarios.

Building Materials 2.4 GHz
Glass 3 dB

Solid Wood Door 1.75 inches 6 dB
Interior Hollow Wall 6 inches 9 dB

Concrete Wall 18 inches 18 dB
Reinforced Concrete 40 dB

Table 3-1: One-Way RF Attenuation in Common Building Materials at 2.4 GHz [3].

This problem is exacerbated by two other parameters: First, the actual reflected signal

is significantly weaker since it depends both on the reflection coefficient as well as the

cross-section of the object. The wall is typically much larger than the objects of interest,

and has a higher reflection coefficient [41]. Second, in addition to the direct flash caused by

reflections off the wall, through-wall systems have to eliminate the direct signal from the

transmit to the receive antenna, which is significantly larger than the reflections of interest.

WiVi uses interference nulling to cancel both the wall reflections and the direct signal from

the transmit to the receive antenna, hence increasing its sensitivity to the reflections of

interest.
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⌅ 3.3.1 Nulling to Remove the Flash

Recent advances show that MIMO systems can pre-code their transmissions such that the

signal received at a particular antenna is cancelled [66, 142]. Past work on MIMO has

used this property to enable concurrent transmissions and null interference [95, 118]. We

observe that the same technique can be tailored to eliminate the flash effect as well as the

direct signal from the transmit to the receive antenna, thereby enabling WiVi to capture the

reflections from objects of interest with minimal interference.

At a high level, WiVi’s nulling procedure can be divided into three phases: initial

nulling, power boosting, and iterative nulling, as shown in Alg. 1.

Initial Nulling. In this phase, WiVi performs standard MIMO nulling. Recall that

WiVi has two transmit antennas and one receive antenna. First, the device transmits a

known preamble x only on its first transmit antenna. This preamble is received at the

receive antenna as y = h
1

x, where h
1

is the channel between the first transmit antenna and

the receive antenna. The receiver uses this signal in order to compute an estimate of the

channel ˆh
1

. Second, the device transmits the same preamble x, this time only on its second

antenna, and uses the received signal to estimate channel ˆh
2

between the second transmit

antenna and the receive antenna. Third, WiVi uses these channel estimates to compute the

ratio p = �

ˆh
1

/ ˆh
2

. Finally, the two transmit antennas transmit concurrently, where the first

antenna transmits x and the second transmits px. Therefore, the perceived channel at the

receiver is:
h
res

= h
1

+ h
2

 
�

ˆh
1

ˆh
2

!
⇡ 0 (3.1)

In the ideal case, where the estimates ˆh
1

and ˆh
2

are perfect, the received signal h
res

would

be equal to zero.

Hence, by the end of this phase WiVi has eliminated the signals reflected off all static

objects as well as the direct signal from the transmit antennas to the receive antenna. If

no object moves, the channel will continue being nulled. However, since RF reflections

combine linearly over the medium, if some object moves, its reflections will start showing

up in the channel value.

Power Boosting. Simply nulling static reflections, however, is not enough because the

signals due to moving objects behind the wall are too weak. Say, for example, the flash
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1 Pseudocode for WiVi’s Nulling
INITIAL NULLING:
⇤ Channel Estimation
Tx ant. 1 sends x; Rx receives y; ˆh1  y/x
Tx ant. 2 sends x; Rx receives y; ˆh2  y/x
⇤ Pre-coding: p � ˆh1/ ˆh2

POWER BOOSTING:
Tx antennas boost power
Tx ant. 1 transmits x, Tx ant. 2 transmits px concurrently
ITERATIVE NULLING:
i 0

repeat
Rx receives y; hres  y/x
if i even then

ˆh1  hres +
ˆh1

else
ˆh2  

⇣
1�

hres

ĥ1

⌘
ˆh2

p � ˆh1/ ˆh2

Tx antennas transmit concurrently
i i+ 1

until Converges

effect was 30 to 40 dB above the power of reflections off moving objects. Even though we

removed the flash effect, we can hardly discern the signal due to moving objects since it

will be immersed in the receiver’s hardware noise. Thus, we next boost the transmitted

signal power.4 Note that because the channel has already been nulled, i.e., h
res

⇡ 0, this

increase in power does not saturate the receiver’s ADC. However, it increases the overall

power that traverses the wall, and, hence, improves the SNR of the signal due to the objects

behind the wall.

Iterative Nulling. After boosting the transmit power, residual reflections which were

below the ADC quantization level become measurable. Such reflections from static objects

can create significant clutter in the tracking process if not removed. To address this issue,

WiVi performs a procedure called iterative nulling. At a high level, the objective is sim-

ple: we need to null the signal again after boosting the power to eliminate the residual

reflections from static objects. The challenge, however, is that at this stage, we cannot sep-

arately estimate the channels from each of the two transmit antennas since, after nulling,

we only receive a combined channel. We also cannot remove the nulling and re-estimate

the channels, because after boosting the power, without nulling, the ADC would saturate.
4In our USRP implementation, we boost the power by 12 dB. This value is limited by the need to stay within

the linear range of the USRP transmitter. After nulling, we can also boost the receive gain without saturating
the receiver’s ADC. On average, we null 42 dB of the signal, which allows a large boost in the receive gain.
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However, WiVi can leverage the fact that errors in the channel estimates are much

smaller than the channel estimates themselves, and use this observation to refine its esti-

mates. Specifically, by assuming that the estimate for h
2

is accurate (i.e., ˆh
2

= h
2

), Eq. 3.1 is

left with only one unknown variable h
1

. By solving for this unknown variable, we obtain

a better estimate of h
1

. In particular, the new estimate ˆh
1

0
is:

ˆh0
1

= h
1

= h
res

+

ˆh
1

(3.2)

Similarly, by assuming that the estimate for h
1

is accurate (i.e., ˆh
1

= h
1

), we can solve

Eq. 3.1 for a finer estimate for h
2

:

ˆh0
2

= h
2

=

✓
1�

h
res

ˆh
1

◆
ˆh
2

(3.3)

Therefore, WiVi iterates between these two steps to obtain finer estimates for both h
1

and

h
2

, until the two estimates ˆh
1

and ˆh
2

converge. This iterative nulling algorithm converges

exponentially fast. In particular, in the appendix, we prove the following lemma:

Lemma 3.3.1. Assume that | ˆ

h

2

�h

2

h

2

| < 1, then, after i iterations, |h(i)
res

| = |h(0)
res

||

ˆ

h

2

�h

2

h

2

|

i

A few points are worth noting about WiVi’s procedure to eliminate the flash effect:

• Besides removing the wall’s reflection, it also removes reflections received from other sta-

tionary objects both in front of and behind the wall, such as the table on which the radio is

mounted, the floor, the radio case itself, etc. In addition, it removes the direct signal from

the transmitting antennas to our receive antenna. Note that the direct channels between

WiVi’s transmit antennas and its receive antenna are significantly attenuated because WiVi

uses directional transmit and receive antennas focused towards the wall (and away from

the direct path).

• WiVi’s nulling algorithm provides a 42 dB mean reduction in signal power, as shown

in §3.6.6. This reduction is sufficient to remove the flash effect from a wide range of wall

structures including solid wood doors, 6” hollow walls, and most indoor concrete walls.

Further, since WiVi uses directional antennas focused on the imaged wall, the direct sig-

nal from the transmit antennas to WiVi’s receive antenna is weaker than in typical MIMO

systems, and becomes negligible after nulling.

• Nulling can be performed in the presence of objects moving behind the wall; it can also



3.4. IDENTIFYING AND TRACKING HUMANS 23

be performed in the presence of objects moving in front of the wall as long as they are

outside the field of view of WiVi’s directional antennas. Because nulling is mathematically

equivalent to subtraction, the presence of such moving objects leads to a small additive

constant at the output of WiVi after nulling. Such additive constants do not prevent later

tracking of moving objects.

⌅ 3.4 Identifying and Tracking Humans

Now that we have eliminated the impact of static objects in the environment, we can focus

on tracking moving objects. We will refer to moving objects as humans since they are

the primary subjects of interest for our application; however, our system is general, and

can capture other moving bodies.5 Below, we first explain how WiVi tracks the motion

of a single human. We then show how to extend our approach to track multiple moving

humans.

⌅ 3.4.1 Tracking a Single Human

Most prior through-wall systems track human motion using an antenna array. They steer

the array’s beam to determine the direction of maximum energy. This direction corre-

sponds to the signal’s spatial angle of arrival. By tracking that angle in time, they infer

how the object moves in space.

WiVi, however, avoids using an antenna array for two reasons: First, in order to obtain

a narrow beam and hence achieve a good resolution, one needs a large antenna array with

many antenna elements. This would result in a bulky and expensive device. Second, since

WiVi eliminates the flash effect using MIMO nulling, adding multiple receive antennas

would require nulling the signal at each of them. This would require adding more transmit

antennas, thus making the device even bulkier and more expensive.

To capture the benefits of an antenna array while avoiding its drawbacks, WiVi lever-

ages a technique called inverse synthetic aperture radar (ISAR). ISAR exploits the move-

ment of the target to emulate an antenna array. Existing systems which use antenna arrays

capture the signal reflected off a target from spatially spaced antennas and processes this

5For example, we have successfully experimented with tracking an iRobot Create robot.
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information to identify the direction of the target with respect to the array. In contrast, in

ISAR, there is only one receive antenna; hence, at any point in time, the receiver captures

a single measurement. However, as the target moves, he/she samples the received signal

at successive locations in space, as if we had a receive antenna at each of these points.

Furthermore, because of channel reciprocity, successive time samples received by WiVi

correspond to successive spatial locations of the moving target. Hence, WiVi effectively

receives in time what an antenna array would receive in space. By treating consecutive

time samples as spatial samples, WiVi can emulate an antenna array and use it to track

motion behind the wall.

In what follows, we formalize the above discussion. Let y[n] be the signal sample

received by WiVi at a discrete time point n. Define the spatial angle ✓ as the angle between

the line connecting the human to WiVi and the normal to the motion, as shown in Fig. 3-

1(b). Note that the sign of ✓ is positive when the vector from the human to WiVi and the

vector of the motion are in the same direction, and negative when these two vectors are in

opposite directions.

We are interested in computing A[✓, n], a function that measures the signal along the

spatial direction ✓ at time n. To compute this value, WiVi first processes the received sam-

ples to remove the effect of the transmitted signal, and obtain the channel as a function of

time, i.e., h[n] = y[n]/x[n]. To emulate an antenna array of size w, WiVi considers w con-

secutive channel measurements h[n] . . . h[n+w], as shown in Fig. 3-2. WiVi then computes

A[✓, n] by applying standard antenna array equations [139] as follows:

A[✓, n] =
wX

i=1

h[n+ i]ej
2⇡

�

i� sin✓, (3.4)

where � is the wavelength, and � is the spatial separation between successive antennas in

the array.6 At any point in time n, the value of ✓ that produces the highest value in A[✓, n]

will correspond to the direction along which the object is moving.

To compute A[✓, n] from the above equation, we need to estimate �, the antenna spac-

ing in the emulated array. Since human motion emulates the antennas in the array, �= vT ,

where T is WiVi’s sampling period, and v is the velocity of the motion. Of course, WiVi

6� is twice the one-way separation to account for the round-trip time.
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Figure 3-2: Time samples as Antenna Arrays. WiVi groups consecutive time samples into
overlapping windows of size w, then treats each window h[n] . . . h[n+w] as an antenna array.
This allows it to track the direction of a moving object with respect to the receiver.
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(a) Experimental Setup (b) WiVi’s output

Figure 3-3: WiVi tracks a single person’s motion. (a) shows the experimental setup of a trial
which consisted of a single person moving around in a conference room. (b) shows how WiVi is
able to track the motion of the person by computing the variation of the inverse angle of arrival
with time, i.e. A0[✓, n] for ✓ in [�90�,90�].

does not know the exact speed at which the human is moving. However, the range of

speeds that humans have in a confined room is fairly narrow. Hence, we can substitute

a value for v that matches comfortable walking (our default is v = 1m/s [37]). Note that

errors in the value of v translate to an underestimation or an overestimation of the exact

direction of the human.7 Errors in velocity, however, do not prevent WiVi from tracking

that the human is moving closer (i.e., angle is positive) or moving away from the WiVi

device (angle is negative). In other words, because we do not know the exact v, we cannot

pinpoint the location of the human, but we can track her/his relative movements.

Fig. 3-3 shows results from one of our experiments. In particular, 3-3(a) shows a dia-

gram of the movement, and 3-3(b) plots the magnitude of A[✓, n] (in dB) as a heat map.

There are two lines in Fig. 3-3(b): the first one is a zero line, which represents the DC (i.e.,

the average energy from static elements).8 This line is present regardless of the number

7For example, in one of our experiments, WiVi estimated the human’s direction of motion at 30� when the
actual direction was 40� but she was moving at a speed around 1.2m/s

8Recall that nulling mitigates these reflections so that they do not saturate the receiver’s ADC, enabling
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of moving objects. Second, there is a curved line with a changing angle. This line tracks

the human motion. Around n = 0 seconds, the person starts moving towards the WiVi

device. As a result, the spatial angle ✓ is positive and decreasing. (It is positive because

the vector of motion and the line from the human to WiVi are in the same direction, and

it is decreasing because the absolute angle between the normal on the motion and the line

from the human to WiVi is getting smaller.) Around n = 1.8s, the person crosses in front

of the WiVi device, at which time his angle becomes zero. From n = 1.8s to n = 3s, the

person is moving away from WiVi, and hence, his angle is negative. But the absolute value

of the angle is decreasing. At n = 3, the person turns and starts moving inward, causing

the angle to go back toward zero, but the signal becomes weaker as he is now relatively far

from the WiVi receiver.9

⌅ 3.4.2 Tracking Multiple Humans

In this section, we show how WiVi extends its tracking procedure to multiple humans. Our

previous discussion about using human motion to emulate an antenna array still holds.

However, each human will emulate a separate antenna array. Since WiVi has a single

antenna, the received signal will be a superposition of the antenna arrays of the moving

humans. In particular, instead of having one curved line as in Fig. 3-3(b), at any time, there

will be as many curved lines as moving humans at that point in time.

However, with multiple humans, the noise increases significantly. On one hand, each

human is not just one object because of different body parts moving in a loosely coupled

way. On the other hand, the signal reflected off all of these humans is correlated in time,

since they all reflect the transmitted signal. The lack of independence between the reflected

signals is important. For example, the reflections of two humans may combine systemati-

cally to dim each other over some period of time.

WiVi to register the minute channel variations due to moving objects behind the wall. However, minuscule
errors in channel estimates during the nulling phase would still be registered as a residual DC by WiVi.

9Interestingly, even when the direction of motion is perpendicular to the line connecting the person to the
device, WiVi registers this motion (note how the DC line is much wider at n= 5 than at n= 0). This is because
Eq. 3.4 approximates WiVi as a monostatic radar, i.e., it simplifies the model by assuming all antennas are
co-located. A more detailed model that accounts for the fact that the antennas are not completely co-located
shows that for a trajectory to be invisible (i.e., coincide with the DC line) two conditions have to hold: (1) the
person moves on an ellipse whose foci are the first transmit antenna and the receive antenna, (2) she moves
on an ellipse whose foci are the second transmit antenna and the receive antenna. However, the locus of such
motion is discontinuous.
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The problem of disentangling correlated super-imposed signals is well studied in sig-

nal processing. The basic approach for processing such signals relies on the smoothed

MUSIC algorithm [131, 170]. Similar to the standard antenna array processing in Eq. 3.4,

smoothed MUSIC computes the power received along a particular direction, which we

call A0
[✓, n] because it estimates the same function in Eq. 3.4 but in manner more resilient

to noise and correlated signals [139].

For a given antenna array h = (h[n], . . . , h[n+w]) of size w, MUSIC first computes the

w⇥w correlation matrix R[n]:

R[n] = E[hhH
], (3.5)

where H refers to the hermitian (conjugate transpose) of the vector. It then performs an

eigen decomposition of R[n] to remove the noise and keep the strongest eigenvectors,

which in our case correspond to the few moving humans, as well as the DC value. For

example, in the presence of only one human, MUSIC would produce one main eigenvec-

tor (in addition to the DC eigenvector). On the other hand, if 2 or 3 humans were present,

it would discover 2 or 3 eigenvectors with large eigenvalues (in addition to the DC eigen-

vector). MUSIC partitions the eigenvector matrix U [n] into 2 subspaces: the signal space

U
S

[n] and the noise space U
N

[n], where the signal space is the span of the signal eigen-

vectors, and the noise space is the span of the noise eigenvectors. MUSIC then projects all

directions ✓ on the null space, then takes the inverse. This causes the ✓’s corresponding

to the real signals (i.e., moving humans) to spike. More formally, MUSIC computes the

power density along each angles ✓ as:

A0
[✓, n] =

1

P
K

k=1

||

P
w

i=1

e�j

2⇡

�

i� sin✓U
N

[n](i, k)||2
. (3.6)

where K is the total number of noise eigenvectors.

In comparison to the conventional MUSIC algorithm described above, smoothed MU-

SIC performs an additional step before it computes the correlation matrix. It partitions

each array h of size w into overlapping sub-arrays of size w0 < w. It then computes the

correlation matrices for each of these sub-arrays. Finally, it combines the different cor-

relation matrices by summing them up before performing the eigen decomposition. The

additional step performed by smoothed MUSIC is intended to de-correlate signals arriving
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from spatially different entities. Specifically, by taking different shifts for the same antenna

array, reflections from different bodies get shifted by different amounts depending on the

distance and orientation of the reflector, which helps de-correlating them [131].

Fig. 3-4 shows the result of applying smoothed MUSIC on the signal captured from two

moving humans. Similar to Fig. 3-3(b), the y-axis corresponds to the angle, and the x-axis

corresponds to time. As before, the zero line corresponds to DC. At any point in time, we

see significant energy at two angles (besides the DC). For example, at time n = 0.5s, both

humans have negative angles and, hence, are moving away from WiVi. Between n = 1s

and n = 2s, only one angle is present. This may be because the other human is not moving

or he/she is too far inside the room. Again, from n = 2s to n = 3s, we see both humans,

one moving towards the device and the other moving away (since one has a positive angle

while the other has a negative angle).

Figure 3-4: WiVi tracks the motion of two humans. The figure shows how the presence of two
humans translates into two curved lines whose angles vary in time, and one straight line which
corresponds to the DC.

One point is worth emphasizing: the smoothed MUSIC algorithm is conceptually sim-

ilar to the standard antenna array beamforming discussed in §3.4.1; both approaches aim

at identifying the spatial angle of the signal. However, by projecting on the null space

and taking the inverse norm (as described in Eq. 3.6), MUSIC achieves sharper peaks, and

hence is often termed a super-resolution technique [139]. Because smoothed MUSIC is

similar to antenna array beamforming, it can be used even to detect a single moving ob-

ject, i.e., the presence of a single person. In fact, Fig. 3-3(b) was generated by the smoothed

MUSIC algorithm.10

10Plotting the magnitude of A[✓, n] as opposed to A0[✓, n] gives the same figure but with more noise. This
is because, unlike standard beamforming, the MUSIC algorithm does not incur significant side lobes which
would otherwise mask part of signal reflected from different objects.
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Finally, to enable WiVi to automatically detect the number of humans in a closed room,

one option is to train a machine learning classifier using images like those in Fig. 3-3(b) and

Fig. 3-4. We discovered, however, that a simple heuristic based on spatial variance works

well in practice. As explained earlier, moving humans appear as curved lines in the 2-D

function A0
[✓, n]. Any human can be only at one location at any point in time. Thus, at any

point in time, the larger the number of humans, the higher the spatial variance. The spatial

variance is computed as follows. First, WiVi computes the spatial centroid as a function of

time:
C[n] =

90X

✓=�90

✓ · 20 log
10

A0
[✓, n], (3.7)

where A0
[✓, n] is given by Eq. 3.6. It then computes the spatial variance as:

V AR[n] =
90X

✓=�90

✓2 · 20 log
10

A0
[✓, n]�C[n]2 (3.8)

This variance is then averaged over the duration of the experiment to return one num-

ber that describes the spatial variance in the room for the duration of the measurement.

WiVi uses a training set and a testing set to learn the thresholds that separate the spatial

variances corresponding to 0, 1, 2, or 3 humans. The testing and training experiments are

conducted in different rooms. In §3.6.4, we evaluate this scheme and measure its ability at

automatically capture the number of moving humans.

⌅ 3.5 Through-Wall Gesture-Based Communication

For a human to transmit a message to a computer wirelessly, she typically has to carry a

wireless device. In contrast, WiVi can enable a human who does not carry any wireless

device to communicate commands or short messages to a receiver using simple gestures.

WiVi designates a pair of gestures as a ‘0’ bit and a ‘1’ bit. A human can compose these

gestures to create messages that have different interpretations. Additionally, WiVi can

evolve by borrowing other existing principles and practices from today’s communication

systems, such as adding a simple code to ensure reliability, or reserving a certain pattern

of ‘0’s and ‘1’s for packet preambles. At this stage, WiVi’s interface is still very basic, yet

we believe that future advances in through-wall technology can render this interface more

expressive.
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Below, we describe the gesture-based communication channel that we implemented

with WiVi.

⌅ 3.5.1 Gesture Encoding

At the transmitter side, the ‘0’ and ‘1’ bits must be encoded using some modulation scheme.

WiVi implements this encoding using gestures. One can envision a wide variety of gestures

to represent these bits. However, in choosing our encoding we have imposed three condi-

tions: 1) the gestures must be composable – i.e. at the end of each bit, whether ‘0’ or ‘1’,

the human should be back in the same initial state as the start of the gesture. This enables

the person to compose multiple such gestures to send a longer message. 2) The gestures

must be simple so that a human finds it easy to perform them and compose them. 3) The

gestures should be easy to detect and decode without requiring sophisticated decoders,

such as machine learning classifiers.

Given the above constraints, we have selected the following gestures to modulate the

bits: a ‘0’ bit is a step forward followed by a step backward; a ‘1’ bit is a step backward

followed by a step forward. This modulation is similar to Manchester encoding, where a ‘0’

bit is represented by a falling edge of the clock, (i.e., an increase in the signal value followed

by a decrease,) and a ‘1’ bit is represented by a rising edge of the clock, (i.e., a reduction in

signal value followed by an increase) [7]. These gestures are simple, composable and easy

to decode as we show in §3.5.2.

Figure 3-5: Gestures as detected by WiVi. The figure shows a sequence of four steps: step
forward, step backward, step backward, step forward. Forward steps appear as triangles above
the zero line; backward steps appear as inverted triangles below the zero line. Each pair of steps
represents a gesture/bit: the first two represent bit ‘0’, the second two represent bit ‘1’.

Fig. 3-5 shows the signal captured by WiVi, at the output of the smoothed MUSIC
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algorithm for each of these two gestures. Taking a step forward towards the WiVi device

produces a positive angle, whereas taking a step backward produces a negative angle. The

exact values of the produced angles depend on whether the human is exactly oriented

towards the device. Recall that the angle is between the vector orthogonal to the motion

and the line connecting the human to the WiVi device, and its sign is positive when the

human is moving toward WiVi and negative when the human moves away from WiVi.

As shown in Fig. 3-6, if the human is directly oriented towards the device, the two angles

are +90� and -90�. If the human does not know the exact location of the WiVi device and

simply steps in its general direction, the absolute value of the angle is smaller, but the

shape of the bit is maintained.

!"#"$%

θ2=+90%

!"#"$%

θ1=-90% θ2=+60!

"#$#%!

(a) Forward (b) Backward (c) Slanted

Figure 3-6: Gestures as Angles. Recall ✓’s magnitude and sign as defined in §3.4.1. In (a), the
subject takes one step forward; the emulated antenna array’s normal forms an angle of 90� with
the line from the human to WiVi. Because the vector of the motion and the vector from the
human to WiVi are in same direction, ✓ is positive; hence, it is +90�. In (b), the subject takes a
step backward, and ✓ = �90 degrees. In (c), the subject does not exactly know where the WiVi
device is, so he performs the steps towards the wall, without orienting himself directly toward
WiVi. Note that the vector of motion and the vector from the human to WiVi are in the same
direction; hence, ✓ is positive. However, due to the slanted orientation, it is now +60� (rather
than +90�).

⌅ 3.5.2 Gesture Decoding

Decoding the above gestures is fairly simple and follows standard communication tech-

niques. Specifically, WiVi’s decoder takes as input A0
[✓, n]. Similar to a standard de-

coder [50], WiVi applies a matched filter on this signal. However, since each bit is a com-

bination of two steps, forward and backward, WiVi applies two matched filters: one for

the step forward and one for the step backward. Because of the structure of the signal

shown in Fig. 3-5, the two matched filters are simply a triangle above the zero line, and an

inverted triangle below the zero line. WiVi applies these filters separately on the received

signal, then adds up their output.
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Fig. 3-7 shows the results of applying the matched filters on the received signal in

Fig. 3-5. Note that the signal after applying the matched filters looks fairly similar to a

BPSK signal, where a peak above the zero line represents a ‘1’ bit and a trough below the

zero line represents a ‘0’ bit. (Though, in WiVi, our encoding is such that a peak or a trough

alone only represents half a bit.) Next, WiVi uses a standard peak detector to detect the

peaks/troughs and match them to the corresponding bits. Fig. 3-7 shows the identified

peaks and the detected bits for the two-bit message in Fig. 3-5.
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Figure 3-7: Gesture Decoding in WiVi. The figure shows how WiVi decodes the gestures of
Fig. 3-5. (a) shows the output of the matched filter step. (b) shows the output of the peak
detector. The sequence (1,�1) represents bit ‘0’, whereas the sequence (�1,1) represents bit ‘1’.

⌅ 3.6 Implementation and Evaluation

In this section, we describe our implementation and the results of our experimental evalu-

ation.

⌅ 3.6.1 Implementation

We built WiVi using USRP N210 software radios [13] with SBX daughter boards. The sys-

tem uses LP0965 directional antennas [15], which provide a gain of 6 dBi. The system con-

sists of three USRPs connected to an external clock so that they act as one MIMO system.

Two of the USRPs are used for transmitting, and one for receiving. MIMO nulling is imple-

mented directly into the UHD driver, so that it is performed in real-time. Post-processing
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using the smoothed MUSIC algorithm is performed on the obtained traces offline in Mat-

lab R2012a under Ubuntu 11.10 on a 64-bit machine with Intel i7 processor. Matlab already

has a built-in and highly optimized smoothed MUSIC implementation. Processing traces

of 25-second length took on average 1.0564s per trace, with a standard deviation of 0.2561s.

We implement standard Wi-Fi OFDM modulation in the UHD code; each OFDM sym-

bol consists of 64 subcarriers including the DC. The nulling procedure in §3.3 is performed

on a subcarrier basis. The channel measurements across the different subcarriers are com-

bined to improve the SNR. Since USRPs cannot process signals in real-time at 20 MHz, we

reduced the transmitted signal bandwidth to 5 MHz so that our nulling can still run in real

time.

Finally, the emulated antenna array was taken over 0.32 seconds. The collected samples

during this duration were averaged into an antenna array of size w = 100, which was

provided as an input to the smoothed MUSIC algorithm.

⌅ 3.6.2 Experimental Setup

Most of our experiments were run in one office building using two different conference

rooms. The rooms have standard furniture: tables, chairs, boards, etc. The interior walls

of the building are 6-inch hollow walls supported by steel frames with sheet rock on top.

The first conference room is 7⇥ 4 meters; the second is 11⇥ 7 meters. We also conducted

some experiments in a second building on our campus which has 8-inch concrete walls.

The experiments were conducted with eight human subjects, three women and five

men, of different heights and builds. For the tracking experiments, we asked the subjects

to enter a room, close the door, and move at will. The through-wall gesture experiments

were performed with four subjects (one woman and three men). The persons were shown

the gestures in advance and tried them a few times. Then, each of them entered the room

separately and performed the gestures. The experiments are repeated in different locations

in different rooms, and in different locations in each room.

⌅ 3.6.3 Micro Benchmarks

First, we would like to get a better understanding of the information captured by WiVi,

and how it relates to the moving objects. We run experiments in two conference rooms
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Figure 3-8: Tracking human motion with WiVi. The figures show output traces with a different
number of humans after processing with the smoothed MUSIC algorithm. They plot A0[✓, n]
where ✓ is the angle in [�90,90] is plotted on the y-axis and time is on the x-axis. (a) shows
traces for one human; (b) for two humans; and (c) for three humans moving behind the wall of
a closed room.
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in our building. Both conference rooms have 6

00 hollow walls supported by steel frames

with sheet rock on top. In all of these experiments, we position WiVi one meter away

from a wall that has neither a door nor a window. For each of our experiments, we ask a

number of humans between 1 and 3 to enter the room, close the door, and move at will.

WiVi performs nulling in real time and collects a trace of the signals. We perform each

experiment with a different subset of our subjects. We process the collected traces using

the smoothed MUSIC algorithm as described in §3.4.2.

Fig. 3-8 shows the output of WiVi in the presence of one, two, or three humans moving

in a closed room. Consider the plots with one human in Figs. 3-8(a). Besides the DC,

the graphs show one fuzzy curved line. The line tracks the spatial angle of the moving

human. Compare these figures with the set of figures in 3-8(b), which capture two moving

humans. In 3-8(b), we can discern two curved lines that track the angular motion of these

humans with respect to WiVi. If we take a vertical line at any time, in any of the two-

human figures, we see at most two bright lines, besides the DC. This is because, in these

figures, at any point in time, there are at most two moving bodies in the room. Let us

zoom in on the interval [1s,2s] in 3-8(b1). During this interval, we see only one curved

line. This has two possible interpretations: either one of the two people stopped moving

or he/she was too deep inside the room that we could not capture his/her signal. As we

move to 3-8(c), the figures get fuzzier since we have more people moving in the same area.

However the general observations carry to these figures. Specifically, we can identify the

presence of three humans from observing multiple intervals in which we can discern three

curved lines. For example, consider the interval [1.8s,2.5s] in 3-8(c1); it shows two lines

with positive angles and one with a negative angle. These lines indicate that two people

are moving towards WiVi, while one person is moving away.

One can also make multiple observations based on the shape of the lines. First, a pos-

itive angle means the human is moving toward WiVi, while a negative angle means that

he is moving away. The value of that angle depends on the orientation of the human and

the direction of motion. Each line looks like a wave because, given a confined space, a

person that moves towards WiVi will eventually have to move away or stop. Second, the

brightness of the line typically indicates distance. Note that for the same spatial angle, one

may be close or far from WiVi. Hence, some large angles appear bright or dim depending
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on the part of the trace we look at.

A third observation is that as the number of humans increases, it becomes harder to

separate them. The problem is that the curved lines are fuzzy both due to residual noise

and the fact that a human can move his body parts differently as he moves. For example,

waving while moving makes the lines significantly fuzzier as in 3-8(a3).

Finally, our experiments are conducted in multipath-rich indoor environments. Thus,

the results in Fig. 3-8 show that WiVi works in the presence of multipath effects. This is

because the direct path from a moving human to WiVi is much stronger than indirect paths

which bounce off the internal walls of the room. A moving human acts like a large antenna.

In order to block the direct path, the human body must be obstructed by a pillar or a large

piece of furniture, and stay obstructed for the duration of WiVi’s measurements.11

⌅ 3.6.4 Automatic Detection of Moving Humans

We are interested in evaluating whether WiVi can use the spatial variance described in §3.4.2

to automate the detection of moving humans. As in the previous section, we run our ex-

periments in the same conference rooms described in §3.6.3. Again, we position WiVi such

that it faces a wall that has neither a door nor a window. For each of our experiments,

we ask a number of humans between 0 and 3 from our volunteers to enter the room and

move at will. Each experiment lasts for 25 seconds excluding the time required for itera-

tive nulling. We perform each experiment with a different subset of subjects, and conduct

a total of 80 experiments, with equal number of experiments spanning the cases of 0, 1,

2, and 3 moving humans. We process the collected traces offline and compute the spatial

variance as described in §3.4.2.

Fig. 3-9 shows the CDFs (cumulative distribution functions) of the spatial variance for

the experiments run with each number of moving humans: 0, 1, 2, and 3. We observe the

following:

• The spatial variance provides a good metric for distinguishing the number of moving hu-

11We note that the experiments in this chapter were performed in scenarios where the separator is homo-
geneous wall (e.g., concrete, wooden, glass, etc.). There might be scenarios in which the separator is non-
homogeneous (e.g., the field of view of WiVi’s directional antenna captures a side of a wall and a glass win-
dow), which may cause some indirect paths to be stronger than the direct path. In this case, WiVi will still
detect a moving object but may have errors in tracking the angle of the movement or predicting the number
of moving humans.
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Figure 3-9: CDF of spatial variance for a different number of moving humans. As the number
of humans increases, the spatial variance increases.

mans. In particular, the variance increases as the number of humans involved in each

experiment increases. This is also evident from the figures in 3-8, where one can visually

see that the spatial variance is higher with more moving bodies in the room.

• Interestingly, the separation between successive CDFs decreases as the number of humans

increases. In particular, the separation is larger between the CDFs of no humans and one

human, than between the CDFs of one human and two humans. The separation is the least

between the CDFs of 2 humans and 3. To understand this behavior, recall that because the

room has a confined space, as the number of people increases, the freedom of movement

decreases. Hence, adding a human to a congested space is expected to add less spatial

variance than adding her to a less congested space where she has more freedom to move.

Next, we would like to automate the thresholds for distinguishing 0, 1, 2, and 3 moving

humans. To do so, we divide the data into a training set and a testing set. To ensure that

WiVi can generalize across environments, we ensure that the training examples are all

conducted in one conference room, while the testing examples are conducted in another

conference room (Recall that the two rooms have different sizes). We use the training

set to learn the thresholds to separate the spatial variances corresponding to 0, 1, 2, and

3 humans. We then use these thresholds to classify the experiments in the testing set.

Finally, we perform cross-validation, i.e., we repeat the same procedure after switching

the training and testing sets.

Table 3-2 shows the result of the classification. It shows that WiVi can identify whether

there is 0 or 1 person in a room with 100% accuracy; this is expected based on the CDFs

in Fig. 3-9. Also, row 3 shows that two humans are never confused with 0 or 1. How-
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PPPPPPPPPActual
Detected 0 1 2 3

0 100% 0% 0% 0%
1 0% 100% 0% 0%
2 0% 0% 85% 15%
3 0% 0% 10% 90%

Table 3-2: Accuracy of Automatic Detection of Humans. The table shows the accuracy of
detecting the number of moving humans based on the spatial variance.

ever, WiVi confused 2 humans with 3 humans in 15% of the trials, whereas it accurately

identified their number in 85% of the cases.

⌅ 3.6.5 Gesture Decoding

Next, we evaluate WiVi’s ability to decode the bits associated with the gestures in §3.5.

In each experiment, a human is asked to stand at a particular distance from the wall that

separates the room from our device, and perform the two gestures corresponding to bit ‘0’

and bit ‘1’. Each human took steps at a length they found comfortable. Typical step sizes

were 2-3 feet. The experiments are repeated at various distances in the range [1m, 9m]. All

experiments are conducted in the same conference rooms described above and under the

same experimental conditions. One of our conference rooms is only 7m wide, whereas the

other is 11m wide. Hence, the experiments with distances larger than 6 meters are con-

ducted in the larger conference room, whereas for all distances less than or equal 6 meters,

our experiments included trials from both rooms. The obtained traces are processed using

the matched filter and decoding algorithm described in §3.5.2.

Fig. 3-10 plots the fraction of time the gestures were decoded correctly as a function of

the distance from the wall separating WiVi from the closed room. We note the following

observations:

• WiVi correctly decoded the performed gestures at all distances less than or equal to 5m.

It identified 93.75% of the gestures performed at distances between 6m and 7m. At 8m,

the performance started degrading, leading to correct identification of only 75% of the ges-

tures. Finally, WiVi could not identify any of the gestures when the person was standing

9m away from the wall.

• It is important to note that, in our experiments, WiVi never mistook a ‘0’ bit for a ‘1’ bit
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or the inverse. When it failed to decode a bit, it was because it could not register enough

energy to detect the gesture from the noise. This means that WiVi ’s errors are erasure

errors as opposed to standard bit errors.

• We measured the time it took the different subjects to perform a one bit gesture. Averaged

over all traces, our subjects took 2.2s to perform a gesture, with a standard deviation of

0.4s.
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Figure 3-10: Accuracy of Gesture Decoding as a Function of Distance. The figure shows the
fraction of experiments in which WiVi correctly decoded the bit associated with the performed
gesture at different distances separating the subject from the wall. Note that WiVi decodes a
gesture only when its SNR is greater than 3dB; this explains the sharp cutoff between 8 and 9
meters.

To gain further insight into WiVi’s gesture decoding, Fig. 3-11 plots the CDFs of the

SNRs of the ‘0’ gesture and the ‘1’ gesture, across all the experiments. Interestingly, the

gesture associated with a ‘0’ bit has a higher SNR than the gesture associated with a ‘1’

bit. This is due to two reasons: First, the ‘0’ gesture involves a step forward followed by

a step backward, whereas the ‘1’ gesture requires the human to first step backward then

forward. Hence, for the same starting point, the human is on average closer to WiVi while

performing the ‘0’ gesture, which results in an increase in the received power. Second,

taking a step backward is naturally harder for humans; hence, they tend to take smaller

steps in the ‘1’ gesture. This observation is visually evident in Fig. 3-5 where a ‘0’ gesture

has a higher power (red) than the ‘1’ gesture.

We note that the main factor limiting gesture decodability with increased distance is

the low transmit power of USRPs. The linear transmit power range for USRPs is around

20 mW (i.e., beyond this power the signal starts being clipped), whereas Wi-Fi’s power

limit is 100mW. Hence, one would expect that with better hardware, WiVi can have a

higher decoding range.
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Figure 3-11: CDF of the gesture SNRs. The figure shows the CDFs of the SNR after applying
the matched filter taken over different distances from WiVi.

⌅ 3.6.6 The E↵ect of Building Material

Finally, we evaluate WiVi’s performance with different building materials. Thus, in addi-

tion to the two conference rooms described before, we also test WiVi in a second building

in our university campus, where the walls are different. In particular, we experiment with

4 types of building materials: 800 concrete wall, 600 hollow wall supported by steel frames

with sheet rock on top, 1.7500 solid wood door, and tinted glass. In addition, we perform

experiments in free space with no obstruction between WiVi and the subject.

In each experiment, the subject is asked to stand 3 meters away from the wall (or WiVi

itself in the case of no obstruction) and perform the ‘0’ bit gesture described above. For

each type of building material, we perform 8 experiments.

Fig. 3-12 shows WiVi’s performance across different building materials. Specifically,

Fig. 3-12(a) shows the detection rate as the fraction of experiments in which WiVi correctly

decoded the gesture, whereas Fig. 3-12(b) shows the average SNRs of the gestures. The

figures show that WiVi can detect humans and identify their gestures across various indoor

building materials: tinted glass, solid wood doors, 600 hollow walls, and to a large extent

8

00 concrete walls. As expected, the thicker and denser the obstructing material, the harder

it is for WiVi to capture reflections from behind it.

Detecting humans behind different materials depends on WiVi’s power as well as its

ability to eliminate the flash effect. Fig. 3-13 plots the CDF of the amount of nulling (i.e.,

reduction in SNRs) that WiVi achieves in various experiments. The plot shows WiVi’s

nulling reduces the signal from static objects by a median of 40 dB. This number indicates

that WiVi can eliminate the flash reflected off common building material such as glass,
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Figure 3-12: Gesture detection in different building structures. (a) plots the detection accuracy
of WiVi for different types of obstructions. (b) shows the average SNR of the experiments done
through these different materials, with the error bars showing the minimum and maximum
achieved SNRs across the trials.

solid wood doors, interior walls, and concrete walls with a limited thickness [3]. How-

ever, it would not be able to see through denser material like re-enforced concrete. To

improve the nulling, one may use a circulator at the analog front end [78] or leverage re-

cent advances in full-duplex radio [45], which were reported to produce 80 dB reduction

in interference power [83].
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Figure 3-13: CDF of achieved nulling. The figure plots the CDF which shows the ability of
nulling to reduce the power received along static paths.

⌅ 3.7 Summary & Discussion

In this chapter, we have presented WiVi, a wireless technology that uses Wi-Fi signals to

detect moving humans behind walls and in closed rooms. In contrast to previous systems,

which are targeted for the military, WiVi enables small cheap see-through-wall devices

that operate in the ISM band, rendering them feasible to the general public. WiVi also

establishes a communication channel between itself and a human behind a wall, allowing
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him/her to communicate directly with WiVi without carrying any transmitting device.

We believe that WiVi is an instance of a broader set of functionality that future wireless

networks will provide. Future Wi-Fi networks will likely expand beyond communications

and deliver services such as indoor localization, sensing, and control. WiVi demonstrates

an advanced form of Wi-Fi-based sensing and localization by using Wi-Fi to track humans

behind wall, even when they do not carry a wireless device. It also raises issues of impor-

tance to the networking community pertinent to user privacy and regulations concerning

the use of Wi-Fi signals.

Finally, WiVi bridges state-of-the-art networking techniques with human-computer in-

teraction. It motivates a new form of user interfaces which rely solely on using the reflec-

tions of a transmitted RF signal to identify human gestures. However, in its current form,

WiVi’s gesture-based interface remains quite coarse; in the next few chapters, we design

new algorithms and build more sensitive hardware to capture higher quality images which

enable the gesture-based interface to become more expressive.



CHAPTER 4

3D Tracking via Body Radio

Reflections

Recent years have witnessed a surge in motion tracking and localization systems. Multiple

advances have been made both in terms of accuracy and robustness. In particular, RF

localization using WiFi and other communication devices has reached sub-meter accuracy

and demonstrated its ability to deal with occlusions and non-line of sight scenarios [86,

170]. Yet these systems require the user to carry a wireless device in order to be localized.

In contrast, systems like Kinect and depth imaging have revolutionized the field of human-

computer interaction by enabling 3D motion tracking without instrumenting the body of

the user. However, Kinect and imaging systems require a user to stay within the device’s

line-of-sight and cannot track her across rooms. We envision that if an RF system can

perform 3D motion tracking without requiring the user to wear a radio, it will motivate

the integration of such a technology in systems like Kinect to expand their reach beyond

direct line of sight and enable through-wall human-computer interaction.

Motivated by this vision, this chapter introduces WiTrack, a system that tracks the 3D

motion of a user using radio reflections that bounce off her body. It works through walls

and occlusions, but does not require the user to carry any wireless device. WiTrack can also

provide coarse tracking of a body part. In particular, the user may lift her hand and point at

objects in the environment; the device detects the direction of the hand motion, enabling

43
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the user to identify objects of interest. In comparison to WiVi (the device described in

Chapter 3), WiTrack is much more powerful. It can track the exact location of a person,

whereas WiVi can only detect coarse (forward-backward) movements and gestures. In

addition, WiTrack provides a much more expressive gesture-based interface than WiVi.

However, to achieve these capabilities, WiTrack does not rely on standard WiFi (like in

Chapter 3); nonetheless, it still limits itself to FCC regulations for consumer electronics.

WiTrack has one antenna for transmission and three antennas for receiving. At a high

level, WiTrack’s motion tracking works as follows. The device transmits a radio signal and

uses its reflections to estimate the time it takes the signal to travel from the transmitting

antenna to the reflecting object and back to each of the receiving antennas. WiTrack then

uses its knowledge of the position of the antennas to create a geometric reference model,

which maps the round trip delays observed by the receive antennas to a 3D position of the

reflecting body.

Transforming this high-level idea into a practical system, however, requires addressing

multiple challenges. First, measuring the time of flight is difficult since RF signals travel

very fast – at the speed of light. To distinguish between two locations that are closer than

one foot apart, one needs to measure differences in reflection time on the order of hun-

dreds of picoseconds, which is quite challenging. To address this problem, we leverage

a technique called FMCW (frequency modulated carrier wave) which maps differences in

time to shifts in the carrier frequency; such frequency shifts are easy to measure in radio

systems by looking at the spectrum of the received signal.

A second challenge stems from multipath effects, which create errors in mapping the

delay of a reflection to the distance from the target. WiTrack has to deal with two types of

multipath effects. Some multipath effects are due to the transmitted signal being reflected

off walls and furniture. Others are caused by the signal first reflecting off the human body

then reflecting off other objects. This is further complicated by the fact that in non-line-

of-sight settings, the strongest signal is not the one directly bouncing off the human body.

Rather it is the signal that avoids the occluding object by bouncing off some side walls.

WiTrack eliminates reflections from walls and furniture by noting that their distance (and

time of flight) does not change over time. Hence, they can be eliminated by subtracting

consecutive frames of the signals. Reflections that involve a combination of a human and
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some static object are more complex and are addressed through filters that account for

practical constraints on the continuity of human motion and its speed in indoor settings.

We have built a prototype of WiTrack and evaluated it empirically. Since off-the-shelf

radios do not perform FMCW, we built an analog FMCW radio frontend, which operates

as a daughterboard for the USRP software radio. In our evaluation, we use the VICON

motion capture system [14] to report the ground truth location. VICON can achieve sub-

centimeter accuracy but requires instrumenting the human body with infrared markers

and positioning an array of infrared cameras on the ceiling. Since VICON cannot operate

in non-line-of-sight, the human moves in the VICON room while our device is placed

outside the room and tracks the motion across the wall. Our evaluation considers three

applications, each of them uses the developed 3D tracking primitive in a different way.

In the first application, we consider 3D tracking of human motion through a wall. The

objective of such an application is to augment virtual reality and gaming systems to work

in non-line-of-sight and across rooms. We compute the tracking error as the difference

between the location reported by our device and the actual location of the body center

as reported by VICON. Our results show that WiTrack localizes the center of the human

body to within 10 to 13 cm in the x and y dimensions, and 21 cm in the z dimension. This

high accuracy stems from WiTrack’s ability to eliminate errors due to multipath and the

combined performance of FMCW and our geometric mapping algorithm. The results also

show that even the 90th percentile of the measurements stays within one foot along the

x/y-axis and two feet along the z-axis.

In the second application, we consider elderly fall detection. Current solutions to this

problem include inertial sensors which old people tend to forget to wear [51], or cameras

which infringe on privacy, particularly in bedrooms and bathrooms [109]. In contrast,

WiTrack does not require the user to wear any device and protects her privacy much better

than a camera. However, simply looking at the change in elevation cannot allow us to

distinguish a fall from sitting on the floor. Thus, WiTrack identifies a fall as a fast change

in the elevation that reaches the ground level. In a population of 11 users and over 133

experiments, WiTrack distinguishes a fall from standing, walking, sitting on a chair and

sitting on the floor with an accuracy of 96.9% (the F-measure is 94.34%).

In the third application, we consider a user who desires to control appliances by point-
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ing at them (e.g., the user can turn her monitor on or turn the lights off by simply pointing

at these objects.) We consider a gesture in which the user lifts her arm, points at an ap-

pliance, and drops her arm. By comparing the position of the arm over time, WiTrack

can identify the pointing direction. Our prototype estimates the pointing direction with a

median of 11.2 degrees and a 90th percentile of 37.9 degrees.

Our results also show that the prototype operates in realtime, and outputs the 3D lo-

cation within 75 ms from the time the antennas receive the signal. Further, it operates at

a fairly low-power, transmitting sub-milliWatt power. However, the prototype described

in this chapter can track a single person, and requires the person to move to obtain an ini-

tial estimate of his location. Chapter 5 describes how we can move from single-person to

multi-person localization and how we can localize static users.

⌅ 4.1 Related Work

WiTrack is related to prior art in the following areas:

Indoor wireless localization: WiTrack builds on recent advances in RF-based localiza-

tion [30, 86, 160, 170]. These systems localize a wireless device using RSSI [30, 119], fine-

grained-OFDM channel information [130], antenna arrays [86, 170], or RFID backscat-

ter [159, 160]. In contrast, WiTrack localizes a human using body radio reflections.

Some past works in radio tomography use a network of tens or hundred sensors to

track a person even if she does not carry any wireless device [165, 166]. These works mea-

sure the RSSI for each of the resulting n2 links between their sensors, and attribute the

variation of RSSI on a link to a human crossing that link. Other works on device-free lo-

calization rely on RSSI fingerprints [129, 178], which are generated in a training phase by

asking a person to stand in different locations throughout the area of interest. In the test-

ing phase, they localize a person by mapping the resulting RSSI to the closest fingerprint.

While WiTrack shares the objective of tracking a person’s motion without instrumenting

her body, it differs in both technology and accuracy. Specifically, WiTrack does not re-

quire prior training and uses a few antennas that generate FMCW signals and measure the

time-of-flight of the signal reflections to infer location of a human. Its technique extends

to 3D, and its 2D accuracy is more than 5⇥ higher than the state of the art RSSI-based
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systems [129, 180].

See through-wall & gesture recognition using WiFi: WiTrack is motivated by our earlier

work on WiVi (described in Chapter 3) and other contemporary research that used WiFi

signals to detect users through walls and identify some of their gestures [42, 117]. Simi-

lar to these systems, WiTrack captures and interprets radio reflections off a human body.

WiTrack, however, differs from these systems both in capability and technology. Specifi-

cally, these systems rely on the Doppler shift of WiFi signals. Hence, they can distinguish

only between getting closer or getting further away, but cannot identify the location of the

person.1 In contrast, WiTrack measures the time of flight and, hence, can identify the exact

location of a person. Among these past systems, WiVi focuses on tracking through dense

walls such as concrete by leveraging interference nulling to eliminate the wall’s reflection.

In contrast, WiTrack focuses on accurate 3D motion tracking that operates through interior

walls (which are less dense than concrete)2, pinpointing the exact location of a user at any

point in time.

FMCW Radar: WiTrack builds on past work on FMCW radar, including work that used

FMCW for see-through-wall that is targeted for the military [41, 121]. WiTrack however

differs along multiple dimensions, as we explained in Chapter 2. Specifically, recall that

FMCW radios in past work were high-power and heavy (needed to be mounted on a

truck). Their tracking capabilities hinge on using large antenna arrays that can achieve

a narrow beam, which enables tracking a moving target. In contrast, we present a light

weight, low-power FMCW radio that complies with the FCC regulations for consumer de-

vices. We are able to perform accurate tracking with a low-power, relatively cheap FMCW

prototype because of two innovations: first, a geometric localization algorithm that com-

bines multiple measurements from different antenna locations and fits them within a ge-

ometric reference to pinpoint an accurate 3D location, and second, novel techniques that

enable rejecting errors that are due to both static and dynamic multi-path in indoor envi-

ronments. Further, WiTrack extends its techniques to tracking the motion of body parts,

e.g., tracking a hand as it points in a particular direction.

1The gestures recognized by WiVi and WiSee are sequences of getting closer or getting further away, which
translate into positive and negative Doppler shifts. The work in [42] provides a distance estimate with an
accuracy of about 30 meters.

2To enable WiTrack to track through thicker walls such as concrete (as in WiVi), one may add a filter to
remove the wall’s reflection.
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Motion tracking in user interfaces: Finally, WiTrack is related to an emerging body of

motion-tracking user interfaces. These include devices that the person needs to hold (such

as the Nintendo Wii [9]) or wear (e.g., on-body sensors such as wristbands [2, 47, 69]). They

also include vision and infrared-based systems, like Xbox Kinect [16] and Leap Motion [8],

which can track a person’s movement without requiring her to hold or wear any transmit-

ter or receiver but require the user to maintain a line-of-sight path to their sensors. Similar

to these systems, WiTrack enables more natural human-computer interaction. However, in

comparison to these systems, WiTrack does not require the user to hold/wear any device

or to maintain a line-of-sight path to its sensors; it can track a user and her gestures in

non-line-of-sight and across different rooms.

⌅ 4.2 WiTrack Overview

WiTrack is a wireless system that performs 3D motion tracking in both line-of-sight and

through wall scenarios. It can also provide coarse tracking of body parts, like an arm

movement. WiTrack uses multiple directional antennas: one antenna is used for transmit-

ting, and three antennas for receiving. In its default setup, the antennas are arranged in a

“T” shape, as shown in Fig. 4-1(a). In its current version WiTrack tracks one moving body

at any time. Other people may be around but should be either behind the antenna beam

or they should be approximately static.3

(a) Antenna “T” Setup (b) FMCW Signal Generation

Figure 4-1: WiTrack’s Setup and Signal Generation. (a) shows WiTrack’s directional antennas
(dimension of each antenna: 5cm⇥ 5cm) arranged in a “T”: the transmit antenna is placed at the
crossing point of the T, whereas the receive antennas are on the edges. (b) shows the hardware
we built to generate FMCW signals.

3Small moving objects which do not have significant reflections (e.g., a plastic fan) create some noise but
do not prevent WiTrack’s 3D tracking.
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WiTrack operates by transmitting an RF signal and capturing its reflections off a human

body. It tracks the motion by processing the signals from its received antennas using the

following three steps:

1. Time-of-Flight (TOF) Estimation: WiTrack first measures the time it takes for its signal to

travel from its transmit antenna to the reflecting body, and then back to each of its re-

ceive antennas. We call this time the TOF (time-of-flight). WiTrack obtains an initial mea-

surement of the TOF using FMCW transmission technique; it then cleans this estimate to

eliminate multipath effects and abrupt jumps due to noise.

2. 3D Localization: Once it obtains the TOF as perceived from each of its receiving antennas,

WiTrack leverages the geometric placement of its antennas to localize the moving body in

3D.

3. Fall Detection and Pointing: WiTrack builds on the 3D localization primitive to enable new

functionalities. Specifically, WiTrack can detect a fall by monitoring fast changes in the el-

evation of a human and the final elevation after the change. WiTrack can also differentiate

an arm motion from a whole body motion; it can track the motion of raising one’s arm,

localize the initial and final position of the arm, and determine the direction in which the

arm is pointing.

⌅ 4.3 Time-of-Flight Estimation

The first step for WiTrack is to measure the TOF from its transmit antenna to each of its

receive antennas and clean this estimate from the effect of multi-path.

⌅ 4.3.1 Obtaining Time-of-Flight Estimates

A straightforward approach for estimating the time of flight is to transmit a very short

pulse and measure the delay between the transmitted pulse and its received echo. Such

a design requires sampling the signal at sub-nanosecond intervals – i.e, it requires high

speed analog-to-digital converters (ADCs) that operate at multi-GS/s. Such ADCs are

high power, expensive, and have low bit resolution, making this approach unattractive in

practice.

Instead, WiTrack measures the TOF by leveraging a technique called Frequency-Modulated

Carrier Waves (FMCW). We explain FMCW at a high level, and refer the reader to [102]
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for a more detailed explanation. FMCW transmits a narrowband signal (e.g., a few KHz)

whose carrier frequency changes linearly with time. To identify the distance from a reflec-

tor, FMWC compares the carrier frequency of the reflected signal to that of the transmitted

signal. Since the carrier frequency is changing linearly in time, delays in the reflected sig-

nals translate into frequency shifts in comparison to the transmitted wave. Therefore, by

comparing the frequency difference between the transmitted signal and the received sig-

nal, one can discover the time delay that the signal incurred, which corresponds to the TOF

of that signal.

f0#
Time#

fx(t)# fy(t)#

Δf#

TOF#

sweep#1# sweep#2#

Frequency#

Figure 4-2: FMCW operation. The transmitted signal has a carrier frequency f
x

(t) that is repeat-
edly swept in time. Because the received signal is time-shifted with respect to the transmitted
signal, its carrier frequency f

y

(t) is frequency-shifted with respect to f
x

(t).

Fig. 4-2 illustrates this concept. The green line is the carrier frequency of the transmitted

signal which sweeps linearly with time. The red line is the carrier frequency of the reflected

signal as a function of time. The time shift between the two is the time-of-flight (TOF) for

that reflector. The frequency shift �f between the transmitted and received signals is a

function of both the slope of the sweep and the TOF, i.e.:

TOF = �f/slope (4.1)

Though the above description is for a single reflector, it can be easily generalized to an

environment with many reflectors. In this case, the transmitted signal would still consist of

a single carrier wave that is linearly swept in time. However, because wireless reflections

add up linearly over the medium, the received signal is a linear combination of multiple

reflections, each of them shifted by some �f that corresponds to its own TOF. Hence one

can extract all of these TOFs by taking a fourier transform (i.e, an FFT) of the received
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baseband signal.4 The output of the FFT gives us the TOF profile which we define as the

reflected power we obtain at each possible TOF between the transmit antenna and receive

antenna.

In comparison to transmitting a very short pulse and measuring its sub-nanosecond

delay in the time domain, FMCW does not require high speed ADCs because at any point

in time, the received baseband signal is narrowband.

FMCW Resolution: It is important to note that the resolution of an FMCW system is a

function of the total bandwidth that the carrier frequency sweeps [102]. The resolution is

defined by the ability to distinguish between two nearby locations, which depends on the

ability to distinguish their TOFs, which itself depends on the resolution in distinguishing

frequency shifts �f . The resolution of identifying frequency shifts is equal to the size

of one bin of the FFT. The FFT is typically taken over a duration of one sweep of the

carrier frequency (denoted by T
sweep

) and hence the size of one FFT bin is 1/T
sweep

. Since

the minimum measurable frequency shift is �f
min

= 1/T
sweep

, the minimum measurable

change in location is:

Resolution = C
TOF

min

2

= C
�f

min

2⇥ slope
, (4.2)

where C is the speed of light and the factor 2 accounts for the fact that the reflected signal

traverses the path back and forth.

The slope is equal to the total swept bandwidth B divided by the sweep time T
sweep

.

Hence after substituting for the slope in the above equation we get:

Resolution =

C

2B
(4.3)

Since C is very large, obtaining high resolution requires a large B, i.e., the system has

to take a narrowband signal and sweep its carrier frequency across a wide bandwidth of

multiple GHz.

In our design we chose the following parameter for our FMCW. We have built an

FMCW system that sweeps a total bandwidth of 1.69 GHz from 5.56 GHz to 7.25 GHz,

4The baseband signal is the received signal after mixing it by the transmitted carrier. The mixing shifts the
spectrum of the received signal by the transmitted carrier frequency.
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and transmits at sub-milliWatt power. The choice of this bandwidth has been dictated by

the FCC regulations for civilian use of spectrum [18]. Specifically, it is the largest contigu-

ous bandwidth below 10 GHz which is available for civilian use at low power.

Based on Eq. 4.3, our sweep bandwidth allows us to obtain a distance resolution of

8.8 cm. Hence the average error in mapping TOF to distance in 1D is about 4.4 cm. Note

that the above derivation neglects the impact of noise, and hence provides a lower bound

on the achievable resolution. In practice, the system’s resolution is affected by the noise

level. It also depends on the geometric model that maps TOFs to 3D locations.

⌅ 4.3.2 Addressing Static Multi-path

The next step in WiTrack’s operation is to distinguish a human’s reflections from reflec-

tions off other objects in the environment, like furniture and walls. Recall from the previ-

ous section that every reflector in the environment contributes a component to the overall

received signal, and that component has a frequency shift that is linearly related to the

time-of-flight of the reflection based on Eq. 4.1. Typically, reflections from walls and furni-

ture are much stronger than reflections from a human, especially if the human is behind a

wall. Unless these reflections are removed, they would mask the signal coming from the

human and prevent sensing her motion. This behavior is called the “Flash Effect”.

To remove reflections from all of these static objects (walls, furniture), we leverage

the fact that since these reflectors are static, their distance to the WiTrack device does not

change over time, and therefore their induced frequency shift stays constant over time.

Fig. 4-3(a) plots the spectrogram of the received signal as a function of time, for one of the

receive antennas of WiTrack. In particular, we take the FFT of the received signal every

sweep window, and compute the power in each frequency as a function of time. Note that

there is a linear relation between frequency shifts and the traveled distances as follows:

distance = C ⇥ TOF = C ⇥
�f

slope
. (4.4)

Thus, instead of plotting the power in each frequency as a function of time, we can use

the above equation to plot the power reflected from each distance as a function of time, as

shown in Fig. 4-3(a). The color code of the plot corresponds to a heat-map of the power
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Figure 4-3: Obtaining the Time-of-Flight (TOF) Estimates. WiTrack takes an FFT of the re-
ceived signal in baseband over every sweep period to generate the spectrogram in (a). Then,
by subtracting out a given frame from the frame that precedes it, WiTrack eliminates static mul-
tipath as in (b). The blue plot in (c) shows how WiTrack can address dynamic multipath by
tracking the bottom contour of (b), and then denoise the signal (red plot) to obtain a clean TOF
estimate.

in the reflected signal. Strong reflectors are indicated by red and orange colors, weaker

reflectors are indicated by yellow and green, and the absence of a reflector is indicated by

blue at the corresponding frequency. The figure indicates the presence of very strong static

reflectors in the environment. Specifically, it has many horizontal stripes; each of these

stripes signifies the presence of a reflector at the corresponding round-trip distance. Be-

cause these stripes are horizontal, their corresponding reflectors are stationary over time.

Hence, we eliminate the power from these static reflectors by simply subtracting the out-

put of the FFT in a given sweep from the FFT of the signal in the previous sweep. This

process is called background subtraction because it eliminates all the static reflectors in the

background.

Fig. 4-3(b) is the result of applying background subtraction to Fig. 4-3(a). The figure

shows that all static reflectors corresponding to the horizontal lines have been eliminated.

This makes it easier to see the much weaker reflections from a moving human. Specifically,

we see that the distance of the dominant reflector (the red color signal) is varying with time,

indicating that the reflector is moving.

⌅ 4.3.3 Addressing Dynamic Multi-path

By eliminating all reflections from static objects, WiTrack is left only with reflections from

a moving human (see Fig. 4-3(b)). These reflections include both signals that bounce off

the human body to the receive antennas, and those that bounce off the human then bounce
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off other objects in the environment before reaching WiTrack’s antennas. We refer to these

indirect reflections as dynamic multi-path. It is quite possible that a human reflection that

arrives along an indirect path, bouncing off a side wall, is stronger than her direct reflection

(which could be severely attenuated after traversing a wall) because the former might be

able to avoid occlusion.

Our idea for eliminating dynamic multi-path is based on the observation that, at any

point in time, the direct signal reflected from the human to our device has travelled a

shorter path than indirect reflections. Because distance is directly related to TOF, and hence

to frequency, this means that the direct signal reflected from the human would result in the

smallest frequency shift among all strong reflectors after background subtraction.

We can track the reflection that traveled the shortest path by tracing the bottom contour

of all strong reflectors in Fig. 4-3(b). The bottom contour can be defined as the closest local

maximum to our device. To determine the first local maximum that is caused by human

motion, we must be able to distinguish it from a local maximum due to a noise peak.

We achieve this distinguishability by averaging the spectrogram across multiple sweeps.

In our implementation, we average over five consecutive sweeps, which together span

a duration of 12.5 ms. For all practical purposes, a human can be considered as static

over this time duration; therefore, the spectrogram would be consistent over this duration.

Averaging allows us to boost the power of a reflection from a human while diluting the

peaks that are due to noise. This is because the human reflections are consistent and hence

add up coherently, whereas the noise is random and hence adds up incoherently. After

averaging, we can determine the first local maximum that is substantially above the noise

floor and declare it as the direct path to the moving human.

The blue plot in Fig. 4-3(c) shows the output of WiTrack’s contour tracking of the signal

in Fig. 4-3(b). In practice, this approach has proved to be more robust than tracking the

dominant frequency in each sweep of the spectrogram. This is because, unlike the contour

which tracks the closest path between a human body and WiTrack’s antennas, the point of

maximum reflection may abruptly shift due to different indirect paths in the environment

or even randomness in the movement of different parts of the human body as a person

performs different activities.
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⌅ 4.3.4 Dealing with Noise

After obtaining the bottom contour of the spectrogram of the signal from each receive an-

tenna, WiTrack leverages common knowledge about human motion to mitigate the effect

of noise and improve its tracking accuracy. Specifically, by performing the following opti-

mizations, we obtain the red plot in Fig. 4-3(c):

• Outlier Rejection: WiTrack rejects impractical jumps in distance estimates that correspond

to unnatural human motion over a very short period of time. For example, in Fig. 4-3(c),

the distance from the reflector (the blue line) repeatedly jumps by more than 5 meters over

a span of few milliseconds. Such changes in distance are not possible over such small

intervals of time, and hence WiTrack rejects such outliers.

• Interpolation: WiTrack uses its tracking history to localize a person when she stops moving.

In particular, if a person walks around in a room then sits on a chair and remains static, the

background-subtracted signal would not register any strong reflector. In such scenarios,

we assume that the person is still in the same position and interpolate the latest location

estimate throughout the period during which we do not observe any motion, enabling us

to track the location of a subject even after she stops moving.

• Filtering: Because human motion is continuous, the variation in a reflector’s distance to

each receive antenna should stay smooth over time. Thus, WiTrack uses a Kalman Filter to

smooth the distance estimates.

⌅ 4.4 Localizing in 3D

After contour tracking and de-noising of the estimate, WiTrack obtains a clean estimate

of the distance travelled by the signal from the transmit antenna to the human reflector,

and back to one of the receive antennas. Let us call this estimate the round trip distance.

At any time, there are three such round trip distances that correspond to the three receive

antennas. The goal of this section is to use these three estimates to identify the 3D position

of the human, for each time instance.

To do so, WiTrack leverages its knowledge of the placement of the antennas. Recall

that the antennas are placed in a T, as in Fig. 4-1(a) where the y-axis is a horizontal line

orthogonal to the plane of the T and the z-axis is along its vertical line. WiTrack uses this
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(a) 2D Localization (b) 3D Localization

Figure 4-4: WiTrack’s Localization Algorithm. The TOF estimate from a receive antenna defines
an ellipse whose foci are the transmit antenna and the receive antenna. (a) shows that WiTrack
can uniquely localize a person using the intersection of two ellipses. (b) shows that in 3D, the
problem translates into an intersection of three ellipsoids.

reference frame to track the 3D location of a moving target.

Let us focus on identifying the location at a particular time t
i

. Also for clarity, let us

first assume that we would like to localize the person in the 2D plane defined by the x and

y axes. Consider the transmit antenna and the first receive antenna. WiTrack knows the

round trip distance from the transmit antenna to the person and back to the first receive

antenna. The region of feasible 2D locations for the target need to satisfy this constraint;

hence, they fall on the periphery of an ellipse, whose foci are collocated with the Tx and

Rx1 antennas and its major axis is equal to the round trip distance. Now consider the sec-

ond receive antenna. WiTrack knows the round trip distance from the Tx to the person and

back to Rx2. Similarly, the feasible solutions to this constraint in 2D are on the periphery

of another ellipse whose foci are collocated with the Tx and Rx2 antennas and its major

axis is equal to the round trip distance to Rx2. Since the correct location is on both ellipses,

it is one of the intersection points, as shown in Fig. 4-4(a). In fact, since our antennas are

directional, only one of the two intersection points is feasible, which is the one that yields

a location in the direction of the antennas’ beams.

It is straightforward to generalize the argument to localizing in 3D. Specifically, in 3D

space, the round-trip distance defines an ellipsoid whose two foci are the transmit antenna

and one of the receive antennas. In this setting, the intersection of two ellipsoids would

define an arc in 3D space, and hence is insufficient to pinpoint the 3D location of a person.

However, by adding a third directional antenna, we obtain a unique solution in 3D that

is within the beam of all the directional antennas as shown in Fig. 4-4(b). Therefore, our
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algorithm can localize a person in 3D by using three directional receive antennas.

Finally we note two points:

• The T-shape placement for the antennas is chosen because we assume the user wants to

localize motion behind a wall, in which case all the antennas would have to be arranged in

one plane facing the wall. We place one antenna below to help determine elevation, while

the others are on the same level.

• While the minimum number of Rx antennas necessary to resolve a 3D location is three,

adding more antennas would result in more constraints. This would allow us to over-

constrain the solution and hence add extra robustness to noise.

⌅ 4.5 Beyond 3D Tracking

In this section, we build on WiTrack’s 3D localization primitive to enable two additional

capabilities: estimating a pointing direction from the corresponding arm movement, and

detecting a fall.

⌅ 4.5.1 Estimation of Pointing Angle

We explain how WiTrack provides coarse estimation of body part motion. We consider the

following motion: the user starts from a state where her arm is resting next to her body. She

raises the arm in a direction of her choice with the intention of pointing toward a device

or appliance, and then drops her hand to the first position. The user may move around

and at a random time perform the pointing gesture. We require, however, that the user be

standing (i.e., not walking) when performing the pointing gesture. The goal is to detect

the pointing direction.

To track such a pointing gesture, WiTrack needs to distinguish between the movement

of the entire body and the motion of an arm. To achieve this goal, we leverage the fact

that the reflection surface of an arm is much smaller than the reflection surface of an en-

tire human body. We estimate the size of the reflection surface from the spectrogram of

the received signal at each of the antennas. Fig. 4-5 illustrates the difference between the

spectrogram of a whole body motion and that of an arm pointing, as captured by one of

WiTrack’s receiving antennas. In the figure the human was moving then stopped and per-

formed the pointing gesture. The two bright spots around t = 18s and t = 21s refer to the
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Figure 4-5: Gestures. The figure shows a human moving then stopping and pointing with her
arm. The small bright regions around t = 18s and t = 21s correspond to the arm lifting and
dropping motions.

arm being lifted and dropped respectively. The figure shows that the signal variance along

the vertical axis is significantly larger when the reflector is the entire human body than

when it is just an arm motion (note the bright yellow as opposed to the cyan color). If the

reflector is large, its parts have slightly different positions from each other; hence, at any

point in time the variance of its reflection along the y-axis is larger than that of an arm

movement. WiTrack uses this spatial variance to detect body part motion from a whole

body motion.

Once we detect it is a body part, WiTrack tries to estimate the direction of the motion

to identify the pointing direction, which involves the following steps:

1. Segmentation: The goal of segmentation is to determine the start and end of a pointing ges-

ture. Fig. 4-5 shows how WiTrack segments the round trip distance spectrogram obtained

from each receive antenna. In our pointing experiments, we ask the user to remain static

for one second before performing the pointing gesture. Thus, we are able to detect the start

of a pointing gesture since it is always preceded by a period of absence of motion. Simi-

larly, after a person raises her arm in a pointing direction, we ask her to wait for a second

before resting her arm back to its initial position. Because WiTrack performs a frequency

sweep every 2.5 ms, we can easily distinguish the silence at the start and end of a gesture.

2. Denoising: As is the case for a whole body motion, the contour of the segmented spectro-

gram is denoised and interpolated (see §4.3.4) to obtain a clean estimate of the round trip

distance of the arm motion as a function of time, for each receive antenna.

3. Determining the Pointing direction: We perform robust regression on the location estimates
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of the moving hand, and we use the start and end points of the regression from all of

the antennas to solve for the initial and final position of the hand. WiTrack estimates the

direction of pointing as the direction from the initial state to the final extended state of

the hand. Since the user drops her hand after pointing, WiTrack repeats the above steps

for this drop motion obtaining a second estimate of the pointing direction. Then, WiTrack

estimates the pointing direction as the middle direction between the two.5 Being able

to leverage the approximate mirroring effect between the arm lifting and arm dropping

motions adds significant robustness to the estimation of the pointing angle.

We envision that an application of the estimation of pointing direction can be to en-

able a user to control household appliances by simply pointing at them. Given a list of

instrumented devices and their locations, WiTrack would track the user’s hand motion,

determine the direction in which she points, and command the device to change its mode

(e.g., turn on or off the lights, or control our blinds).

Finally, to demonstrate the pointing gesture within the context of an application, we

created a setup where the user can control the operation mode of a device or appliance by

pointing at it. Based on the current 3D position of the user and the direction of her hand,

WiTrack automatically identifies the desired appliance from a small set of appliances that

we instrumented (lamp, computer screen, automatic shades). Our instrumentation is a

basic mode change (turn on or turn off). WiTrack issues a command via Insteon home

drivers [5] to control the devices. We envision that this setup can evolve to support a

larger set of functionalities and be integrated within a home automation systems [54].

⌅ 4.5.2 Fall Detection

Our objective is to automatically distinguish a fall from other activities including sitting

on the ground, sitting on a chair and walking. To do so, we build on WiTrack’s elevation

tracking along the z dimension. Note that simply checking the person’s elevation is not

sufficient to distinguish falls from sitting on the floor. To detect a fall, WiTrack requires two

conditions to be met: First, the person’s elevation along the z axis must change significantly

(by more than one third of its value), and the final value for her elevation must be close

to the ground level. The second condition is the change in elevation has to occur within a

5by zooming on Fig. 4-5 the reader can see how the arm lifting and dropping motions approximately mirror
each other’s tilt.
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Figure 4-6: Fall Detection. WiTrack automatically detects falls by monitoring the absolute value
and the change in elevation.

very short period to reflect that people fall more quickly than they sit.

Fig. 4-6 plots WiTrack’s estimate of the elevation along the z dimension for four activ-

ities: a person walking, sitting on a chair, sitting on the ground, and (simulated) falling

on the ground.6 The figure confirms that walking and sitting on a chair can be identified

from falling and sitting on the floor based on elevation because the final elevation is far

from z = 0. However, to distinguish a fall on the ground from a sitting on the ground,

one has to exploit that during a fall the person changes her elevation faster than when she

voluntarily sits on the floor.

⌅ 4.6 Implementation

FMCW Radio Front-End Hardware: We built an FMCW front-end that operates as a

daughterboard for the USRP software radio [13]. Below, we describe our design, which is

illustrated in the schematic of Fig. 4-7.

The first step of our front end design is the generation of an FMCW signal, which

consists of a narrowband signal whose carrier frequency is linearly swept over a large

bandwidth. This signal can be obtained by using a voltage-controlled oscillator (VCO).

Because the output frequency of a VCO is a linear function of its input voltage, we can

generate our desired frequency sweep by feeding a voltage sweep as an input to the VCO.

However, small errors in the input voltage can create large non-linearities in the output

sweep.

6The fall was performed in a padded room as detailed in §4.8.5.
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Figure 4-7: Schematic of the Front End Design. WiTrack’s front end consists of an FMCW
signal generation component, and a receive chain that is connected to a USRP.

To obtain a highly linear sweep, we use a feedback mechanism. Specifically, we use

a phase frequency detector to compare the output frequency of the VCO with a highly

accurate reference signal, and use the offset between the two to control the VCO. Note that

even though the reference signal needs to be highly accurate, it does not need to span the

same bandwidth as our desired output signal. In particular, rather than directly comparing

the output of the VCO to the reference signal, we first use a frequency divider. This allows

us to use a reference signal that sweeps from 136.5–181.25 MHz to generate an FMCW

signal that sweeps from 5.46–7.25 GHz. This FMCW signal is transmitted over the air

using WA5VJB directional antennas [15] after filtering and amplification.

At the receive chain, the transmitted signal is captured using WA5VJB directional an-

tennas and passed through a low-noise amplifier and a high-pass filter to improve its SNR.

Recall from §4.3 that an FMCW receiver determines the TOF by measuring the frequency

offset between the transmitted and the received signal. This offset can be obtained by

downconverting (mixing) the received signal with the transmitted signal. The output of

the mixer is then fed to the LFRX-LF daughterboard on USRP2 which samples it at 1 MHz

and passes the digitized samples to the UHD driver.

Real-time Software Processing: The implemented prototype performs real-time 3D mo-

tion tracking as described in §4.3, §4.4 and §4.5. Tracking is implemented directly in the

UHD driver of the USRP software radio. The signal from each receiving antenna is trans-

formed to the Frequency domain using an FFT whose size matches the FMCW sweep pe-

riod of 2.5ms. To improve resilience to noise, every five consecutive sweeps are averaged

creating one FFT frame. Background subtraction is performed by subtracting the aver-

aged FFT frame from the frame that precedes it. The spectrogram is processed for contour
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tracking by identifying for each time instance the smallest local frequency maximum that

is significantly higher than the noise level. Outlier rejection is performed by declaring that

the contour should not jump significantly between two successive FFT frames (because a

person cannot move much in 12.5ms). The output is smoothed with a Kalman filter.

To locate a person, instead of solving a system of ellipsoid equations in real-time, we

leverage that the location of the antennas does not change and is known a priori. Thus,

before running our experiments, we use MATLAB’s symbolic library to find a symbolic

representation of the solutions (x, y, z) as a function of symbolic TOF to each of the receiv-

ing antennas. This means that the ellipsoid equations need to be solved only once (for

any fixed antenna positioning), independent of the location of the tracked person. After

it obtains the 3D location of a person, WiTrack uses python’s matplotlib library to output

this location in real-time.

Software processing has a total delay less than 75 ms between when the signal is re-

ceived an a corresponding 3D location is output.

⌅ 4.7 Evaluation

We empirically evaluate the performance of the WiTrack prototype by conducting experi-

ments in our lab building with 11 human users.

(a) Ground Truth: We determine WiTrack’s localization accuracy by testing it against the

VICON motion capture system. The VICON is a multi-hundred-thousand dollar system

used in filmmaking and video game development to track the human motion and map it

to a 3D character animation model. It uses calibrated infrared cameras and records motion

by instrumenting the tracked body with infrared-reflective markers. The VICON system

has a sub-centimeter accuracy and hence we use it to determine the ground truth location.

To track a moving person with the VICON, she is asked to wear a jacket and a hat, which

are instrumented with eight infrared markers. To track a subject’s hand, she is asked to

wear a glove that is also instrumented with six markers. The VICON tracks the infrared

markers on the subject’s body and fits them to a 3D human model to identify the subject’s

location.

The VICON system has a built-in capability that can track the center of any object using
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the infrared-reflective markers that are placed on that object. This allows us to determine

the center position of a human subject who is wearing the instrumented jacket and hat.

WiTrack however computes the 3D location of the body surface where the signal reflects.

In order to compare WiTrack’s measurements to those obtained by the VICON, we need

to have an estimate of the depth of the center with respect to the body surface. Thus, we

use the VICON to run offline measurements with the person standing and having infrared

markers around her body at the same height as the WiTrack transmit antenna (about the

waist). We use the VICON to measure the average depth of the center from surface for each

person. To compare the 3D location computed by the two systems, we first compensate

for the average distance between the center and surface for that person and then take the

Euclidean distance.

(b) Device Setup: WiTrack is placed behind the wall of the VICON room. The device uses

one transmit antenna and three receive antennas. The transmit antenna and two receive

antennas are lined up parallel to the wall, and a third receive antenna is placed below the

transmit antenna. The distance between the transmit antenna and each receive antenna is

1m, unless otherwise noted.

(c) Human Subjects: The experiments are performed with eleven human subjects: two

females and nine males. The subjects are of different heights and builds, and span an age

range of 22 to 56 years. In each experiment, the subject is asked to move at will in the

VICON room; he/she is tracked using both the VICON system and WiTrack. Note that

WiTrack tracks the subject through the wall, from an adjacent room, while the VICON has

to be within direct line of sight from the subject.

⌅ 4.8 Performance Results

⌅ 4.8.1 Accuracy of 3D Tracking

We first focus on the developed 3D tracking primitive and evaluate its accuracy across all

three dimensions.

We run 100 experiments each lasting for 1 minute, during which a human subject

moves at will in the VICON room. The VICON room has no windows. It has 6-inch

hollow walls supported by steel frames with sheet rock on top, which is a standard setup
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for office buildings. The WiTrack prototype is placed outside the room with all transmit

and receive antennas facing one of the walls of the VICON room. Recall that WiTrack’s an-

tennas are directional; hence, this setting means that the radio beam is directed toward the

wall of the VICON room. In each experiment, we ask the subject to wear the jacket and hat

that were instrumented with VICON markers and move inside the VICON-instrumented

room. The subject’s location is tacked by both the VICON system and WiTrack.

We note that the VICON IR cameras are set to accurately track the target only when

she moves in a 6⇥ 5m2 area in the room. Their accuracy degrades outside that area. Since

VICON provides the ground truth in our experiment, we ask the target to stay within the

6⇥ 5 m2 area where the IR cameras are focused. This area is about 2.5m away from the

wall. Thus, the minimum separation between WiTrack and the human subject in these

experiments is 3m and the maximum separation is about 9 m.

We perform a total of 100 experiments for this evaluation, each lasting for one minute.

Since each FMCW sweep lasts for 2.5ms and we average 5 sweeps to obtain for each TOF

measurement, we collect a total of about 480,000 location readings from these 100 experi-

ments.

To show that WiTrack works correctly both in line of sight and through a wall, we

repeat the above 100 experiments with one modification, namely we move the WiTrack

device inside the room and set it next to the wall from the inside.
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Figure 4-8: Performance of WiTrack’s 3D Tracking. (a) and (b) show the CDF of the location
error for WiTrack in line-of-sight and through-wall scenarios respectively.

Fig. 4-8(a) and Fig. 4-8(b) plot the CDFs of the location error along the x, y, and z

coordinates. The figure reveals the following findings:

• WiTrack’s median location error for the line-of-sight experiments is 9.9 cm, 8.6 cm, and

17.7 cm along the x, y, and z dimensions respectively. In comparison, the median location
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error in the through-wall experiments is 13.1 cm, 10.25 cm, and 21.0 cm along the x, y, and

z dimensions. As expected the location accuracy in line-of-sight is higher than when the

device is behind a wall due to the extra attenuation and the reduced SNR. In both cases,

however, the median error is fairly small. This is due to the use of an FMCW radio which

ensures a highly accurate TOF estimate, and the ability to prevent errors due to multipath

and noise, allowing the system to stay accurate as it moves from TOF to a 3D location

estimate of the human body.

• Interestingly, the accuracy in the y dimension is better than the accuracy in the x dimen-

sion. This difference is because the x and y dimensions are not equal from the perspective

of WiTrack’s antennas. Recall that in the xy-plane, WiTrack’s antennas are all along the x-

axis. As a result, the two ellipses in the xy-plane, shown in Fig. 4-8, both have their major

radius along x and minor radius along y. Hence, the same error in TOF produces a bigger

component when projected along the x axis than along the y axis.

• The accuracy along the z-dimension is worse than the accuracy along the x and y dimen-

sions. This is the result of the human body being larger along the z dimension than along

x or y.

⌅ 4.8.2 Accuracy Versus Distance

We are interested in evaluating WiTrack’s accuracy as the person gets further away from

the device. Thus, we repeat the above through-wall experiments. As mentioned above,

VICON requires the human to move in a certain space that is in line of sight of the IR

cameras. Thus, to increase the distance from WiTrack to the human we move WiTrack

away in the hallway next to the VICON room. Again, we collect 100 experiments, each

spanning one minute for a total of 480,000 location measurements.

Fig. 4-9 plots WiTrack’s localization error as a function of its distance to the subject.

The distance to the subject is determined using the VICON ground-truth coordinates, and

rounded to the nearest meter. The figure shows the median and 90

th percentile of the

estimation error for the x, y, and z coordinates.

The figure shows that the median accuracy changes by 5 to 10 cm for distances that

are 3 to 11 m away from the device. As expected, the further the human moves from

the device, the larger the estimation error. This increase in error with distance is expected
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Figure 4-9: 3D Localization Accuracy Versus Distance to Device. (a)-(c) show the location
error along the x, y, and z dimensions as a function of how far the subject is from WiTrack.
The median and 90th percentile errors increase as the distance from the device to the person
increases.

since as the distance gets larger the signal gets more attenuated. However, a second reason

stems from the geometry of the ellipsoid-based localization model. Given the equations

of the ellipsoid, the TOF multiplied by the speed of light is equal to the major axis of

the ellipsoid/ellipse that describes the user’s location, and the antenna separation is the

distance between the foci. For a fixed antenna separation, as the distance/TOF increases

the ellipsoid’s surface increases, increasing the overall space of potential locations.

The figure also shows that the accuracy is best along the y dimension, then the x, and

finally the z, which is due to the reasons discussed in the previous section.

⌅ 4.8.3 Accuracy Versus Antenna Separation

Our default setting places the receive antennas 1 m away from the transmit antenna. In

this section, we examine the impact of antenna separation on performance.

We evaluate five different configurations. In all of these configurations, the transmit

antenna is at an equal distance from all receive antennas, and is placed at the crossing

point of a “T” whereas the receive antennas are placed at the edges. We vary the distance

between the transmit antenna and each of the receive antennas from 25 cm to 2 m. We run

100 one-minute experiments, 20 for each antenna setting. All experiments are run through

a wall. In each experiment, we ask the human subject to move at will inside the VICON

room, as we record her location using both the VICON system and WiTrack.

Fig. 4-10 shows WiTrack’s localization accuracy as a function of antenna separation.

The figure shows that even if one brings the antennas to within 25cm of each other, the

median location error stays less than 17 cm, 12 cm, and 31 cm for the x, y, and z dimensions,
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and 90th percentile becomes 64cm, 35cm, and 116cm respectively. While this is higher than

the previous results where the antennas were separated by 1 m, it is still comparable to

state of the art localization using a WiFi transmitter (in our case, the user does not need to

carry any wireless device).
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Figure 4-10: 3D Localization Accuracy Versus Size of Device. (a)-(c) show the median and 90th

percentile location errors as a function of the antenna separation. Along all three dimensions, a
larger separation leads to a decrease in the location error.

The plots show that as the antenna separation increases, the localization accuracy im-

proves along all three dimensions x, y, and z. This behavior is expected, because the

further the receive antennas are from each other, the larger the spatial diversity between

them. Because of the geometric nature of the algorithm, a spatially diverse setup would

lead to a smaller intersection curve between any pair of ellipsoids.7 For this reason, in a

larger setup, the same noise variance in the TOF estimates would be confined to a smaller

curve, thus, minimizing estimate error.

Mathematically, for any TOF, the antenna separation is the distance between the foci of

the ellipsoid that defines the person’s location. Hence for any given TOF, increasing the

antenna separation increases the distance between the foci while keeping the ellipsoid’s

major radius constant. Hence the ellipsoid gets more squashed and its circumference be-

comes smaller, reducing the region of potential solutions.

⌅ 4.8.4 Accuracy of Estimating Pointing Direction

In the experiments in this section, the human subjects wear a glove that is instrumented

with infrared reflexive markers, and are asked to stand in a given location inside the VI-
7For simplicity, consider the 2D case with 1 Tx and 2 Rx antennas. Because of the system’s resolution,

each ellipse has some fuzzy region about it (i.e., a thickness of +/✏, where ✏ is determined by the resolution).
Thus, the intersection of two ellipses is a region rather than a single point. This region becomes larger when
the Rx antennas are closer to each other, and the larger the region, the larger the ambiguity in localization.
In the extreme case where the two receive antennas are co-located, the two ellipses perfectly overlap and the
ambiguity region is large.
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CON room and point in a direction of their choice. Each pointing gesture consists of raising

the subject’s hand in the direction of her choice, followed by the subject returning her hand

to its original resting position. Across our experiments, we ask the human subjects to stand

in random different locations in the VICON room and perform the pointing gesture. We

determine the direction in which the subject pointed by using both the VICON recordings

and WiTrack’s estimates (see §4.5.1).

Fig. 4-11 plots a CDF of the error between the angle as determined by WiTrack and

the ground truth angle based on the VICON measurements. The figure shows that the

median orientation error is 11.2 degrees, and the 90

th percentile is 37.9 degrees. These

results suggest that WiTrack provides an enabling primitive to track pointing gestures. We

used this capability to enable controlling different household appliances like shades, lamps

and computer screens by sending commands to these different appliances over Insteon

drivers.
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Figure 4-11: Orientation Accuracy. The CDF of the orientation accuracy shows that the median
orientation error is 11.2 degrees, and the 90th percentile error is 37.9 degrees.

⌅ 4.8.5 Fall Detection

We test the fall detection algorithm described in §4.5.2 by asking different participants to

perform four different activities: walk, sit on a chair, sit on the floor, and simulate a fall.

The floor of the VICON room is already padded. We add extra padding to ensure no injury

can be caused by simulated falls. We perform 132 experiments in total, 33 for each activity.

We log the data files from each of these experiments and process them offline with our fall

detection algorithm. We obtain the following results:

• None of the walking or sitting on a chair activities are classified as falls.

• One of the sitting on the floor experiments was classified as a fall.

• Two out of 33 simulated falls were not detected (they were misclassified as sitting on the

floor).
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Thus, the precision of the fall detection algorithm is 96.9% (since out of the 32 detected

falls only 31 are true falls), and the recall is 93.9% (since out of 33 true falls we detected 31).

This yields an F-measure of 94.4%.

⌅ 4.9 Discussion & Limitations

3D motion tracking based purely on RF reflections off a human body is a challenging tech-

nical problem. We believe WiTrack has taken an important step toward addressing this

problem. However, the version of WiTrack described in this chapter still has limitations,

which we address in the remaining chapters of this dissertation:

Tracking one person: Our current design can track only one person at any point in time.

This does not mean that WiTrack requires only one person to be present in the environ-

ment. Other people can be around, but they have to be behind the directional antennas.

We address this limitation in Chapter 5 to enable WiTrack to track multiple persons at the

same time.

Requiring motion: A second limitation stems from the fact that WiTrack needs the user

to move in order to locate her. This is because WiTrack receives reflections from all static

objects in the environment; hence, it cannot distinguish the static user from a piece of fur-

niture. To eliminate these static reflectors, WiTrack subtracts consecutive FMCW sweeps.

Unfortunately, that eliminates the reflections of the static user as well. Chapter 5 addresses

this limitation as well and shows how we can localize static users in the environment.

Distinguishing between body parts: Currently WiTrack can provide coarse tracking of

the motion of one body part. The tracked part has to be relatively large like an arm or

a leg. WiTrack however does not know which body part has moved, e.g., it cannot tell

whether it is an arm or a leg. In our experiments, the users were pointing with their

arms. Extending this basic capability to tracking more general movements of body parts

will likely require incorporating complex models of human motion. In particular, Kinect’s

ability to track body parts is the result of the combination of 3D motion tracking using

infrared with complex vision algorithms and advanced models of human motion [132].

Chapter 6 discusses how we can enable distinguish between different moving body from

RF reflections.
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Often when presenting this research, the issues of privacy and security come up. While

not central to this thesis, these issues are central to society, and we have given them con-

siderable thought. Our belief is that addressing these issues is two-fold: the first is legal

and the second is technological. From a legal perspective, the use of such technology with-

out the monitored person’s consent will likely be deemed illegal under US law. On one

hand, law enforcement use will be conditioned by obtaining a search warrant (similar to

the Kyllo v United States supreme court ruling in 2001 [19]); on the other hand, use by

ordinary consumers will be governed by Peeping Tom laws which prevent their use with-

out consent. Technologically, we can ensure our privacy with widespread adoption of

such technologies by incorporating challenge-response mechanisms in the user interface,

to ensure that the monitored user provides explicit consent. Furthermore, in the face of

an adversary, one could potentially deploy RF countermeasure that may discover and jam

such technologies. Finally, it is worth noting that WiTrack itself may be used for providing

security services (e.g., intrusion detection or home security).



CHAPTER 5

Multi-Person Localization via RF

Body Reflections

Recall that WiTrack could only localize a single person in the environment, and it required

the person to move in order to be tracked. In this Chapter, we introduce our second ver-

sion, WiTrack2.0, which transcends both of these limitations. Specifically, WiTrack2.0 ac-

curately localizes multiple users in the environment. It does so by disentangling the reflec-

tions of wireless signals that bounce off their bodies. Furthermore, it neither requires prior

calibration nor that the users move in order to localize them.

To achieve its goal, WiTrack2.0 has to deal with multiple challenges. As with traditional

device-based localization, the most difficult challenge in indoor environments is the mul-

tipath effect [86, 160]. Specifically, wireless signals reflect off all objects in the environment

making it hard to associate the incoming signal with a particular location. To overcome

this challenge, WiTrack (of Chapter 4) focuses on motion to capture signal reflections that

change with time. It then assumes that only one person is present in the environment,

and hence all motion can be attributed to him. However, if multiple people move in the

environment or if the person is static, then this assumption no longer works.

To address this challenge, we observe that the indoor multipath varies significantly

when it is measured from different vantage points. Hence, one can address this problem

by positioning multiple transmit and receive antennas in the environment, and measuring

71
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the time of flight from each of these transmit-receive antenna pairs. However, the signals

emitted from the different transmitters will reflect off the bodies of the all the users in the

environment, and these reflections interfere with each other leading to wireless collisions.

In §5.3, we show how WiTrack2.0 disentangles these interfering reflected signals to localize

multiple users in the presence of heavy indoor multipath.

A second challenge that WiTrack2.0 has to address is related to the near-far problem.

Specifically, reflections off the nearest person can have much more power than distant

reflections, obfuscating the signal from distant people, and preventing their detection or

tracking. To address this issue, we introduce Successive Silhouette Cancellation (SSC) an

approach to address the near-far problem, which is inspired by successive interference

cancellation. This technique starts by localizing the closest person, then eliminates his im-

pact on the received signal, before proceeding to localize further users (who have weaker

reflections). It repeats this process iteratively until it has localized all the users in a scene.

Note, however, that each user is not a point reflector; hence, his wireless reflection has a

complex structure that must be taken into account, as we describe in §5.4.

A third challenge that our system addresses is related to localizing static users. Specif-

ically, recall that WiTrack needs to eliminate reflections off static objects by subtracting

consecutive measurements. However, this subtraction also results in eliminating the re-

flections off static users. To enable us to localize static users, we exploit the fact these

users still move slightly due to their breathing. However, the breathing motion is fairly

slow in comparison to body motion. Specifically, the chest moves by a sub-centimeter dis-

tance over a period of few seconds; in contrast, a human would pace indoors at 1 m/s.

Hence, WiTrack2.0 processes the reflected signals at multiple time scales that enable it to

accurately localize both types of movements as we describe in §5.5,

We have built a prototype of WiTrack2.0, using USRP software radios and an analog

FMCW radio. We run experiments both in line-of-sight (LOS) scenarios and non-line-of-

sight (NLOS) scenarios, where the device is in a different room and is tracking people’s

motion through the wall. Empirical results from over 300 experiments with 11 human

subjects show the following:

• Motion Tracking: WiTrack2.0 accurately tracks the motion of up to four users simultane-

ously, without requiring the users to hold or wear any wireless device. In an area that



5.1. RELATED WORK 73

spans 5 m⇥ 7 m, its median error across all users is 12.1cm in the x/y dimensions.

• Localizing Static People: By leveraging their breathing motion, WiTrack2.0 accurately local-

izes up to five static people in the environment. Its median error is 11.2 cm in the x/y

dimensions across all the users in the scene.

• Tracking Hand Movements: WiTrack2.0’s localization capability extends beyond tracking a

user’s body to tracking body parts. We leverage this capability to recognize concurrent

gestures performed in 3D space by multiple users. In particular, we consider a gesture in

which three users point in different directions at the same time. Our WiTrack2.0 prototype

detects the pointing directions of all three users with a median accuracy of 10.3�.

⌅ 5.1 Related Work

Besides past work highlighted in and §4.1, WiTrack2.0’s successive silhouette cancellation

algorithm is related to past literature on integrative cancellation frameworks. Specifically,

the framework of iteratively identifying and canceling out the strongest components of

a signal is widely used in many domains. Naturally, however, the details of how the

highest power component is identified and is eliminated varies from one application to

another. In the communications community, we refer to such techniques as successive in-

terference cancellation, and they have been used in a large number of applications such

as ZigZag [67], VBLAST [167], and full duplex [35]. In the radio astronomy community,

these techniques are referred to as CLEAN algorithms and, similarly, have a large number

of instantiations [77, 144, 146]. Our work on successive silhouette cancellation also falls

under this framework and is inspired by these algorithms. However, in comparison to all

the past work, it focuses on identifying the reflections of the humans in the environment

and canceling them by taking into account the different vantage points from which the

time-of-flight is measured as well as the fact that the human body is not a point reflector.

⌅ 5.2 WiTrack2.0 Overview

WiTrack2.0 is a wireless system that can achieve highly accurate localization of multiple

users in multipath-rich indoor environments, by relying purely on the reflections of wire-

less signals off the users’ bodies. For static users, it localizes them based on their breathing,
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and can also localize the hand motions of multiple people, enabling a multi-user gesture-

based interface.

WiTrack2.0 is a multi-antenna system consisting of five transmit antennas and five re-

ceive antennas, as shown in Fig. 5-1. The antennas are directional, stacked in a single

plane, and mounted on a foldable platform as shown in Fig. 5-1(b). This arrangement is

chosen because it enables see-through-wall applications, whereby all the antennas need to

be lined up in a plane facing the wall of interest.

(a) Antenna (b) Antenna Setup

Figure 5-1: WiTrack2.0’s Antennas and Setup. (a) shows one of WiTrack2.0’s directional an-
tenna (3cm⇥ 3.4cm) placed next to a quarter; (b) shows the antenna setup in our experiments,
where antennas are mounted on a 2m⇥ 1m platform and arranged in a single vertical plane.

WiTrack2.0 operates by transmitting RF signals and capturing their reflections after

they bounce off different users in the environment. Algorithmically, WiTrack2.0 has two

main components: 1) Multi-shift FMCW, a technique that enables it to deal with multi-

path effects, and (2) Successive Silhouette Cancellation (SSC), an algorithm that allows

WiTrack2.0 to overcome the near-far problem. The following sections describe these com-

ponents.

⌅ 5.3 Multi-shift FMCW

Multipath is the first challenge in accurate indoor localization. Specifically, not all reflec-

tions that survive background subtraction correspond to a moving person. This is because

the signal reflected off the human body may also reflect off other objects in the environ-

ment before arriving at the receive antenna. As this person moves, this multipath reflec-

tion also moves with him and survives the background subtraction step. In single-user

localization, one may eliminate this type of multipath by leveraging that these secondary
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reflections travel along a longer path before they arrive at the receive antenna. Specifically,

by electing the smallest TOF after background subtraction, one may identify the round-trip

distance to the user.

However, the above invariant does not hold in multi-person localization since different

users are at different distances with respect to the antennas, and the multipath of a nearby

user may arrive earlier than that of a more distant user, or even interfere with it. In this

section, we explore this challenge in more details, and show how we can overcome it by

obtaining time-of-flight measurements from different vantage points in the environment.

⌅ 5.3.1 Addressing Multi-path in Multi-User Localization

To explore the above challenge in practice, we run an experiment with two users in a

5 ⇥ 7 m furnished room (with tables, chairs, etc.) in a standard office building. Recall

from §4.3 that each transmit-receive antenna pair provides us with a TOF profile – i.e., it

tells us how much reflected power we obtain at each possible TOF between the transmit

antenna and receive antenna – and that each such TOF corresponds to an ellipse in 2D (as

in Fig. 4-4(a)). We study what happens as we successively overlay ellipses from different

transmit-receive pairs.

Now let us map all TOFs in a TOF profile to the corresponding round trip distances

using Eq. 4.4, and hence the resulting ellipses. This process produces a heatmap like the

one in Fig. 5-2(a), where the x and y axes correspond to the plane of motion. For each

ellipse in the heatmap, the color in the image reflects the amount of received power at

the corresponding TOF. Hence, the ellipse in red corresponds to a strong reflector in the

environment. The orange, yellow, and green ellipses correspond to weaker reflections

respectively; these reflections could either be due to another person, multi-path reflections

of the first person, or noise. The blue regions in the background correspond to the absence

of reflections from those areas.

Note that the heatmap shows a pattern of half-ellipses; the foci of these ellipses are the

transmit and receive antennas, both of which are placed along the y = 0 axis. The reason

we only show the upper half of the ellipses is that we are using directional antennas, and

we focus them towards the positive y direction. Hence, we know that we do not receive

reflections from behind the antennas.



76 CHAPTER 5. MULTI-PERSON LOCALIZATION VIA RF BODY REFLECTIONS

-4 -3 -2 -1  0  1  2  3  4
Distance (meters)

 0

 1

 2

 3

 4

 5

 6

 7

 8

D
is

ta
n
ce

 (
m

e
te

rs
)

(a) One pair

-4 -3 -2 -1  0  1  2  3  4
Distance (meters)

 0

 1

 2

 3

 4

 5

 6

 7

 8

D
is

ta
n
ce

 (
m

e
te

rs
)

(b) Two pairs
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(c) Three pairs
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(d) Four pairs
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(e) Five pairs

Figure 5-2: Increasing the Number of Tx-Rx pairs enables Localizing Multiple Users. The
figure shows the heatmaps obtained from combining TOF profiles of multiple Tx-Rx antenna
pairs in the presence of two users. The x/y axes of each heatmap correspond to the real world
x/y dimensions.

Fig. 5-2(a) shows the ellipses corresponding to the TOF profiles from one Tx-Rx pair.

Now, let us see what happens when we superimpose the heatmaps obtained from two Tx-

Rx pairs. Fig. 5-2(b) shows the heatmap we obtain when we overlay the ellipses of the first

transmit-receive pair with those from a second pair. We can now see two patterns of el-

lipses in the figure, the first pattern resulting from the TOFs of the first pair, and the second

pattern due to the TOFs of the second pair. These ellipses intersect in multiple locations,

resulting in red or orange regions, which suggest a higher probability for a reflector to be

in those regions. Recall that there are two people in this experiment. However, Fig. 5-2(b)

is not enough to identify the locations of these two people.

Figs. 5-2(c) and 5-2(d) show the result of overlaying ellipses from three and four Tx-Rx

pairs respectively. The figures show how the noise and multi-path from different antennas

averages out to result in a dark blue background. This is because different Tx-Rx pairs have

different perspectives of the indoor environment; hence, they do not observe the same

noise or multi-path reflections. As a result, the more we overlay heatmaps from different

Tx-Rx pairs, the dimmer the multipath effect, and the clearer the candidate locations for

the two people in the environment.
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Next, we overlay the ellipses from five transmit-receive pairs and show the resulting

heatmap in Fig. 5-2(e). We can now clearly see two bright spots in the heatmap: one

is red and the other is orange, whereas the rest of the heatmap is mostly a navy blue

background indicating the absence of reflectors. Hence, in this experiment, we are able to

localize the two users using TOF measurements from five Tx-Rx pairs. Combining these

measurements together allowed us to eliminate the multipath effects and localize the two

people passively using their reflections.

Summary: As the number of users increases, we need TOF measurements from a larger

number of Tx-Rx pairs to localize them, and extract their reflections from multipath. For

the case of two users, we have seen a scenario whereby the TOFs of five Tx-Rx pairs were

sufficient to accurately localize both of them. In general, the exact number would depend

on multipath and noise in the environment as well as on the number of users we wish

to localize. These observations motivate a mechanism that can provide us with a large

number of Tx-Rx pairs while scaling with the number of people in the environment.

⌅ 5.3.2 The Design of Multi-shift FMCW

In the previous section, we showed that we can localize two people by overlaying many

heatmaps obtained from mapping the TOF profiles of multiple Tx-Rx pairs to the corre-

sponding ellipses. But how do we obtain TOFs from many Tx-Rx pairs? One option is to

use one FMCW transmitter and a large number of receivers. In this case, to obtain N Tx-Rx

pairs, we would need one transmitter and N receivers. The problem with this approach

is that it needs a large number of receivers, and hence does not scale well as we add more

people to the environment.

A more appealing option is to use multiple FMCW transmit and receive antennas.

Since the signal transmitted from each transmit antenna is received by all receive antennas,

this allows us to obtain N Tx-Rx pairs using only
p

N transmit antennas and
p

N receive

antennas.

However, the problem with this approach is that the signals from the different FMCW

transmitters will interfere with each other over the wireless medium, and this interference

will lead to localization errors. To see why this is true, consider a simple example where

we want to localize a user, and we have two transmit antennas, Tx1 and Tx2, and one
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receive antenna Rx. The receive antenna will receive two reflections – one due to the signal

transmitted from Tx1, and another due to Tx2’s signal. Hence, its TOF profile will contain

two spikes referring to two time-of-flight measurements TOF
1

and TOF
2

.

With two TOFs, we should be able to localize a single user based on the intersection

of the resulting ellipses. However, the receiver has no idea which TOF corresponds to the

reflection of the FMWC signal generated from Tx1 and which corresponds to the reflec-

tion of the FMCW signal generated by Tx2. Not knowing the correct Tx means that we

do not know the foci of the two ellipses and hence cannot localize. For example, if we

incorrectly associate TOF
1

with Tx2 and TOF
2

with Tx1, we will generate a wrong set of

ellipses, and localize the person to an incorrect location. Further, this problem becomes

more complicated as we add more transmit antennas to the system. Therefore, to localize

the user, WiTrack2.0 needs a mechanism to associate these TOF measurements with their

corresponding transmit antennas.

Time%

FMCW%from%Tx1%

Frequency%

TOFlimit%

FMCW%from%Tx2%

TOF1%

ReflecCon%due%to%Tx1%

Figure 5-3: Multi-shift FMCW. WiTrack2.0 transmits FMCW signals from different transmit
antennas after inserting virtual delays between them. Each delay must be larger than the highest
time-of-flight (TOF

limit

) due to objects in the environment.

We address this challenge by leveraging the structure of the FMCW signal. Recall that

FMCW consists of a continuous linear frequency sweep as shown by the green line in

Fig. 5-3. When the FMCW signal hits a body, it reflects back with a delay that corresponds

to the body’s TOF. Now, let us say TOF
limit

is the maximum TOF that we expect in the

typical indoor environment where WiTrack2.0 operates. We can delay the FMCW signal

from the second transmitter by ⌧ > TOF
limit

so that all TOFs from the second transmitter

are shifted by ⌧ with respect to those from the first transmitter, as shown by the red line

in Fig. 5-3. Thus, we can prevent the various FMCW signals from interfering by ensuring

that each transmitted FMCW signal is time shifted with respect to the others, and those
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shifts are significantly larger than the time-of-flight to objects in the environment. We refer

to this design as Multi-shift FMCW.

As a result, the receiver would still compute two TOF measurements: the first mea-

surement (from Tx1) would be TOF
1

, and the second measurement (from Tx2) would be

TOF 0
2

= TOF
2

+ ⌧ . Knowing that the TOF measurements from Tx2 will always be larger

than ⌧ , WiTrack2.0 determines that TOF
1

is due to the signal transmitted by Tx1, and

TOF 0
2

is due to the signal transmitted by Tx2.

This idea can be extended to more than two Tx antennas, as shown in Fig. 6-10. Specif-

ically, we can transmit the FMCW signal directly over the air from Tx1, then shift it by ⌧

and transmit it from Tx2, then shift it by 2⌧ and transmit it from Tx3, and so on. At the

receive side, all TOFs between 0 and ⌧ are mapped to Tx1, whereas distances between ⌧

and 2⌧ are mapped to Tx2, and so on.

Summary: Multi-shift FMCW has two components: the first component allows us to ob-

tain TOF measurements from a large number of Tx-Rx pairs; the second component oper-

ates on the TOFs obtained from these different Tx-Rx pairs by superimposing them into a

2D heatmap, which allows us to localize multiple users in the scene.

⌅ 5.4 Successive Silhouette Cancellation

With multi-shift FMCW, we obtain TOF profiles from a large number of Tx-Rx pairs, map

them to 2D heatmaps, overlay the heatmaps, and start identifying users’ locations. How-

ever, in practice this is not sufficient because different users will exhibit the near-far prob-

lem. Specifically, reflections of a nearby user are much stronger than reflections of a far-

away user or one behind an obstruction.

Fig. 5-4(a) illustrates this challenge. It shows the 2D heatmap obtained in the presence

of four persons in the environment. The heatmap allows us to localize only two of these

persons: one is clearly visible at (0.5,2), and another is fairly visible at (�0.5,1.3). The

other two people, who are farther away from WiTrack2.0, are completely overwhelmed by

the power of the first two persons.

To deal with this near-far problem, rather than localizing all users in one shot, WiTrack2.0

performs Successive Silhouette Cancellation (SSC) which consists of 4 steps:
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(b) Detect 2nd Person
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(d) Detect 4th Person
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(e) Focus on 1st Person
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(f) Focus on 2nd Person
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(g) Focus on 3rd Person
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(h) Focus on 4th Person

Figure 5-4: Successive Silhouette Cancellation. (a) shows the 2D heatmap obtained by com-
bining all the TOFs in the presence of four users. (b)-(d) show the heatmaps obtained after
canceling out the first, second, and third user respectively. (e)-(h) show the result of the SSC fo-
cusing step on each of the users, and how it enables us to accurately localize each person while
eliminating interference from all other users.

1. SSC Detection: finds the location of the strongest user by overlaying the heatmaps of all

Tx-Rx pairs.

2. SSC Re-mapping: maps a person’s location to the set of TOFs that would have generated

that location at each transmit-receive pair.

3. SSC Cancellation: cancels the impact of the person from the TOF profiles of all Tx-Rx

pairs.

4. Iteration: re-computes the heatmaps using the TOF profiles after cancellation, overlays

them, and proceeds to find the next strongest reflector.

We now describe each of these steps in detail by walking through the example with four

persons shown in Fig. 5-4.

SSC Detection. In the first step, SSC finds the location of the highest power reflector in the

2D heatmap of Fig. 5-4(a). In this example, the highest power is at (0.5,2), indicating that

there is a person in that location.

SSC Re-mapping. Given the (x, y) coordinates of the person, we map his location back to

the corresponding TOF at each transmit-receive pair. Keep in mind that each person is not

a point reflector; hence, we need to estimate the spread of reflections off his entire body on

the TOF profile of each transmit-receive pair.
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To see how we can do this, let us look at the illustration in Fig. 5-5 to understand the

effect of a person’s body on one transmit-receive pair. The signal transmitted from the

transmit antenna will reflect off different points on the person’s body before arriving at

the receive antenna. Thus, the person’s reflections will appear between some TOF
min

and

TOF
max

in the TOF profile at the Rx antenna.

Tx$(xt,yt,zt)$

Rx$
(xr,yr,zr)$

WiTrack2.0$

TOFmin$

TOFmax$

(x,y,z)$

(x,y,0)$

Figure 5-5: Finding TOF
min

and TOF
max

. TOF
min

is determined by the round-trip distance
from the Tx-Rx pair to the closest point on the person’s body. Since the antennas are elevated,
TOF

max

is typically due to the round-trip distance to the person’s feet.

Note that TOF
min

and TOF
max

are bounded by the closest and furthest points respec-

tively on a person’s body from the transmit-receive antenna pair. Let us first focus on how

we can obtain TOF
min

. By definition, the closest point on the person’s body is the one that

corresponds to the shortest round-trip distance to the Tx-Rx pair, where the round-trip

distance is the summation of the forward path from Tx to that point and the path from that

point back to Rx. Formally, for a Tx antenna at (x
t

,0, z
t

), an Rx antenna at (x
r

,0, z
r

),1 we

can compute d
min

as:

min

z

p
(x

t

� x)2 + y2 + (z
t

� z)2 +
p

(x
r

� x)2 + y2 + (z
r

� z)2 (5.1)

where (x, y, z) is any reflection point on the user’s body. One can show that this expression

is minimized when:
z � z

t

z � z
r

= �

s
(x

t

� x)2 + y2

(x
r

� x)2 + y2
(5.2)

Hence, using the detected (x, y) position, we can solve for z then substitute in Eq. 5.1 to

obtain d
min

.

Similarly, TOF
max

is bounded by the round-trip distance to point on the person’s body

that is furthest from the Tx-Rx pair. Again, the x and y coordinates of the furthest point are
1Recall that all the antennas are in the vertical plane y = 0, which is parallel to a person’s standing height.
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determined by the person’s location from the SSC Detection step. However, we still need

to figure out the z coordinate of this point. Since the transmitter and receiver are both

raised above the ground (at around 1.2 meters above the ground), the furthest point from

the Tx-Rx pair is typically at the person’s feet. Therefore, we know that the coordinates of

this point are (x, y,0), and hence we can compute d
max

as:

d
max

=

q
(x

t

� x)2 + (y)2 + z2
t

+

p
(x

r

� x)2 + (y)2 + z2
r

.

Finally, we can map d
min

and d
max

to TOF
min

and TOF
max

by dividing them by the speed

of light C.

SSC Cancellation. The next step is to use TOF
min

and TOF
max

to cancel the person’s re-

flections from the TOF profiles of each transmit-receive pair. To do that, we take a conser-

vative approach and remove the power in all TOFs between TOF
min

and TOF
max

within

that profile. Of course, this means that we might also be partially canceling out the reflec-

tions of another person who happens to have a similar time of flight to this Tx-Rx pair.

However, we rely on the fact that multi-shift FMCW provides a large number of TOF pro-

files from many Tx-Rx pairs. Hence, even if we cancel out the power in the TOF of a person

with respect to a particular Tx-Rx pair, each person will continue to have a sufficient num-

ber of TOF measurements from the rest of the antennas.

We repeat the process of computing TOF
min

and TOF
max

with respect of each Tx-Rx

pair and cancelling the power in that range, until we have eliminated any power from the

recently localized person.

Iteration. We proceed to localize the next person. This is done by regenerating the heatmaps

from the updated TOF profiles and overlaying them. Fig. 5-4(b) shows the obtained image

after performing this procedure for the first person. Now, a person at (�0.5,1.3) becomes

the strongest reflector in the scene.

We repeat the same procedure for this user, canceling out his interference, then recon-

structing a 2D heatmap in Fig. 5-4(c) using the remaining TOF measurements. Now, the

person with the strongest reflection is at (0.8,2.7). Note that this heatmap is noisier than

Figs. 5-4(a) and 5-4(b) because now we are dealing with a more distant person.

WiTrack2.0 repeats the same cancellation procedure for the third person and constructs
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Figure 5-6: SINR of the Farthest User Throughout SSC Iterations. The figure shows how the
SINR of the farthest user increases with each iteration of the SSC algorithm. After the first,
second and third person are removed from the heatmap images in Figs.5-4(a)-(c), the SINR of
the fourth person increases to 7dB, allowing us to detect his presence.

the 2D heatmap in Fig. 5-4(d). The figure shows a strong reflection at (1,4). Recall that our

antennas are placed along the y = 0 axis, which means that this is indeed the furthest

person in the scene. Also note that the heatmap is now even noisier. This is expected

because the furthest person’s reflections are much weaker. WiTrack2.0 repeats interference

cancellation for the fourth person, and determines that the SNR of the maximum reflector

in the resulting heatmap does not pass a threshold test. Hence, it determines that there are

only four people in the scene.

We note that each of these heatmaps are scaled so that the highest power is always

in red and the lowest power is in navy blue; this change in scale emphasizes the location

of the strongest reflectors and allows us to better visualize their locations. To gain more

insight into the power values and to better understand how SSC improves our detection of

further away users, Fig. 5-6 plots the Signal to Interference and Noise Ratio (SINR) of the

fourth person during each iteration of SSC. The fourth user’s SINR initially starts at -21dB

and is not visible in Fig. 5-4(a). Once the first and second users are removed by SSC, the

SINR increases to -7dB and we can start detecting the user’s presence in the back of Fig. 5-

4(c). Performing another iteration raises the fourth person’s SINR above the noise floor to

7dB. It also brings it above our threshold of 6dB – i.e., twice the noise floor – making him

detectable.

We perform four additional steps to improve SSC:

• Refocusing Step: After obtaining the initial estimates of the locations of all four persons,

WiTrack2.0 performs a focusing step for each user to refine his location estimate. This

is done by reconstructing an interference-free 2D heatmap only using the range in the

TOF profiles that corresponds to TOFs between TOF
min

and TOF
max

for that Tx-Rx pair.
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Figure 5-7: Disentangling Crossing Paths. When two people cross paths, they typically keep
going along the same direction they were going before their paths crossed.

Figs. 5-4(e)- 5-4(h) show the images obtained from this focusing step. In these images, the

location of each person is much clearer,2 which enables higher-accuracy localization.

• Leveraging Motion Continuity: After obtaining the estimates from SSC, WiTrack2.0 applies

a Kalman filter and performs outlier rejection to reject impractical jumps in location es-

timates that would otherwise correspond to abnormal human motion over a very short

period of time.

• Disentangling Crossing Paths: To disentangle multiple people who cross paths, we look at

their direction of motion before they crossed paths and project how they would proceed

with the same speed and direction as they are crossing paths. This helps us with associ-

ating each person with his own trajectory after crossing. Fig. 5-7 shows an example with

two people crossing paths and how we were able to track their trajectories despite that.

Of course, this approach does not generalize to every single case, which may lead to some

association errors after the crossings but not to localization errors.

• Extending SSC to 3D Gesture Recognition: Similar to our earlier version of WiTrack presented

in Chapter 4, WiTrack2.0 can differentiate a hand motion from a whole-body motion (like

walking) by leveraging the fact that a person’s hand has a much smaller reflective sur-

face than his entire body. Unlike the earlier version, however, WiTrack2.0 can track ges-

tures even when they are simultaneously performed by multiple users. Specifically, by

exploiting SSC focusing, it zooms onto each user individually to track his gestures. In our

evaluation, we focus on testing a pointing gesture, where different users point in differ-

ent directions at the same time. By tracking the trajectory of each moving hand, we can

2This is because all other users’ reflections are eliminated, while, without refocusing, only users detected
in prior iterations are eliminated.
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determine its pointing direction. Note that we perform these pointing gestures in 3D and

track hand motion by using the TOFs from the different Tx-Rx pairs to construct a 3D point

cloud rather than a 2D heatmap.3 The results in §5.8.3 show that we can accurately track

hand gestures performed by multiple users in 3D space.

⌅ 5.5 Localization Based on Breathing

We extend WiTrack2.0’s SSC algorithm to localize static people based on their breathing.

Recall from Chapter 4 that in order for WiTrack to localize a user based on her radio reflec-

tions, we need to eliminate reflections off all static objects in the environment (like walls

and furniture). This is typically achieved by performing a background subtraction step,

i.e., by taking TOF profiles from adjacent time windows and subtracting them from each

other.4

Whereas this approach enables us to track moving people, it prevents us from detecting

a static person – e.g., someone who is standing or sitting still. Specifically, because a static

person remains in the same location, his TOF does not change, and hence his reflections

would appear as static and will be eliminated in the process of background subtraction. To

see this in practice, we run two experiments where we perform background subtraction

by subtracting two TOF profiles that are 12.5 milliseconds apart from each other. The first

experiment is performed with a walking person and the resulting heatmap is shown in

Fig. 5-8(a), whereas the second experiment is performed in the presence of a person who

is sitting at (0,5) and the resulting heatmap is shown in Fig. 5-8(b). These experiments

show how the heatmap of a moving person after background subtraction would allow

us to localize him accurately, whereas the heatmap of the static person after background

subtraction does not allow us to localize the person.

To localize static people, one needs to realize that even a static person moves slightly

due to breathing. Specifically, during the process of breathing, the human chest moves

by a sub-centimeter distance over a period of few seconds. The key challenge is that this

change does not translate into a discernible change in the TOF of the person. However,

3Recall from §4.4 that a given TOF maps to an ellipse in 2D and an ellipsoid in 3D. The intersection of
ellipsoids in 3D allow us to track these pointing gestures.

4Recall that we obtain one TOF profile by taking an FFT over the received FMCW signal in baseband. Since
the FMCW signal is repeatedly swept, we can compute a new TOF profile from each sweep.
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(a) Short subtraction win-
dow localizes a walking
person.
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(b) Short subtraction
window misses a static
person.
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(c) Long subtraction win-
dow smears a walking
person.
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Figure 5-8: Need For Multiple Subtraction Windows. The 2D heatmaps show that a short
subtraction window accurately localizes a pacing person in (a) but not a static person in (b). A
long subtraction window smears the walking person’s location in (c) but localizes a breathing
person in (d).

over an interval of time of a few seconds (i.e., as the person inhales and exhales), it would

result in discernible changes in the reflected signal. Therefore, by subtracting frames in

time that are few seconds apart, we should be able to localize the breathing motion.

In fact, Fig. 5-8(d) shows that we can accurately localize a person who is sitting still

by using a subtraction window of 2.5 seconds. Note, however, that this long subtraction

window will introduce errors in localizing a pacing person. In particular, since typical

indoor walking speed is around 1 m/s [37], subtracting two frames that are 2.5 seconds

apart would result in smearing the person’s location and may also result in mistaking him

for two people as shown in Fig. 5-8(c).

Thus, to accurately localize both static and moving people, WiTrack2.0 performs back-

ground subtraction with different subtraction windows. To localize moving users, it uses

a subtraction window of 12.5 ms. On the other hand, normal adults inhale and exhale over

a period of 3–6 seconds [155] causing their TOF profiles to change over such intervals of

time. Hence, we consider the first TOF profile during each 10-second interval, and sub-

tract it from all subsequent TOF profiles during that interval. As a result, breathing users’

reflections pop up at different instances, allowing us to detect and localize them.

⌅ 5.6 Implementation

We built WiTrack2.0 using a single FMCW radio (hardware design was described in §4.6)

whose signal is fed into multiple antennas. The FMCW radio generates a low-power (sub-

milliWatt) signal that sweeps 5.46-7.25 GHz every 2.5 milliseconds. The range and power
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are chosen in compliance with FCC regulations for consumer electronics [18].

FMCW%Signal%
Generator%

Transmit%Antennas%

X USRP%Tx1%

Tx2%

X

Rx1%

Rx2%
X USRP%

X

τ%

2τ%

Receive%Antennas%

X

Figure 5-9: Multi-shift FMCW Architecture. The generated FMCW signal is fed to multiple
transmit antennas via different delay lines. At the receive side, the TOF measurements from the
different antennas are combined to obtain the 2D heatmaps.

The schematic in Fig. 5-9 shows how we use this radio to implement Multi-shift FMCW.

Specifically, the generated sweep is delayed before being fed to directional antennas for

transmission.5 At the receive side, the signal from each receive antenna is mixed with the

FMCW signal and the resulting signal is fed to the USRP. The USRP samples the signals at

2 MHz and transfers the digitized samples to the UHD driver. These samples are processed

in software to localize users and recognize their gestures.6

The analog FMCW radio and all the USRPs are driven by the same external clock.

This ensures that there is no frequency offset between their oscillators, and hence enables

subtracting frames that are relatively far apart in time to enable localizing people based on

breathing.

⌅ 5.7 Evaluation

Human Subjects. We evaluate the performance of WiTrack2.0 by conducting experiments

in our lab with eleven human subjects: four females and seven males. The subjects differ

5The most straightforward option to delay the signal is to insert a wire. However, wires attenuate the signal
and introduce distortion over the wide bandwidth of operation of our system, reducing its SNR. Instead, we
exploit the fact that, in FMCW, time and frequency are linearly related; hence, a shift ⌧ in time can be achieved
through a shift �f = slope⇥ ⌧ in the frequency domain. Hence, we achieve this delay by mixing FMCW with
signals whose carrier frequency is �f . This approach also provides us with the flexibility of tuning multi-shift
FMCW for different TOF

limit

’s by simply changing these carrier frequencies.
6Complexity-wise, WiTrack2.0’s algorithms are linear in the number of users, the number of Tx antennas,

and the number of Rx antennas.
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in height from 165–185 cm as well as in weight and build and span 20 to 50 years of age.

The subjects wear their daily attire. In each experiment, each subject is allowed to move as

they wish throughout the room.

Ground Truth. We use the VICON motion capture system to provide us with ground truth

positioning information [14]. It consists of an array of infrared cameras that are fitted to the

ceiling of a 5 m⇥ 7 m room, and requires instrumenting any tracked object with infrared-

reflective markers. When an instrumented object moves, the system tracks the infrared

markers on that object and fits them into a 3D model to identify the object’s location.

We evaluate WiTrack2.0’s accuracy by comparing it to the locations provided by the

VICON system. To track a user using the VICON, we ask him/her to wear a hard hat that

is instrumented with five infrared markers. In addition, for the gestures experiments, we

ask each user to wear a glove that is instrumented with six markers.

Experimental Setup. We evaluate WiTrack2.0 in a standard office environment that has

standard furniture: tables, chairs, boards, computers, etc. We experiment with two setups:

line-of-sight and through-the-wall. In the through-wall experiments, WiTrack2.0 is placed

outside the VICON room with all transmit and receive antennas facing one of the walls of

the room. Recall that WiTrack2.0’s antennas are directional and hence this setting means

that the radio beam is directed toward the room. The VICON room has no windows; it

has 6-inch hollow walls supported by steel frames, which is a standard setup for office

buildings. In the line-of-sight experiments, we move WiTrack2.0 inside the room. In all

of these experiments, the subjects’ locations are tracked by both the VICON system and

WiTrack2.0.

Detection. Recall that WiTrack2.0 uses iterative cancellation to detect different users in the

scene. This limits the number of users it can detect because of residual interference from

previous iterations. Therefore, we run experiments to identify the maximum number of

people that WiTrack2.0 can reliably detect under various conditions. Detection accuracy is

measured as the percentage of time that WiTrack2.0 correctly outputs the number of users

present in the environment. The number of users in each experiment is known and acts as

the ground truth. We run ten experiments for each of our testing scenarios, and plot the

accuracies for each them in Fig. 5-10.

We make two observations from this figure. First, the accuracy of detection is higher
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Figure 5-10: WiTrack2.0 ’s Detection Accuracy. The figure shows the percentage of time that
WiTrack2.0 accurately determines the number of people in each of our evaluation scenarios.

in line-of-sight than in through-wall settings. This is expected because the wall causes

significant attenuation and hence reduces the SNR of the reflected signals. Second, the de-

tection accuracy for breathing-based localization is higher than that of the tracking exper-

iments. While this might seem surprising, it is actually due to the fact that the breathing

experiments operate over longer subtraction windows. Specifically, the system outputs

the number of people detected and their locations by analyzing the trace over windows

of 10 seconds. In contrast, the tracking experiments require outputting a location of each

person once every 12.5 ms,7 and hence they might not be able to detect each person within

such a small time window.

For our evaluation of localization accuracy, we run experiments with the maximum

number of people that are reliably detectable, where “reliably detectable” is defined as

detected an accuracy of 95% or higher. For reference, we summarize these numbers in the

table below.

Line-of-Sight Through-Wall
Motion Tracking 4 3
Breathing-based Localization 5 4

Table 5-1: Maximum Number of People Detected Reliably.

7Since the user is moving, combining measurements over a longer interval smears his signal.
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⌅ 5.8 Performance Results

⌅ 5.8.1 Accuracy of Multi-Person Motion Tracking

We first evaluate WiTrack2.0’s accuracy in multi-person motion tracking. We run 100 ex-

periments in total, half of them in line-of-sight and the second half in through-wall settings.

In each experiment, we ask one, two, three, or four human subjects to wear the hard hats

that are instrumented with VICON markers and move inside the VICON-instrumented

room. Each subject’s location is tracked by both the VICON system and WiTrack2.0, and

each experiment lasts for one minute. Since each FMCW sweep lasts for 2.5ms and we av-

erage 5 sweeps to obtain each TOF measurement, we collect around 5,000 location readings

per user per experiment.
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Figure 5-11: Performance of WiTrack2.0’s LOS Tracking. (a) and (b) show the CDFs of the
location error in x and y for each of the tracked users in LOS. Subjects are ordered from first to
last detected by SSC.
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Figure 5-12: Performance of WiTrack2.0’s Through-Wall Tracking. (a) and (b) show the CDFs
of the location error in x and y for each of the tracked users. Subjects are ordered from first to
last detected by SSC.

Figs. 5-11 and 5-12 plot the CDFs of the location error along the x and y coordinates for

each of the localized persons in both line-of-sight and through-wall scenarios. The subjects
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are ordered from the first to the last as detected by SSC. The figures reveal the following

findings:

• WiTrack2.0 can accurately track the motion of four users when it is in the same room as

the subjects. Its median location error for these experiments is 8.5 cm in x and 6.4 cm

in y for the first user detected, and decreases to 15.9 cm in x and 7.2 cm in y for the last

detected user.

• In through-wall scenarios, WiTrack2.0 can accurately localize up to three users. Its me-

dian location error for these experiments is 8.4 cm and 7.1 cm in x/y for the first detected

user, and decreases to 16.1 cm and 10.5 cm in x/y for the last detected user. As expected,

the accuracy when the device is placed in the same room as the users is better than when

it is placed behind the wall due to the attenuation (reduced SNR) caused by the wall.

• The accuracy in the y dimension is better than the accuracy in the x dimension. This dis-

crepancy is due to the asymmetric nature of WiTrack2.0’s setup, where all of its antennas

are arranged along the y = 0 axis.

• The localization accuracy decreases according to the order the SSC algorithm localizes

the users. This is due to multiple reasons: First, a user detected in later iterations is typ-

ically further from the device, and hence has lower SNR, which leads to lower accuracy.

Second, SSC may not perfectly remove the reflections of other users in the scene, which

leads to residual interference and hence lower accuracy.

⌅ 5.8.2 Accuracy of Breathing-based Localization

We evaluate WiTrack2.0’s accuracy in localizing static people based on their breathing. We

run 100 experiments in total with up to five people in the room. Half of these experiments

are done in line-of-sight and the other half are through-wall. Experiments last for 3-4 min-

utes. Subjects wear hard hats and sit on chairs in the VICON room.

Figs. 5-13 and 5-14 plot WiTrack2.0’s localization error in line-of-sight and through-wall

settings as a function of the order with which the subject is detected by the SSC algorithm.

The figures show the median and 90

th percentile of the estimation error for the x and y

coordinates of each of the subjects. The figures show the following results:

• WiTrack2.0’s breathing-based localization accuracy goes from a median of 7.24 and 6.3 cm

in x/y for the nearest user to 18.31 and 10.85 cm in x/y for the furthest user, in both line-
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Figure 5-13: Accuracy for Localizing Breathing People in Line-of-Sight.. The figure shows
show the median and 90th percentile errors in x/y location. Subjects are ordered from first to
last detected by SSC.
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Figure 5-14: Accuracy for Localizing Breathing People in Through-Wall Experiments.. The
figure shows show the median and 90th percentile errors in x/y location. Subjects are ordered
from first to last detected by SSC.

of-sight and through-wall settings.

• Localization based on breathing is more accurate than during motion. This is because

when people are static, they remain in the same position, providing us with a larger num-

ber of measurements for the same location.

⌅ 5.8.3 Accuracy of 3D Pointing Gesture Detection

We evaluate WiTrack2.0’s accuracy in tracking 3D pointing gestures. We run 100 experi-

ments in total with one to three subjects. In each of these experiments, we ask each subject

to wear a glove that is instrumented with infrared-reflective markers, stand in a different

location in the VICON room, and point his/her hand in a random 3D direction of their

choice – as if they were playing a shooting game or pointing at some household appli-

ance to control it. In most of these experiments, all subjects were performing the pointing

gestures simultaneously.

Throughout these experiments, we track the 3D location of the hand using the VICON

system and WiTrack2.0. We then regress on the 3D trajectory to determine the direction in
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which each user pointed (similar to the earlier version of WiTrack described in Chapter 4).

Fig. 5-15(a) and 5-15(b) plot the CDFs of the orientation error between the angles as mea-

sured by WiTrack2.0 and the VICON for the 1st, 2nd and 3rd participant (in the order of

detection by SSC). Note that we decompose the 3D pointing gesture along two directions:

azimuthal (in the x� y plane), which we denote as �, and elevation (in the r � z plane),

which we denote as ✓. The accuracy along both of these angles is important since appli-

ances which the user may want to control in a home environment (e.g., lamps, screens,

shades) span 3D space.
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Figure 5-15: 3D Gesture Accuracy. The figure shows the CDFs of the orientation accuracy for
the pointing gestures of each participant. Subjects are ordered from first to last detected by the
SSC algorithm.

The figure shows that the median orientation error in � goes from 8.2 degrees to 12.4 de-

grees from the first to the third person, and from 12 degrees to 16 degrees in ✓. Note

that WiTrack2.0’s accuracy in � is slightly higher than its accuracy in ✓. This is due to

WiTrack2.0’s setup, where the antennas are more spread out along the x than along the

z, naturally leading to lower robustness to errors along the z axis, and hence lower accu-

racy in ✓. These experiments demonstrate that WiTrack2.0 can achieve high accuracy in 3D

tracking of a pointing gesture.

⌅ 5.9 Discussion & Limitations

WiTrack2.0 marks an important step toward enabling accurate indoor localization that

does not require users to hold or wear any wireless device. WiTrack2.0, however, has

some limitations which we highlight below. Some of these limitations are left for future

work, while others are addressed in the upcoming chapters of this dissertation.



94 CHAPTER 5. MULTI-PERSON LOCALIZATION VIA RF BODY REFLECTIONS

1. Number of Users: WiTrack2.0 can accurately track up to 4 moving users and 5 static users.

These numbers may be sufficient for in-home tracking. However, it is always desirable to

scale the system to track more users.

2. Coverage Area: WiTrack2.0’s range is limited to 10m due to its low power. To cover larger

areas and track more users, one may deploy multiple devices and hand off the trajectory

tracking from one to the next, as the person moves around. Managing such a network of

devices, coordinating their hand-off, and arbitrating their medium access are interesting

problems to explore.

3. Lack of Identification: The system can track multiple users simultaneously, but it cannot

identify them. Additionally, it can track limb motion (e.g., a hand) but cannot differen-

tiate between different body parts (a hand vs. a leg). Chapter 6 describes how we can

overcome both of these limitations and use RF signals to identify humans as well as to

determine which body part a person uses for performing gestures.

4. Limited Gesture Interface: WiTrack2.0 focuses on tracking pointing gestures; however, the

user cannot move other body parts while performing the pointing gesture. In Chapter 6,

we overcome this limitation to enable rich gesture-based interfaces from RF reflections.

Overall, we believe WiTrack2.0 pushes the limits of indoor localization and enriches

the role it can play in our daily lives. By enabling smart environments to accurately follow

our trajectories, it paves way for these environments to learn our habits, react to our needs,

and enable us to control the Internet of Things that revolves around our networked homes

and connected environments.



CHAPTER 6

Capturing the Human Figure Through

a Wall

Capturing the skeleton of a human body, even with coarse precision, enables many appli-

cations in computer graphics, ubiquitous computing, surveillance, and user interaction.

For example, solutions such as the Kinect allow a user to control smart appliances with-

out touching any hardware through simple gestures, and can customize their behavior by

recognizing the identity of the person. Past work on skeletal acquisition has made signif-

icant advances in improving precision; however, all existing solutions require the subject

to either carry sensors on his/her body (e.g., IMUs, cameras) or be within the line of sight

of an external sensor (e.g., structured light, time of flight, markers+cameras). In contrast,

in this chapter, we focus on capturing the human figure – i.e., coarse human skeleton – but

without asking the subject to wear any sensor, and even if the person is behind a wall.

To achieve this goal, we build on WiTrack (described in Chapters 4 & 5), which uses

RF (Radio Frequency) signals to find the location of a person from behind a wall, without

requiring the person to hold or wear any device. Recall that WiTrack operates in a fashion

similar to Radar and Sonar, albeit at much lower power. It emits wireless signals at very

low power (1/1000 of WiFi) in a frequency range that can traverse walls; the signals reflect

off various objects in the environment, including the human body, and it uses these reflec-

tions to localize the person at any point in time. However, WiTrack captures very limited

95
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Figure 6-1: Through-wall Capture of the Human Figure. The sensor is placed behind a wall.
It emits low-power radio signals. The signals traverse the wall and reflect off different objects
in the environment, including the human body. Due to the physics of radio reflections, at ev-
ery point in time, the sensor captures signal reflections from only a subset of the human body
parts. We capture the human figure by analyzing multiple reflection snapshots across time and
combining their information to recover the various limbs of the human body.

information about the human body. Specifically, it abstracts the whole human body as a

single-point reflector, which it tracks.

The challenge in using RF to capture a human figure is that not all body parts reflect

the signal back to the sensors. Specifically, at frequency ranges that traverse walls, human

limb curves act as ideal reflectors; hence, they may deflect the signal away from the sensors

rather than back to them. (This is because RF signals that traverse walls have a wavelength

of multiple centimeters, which is larger than the surface roughness of human body parts,

causing each part to act as a perfect reflector [34].) At every point in time, the RF sensors

capture signals from only a subset of the human body parts, and the sensors lack semantics

to understand which body part is reflecting the signal back at that instant. Furthermore,

as a person moves, the reflecting limbs vary; for example, at some point, a person’s left

hand may reflect the signal back but not his right hand or his head, while at other times,

his head may reflect the signal back but neither of his hands. To overcome this challenge,

past systems that use radar techniques to reconstruct a skeleton require surrounding the

human body with a very large antenna array that can capture the reflections off his/her

body parts, similar to holographic systems deployed in airports.

In this chapter, we limit ourselves to a compact antenna array that sits in a corner

of a room – like a Kinect sensor – and captures the figure of a person behind a wall, as

shown in Fig. 6-1. We present RF-Capture, the first system that can capture the human
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figure when the person is fully occluded (i.e., in the absence of any path for visible light).

RF-Capture has two main algorithmic components: The first component is a coarse-to-

fine algorithm that efficiently scans 3D space looking for RF reflections of various human

limbs and generating 3D snapshots of those reflections. The second component exploits

the fact that due to human motion, consecutive RF snapshots tend to expose different body

parts and diverse perspectives of the same body part. Thus, this component introduces an

algorithm that identifies human body parts from RF snapshots across time, and stitches

multiple snapshots together to capture the human figure.

We leverage the captured figure to deliver novel capabilities. First, we show how the

captured figure can be incorporated into a classifier to identify different subjects from be-

hind a wall. Our classification accuracy is 95.7% when distinguishing between 5 users, and

becomes 88.2% for 15 users. Second, we show that RF-Capture can identify which body

part a user moves through a wall with an accuracy of 99.13% when the user is 3 m away

and 76.4% when the user is 8 m away. Finally, we show that RF-Capture can track the

palm of a user to within a couple of centimeters, tracing letters that the user writes in the

air from behind a wall.

We believe the above results present a significant leap towards human figure capture

through walls and full occlusion. However, the current system still has limitations. First,

our current model assumes that the subject of interest starts by walking towards the device,

hence allowing RF-Capture to capture consecutive RF snapshots that expose various body

parts. Second, while the system can track individual body parts facing the device, such as

a palm writing in the air, it cannot perform full skeletal tracking. This is because not all

body parts appear in all RF snapshots. We believe these limitations can be addressed as

our understanding of wireless reflections in the context of computer graphics and vision

evolves.

⌅ 6.1 Related Work

RF-Capture is related to past literature in the following areas:

Motion Capture Systems. Past work for capturing the human skeleton relied on mo-

tion capture systems that either require instrumenting the human body with markers or
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operate only in direct line-of-sight to the human body. Specifically, marker-based meth-

ods place various types of sensors on the human body – including inertial, infrared, RF,

acoustic, or ultrasonic sensors – and capture the human skeleton by tracking these various

markers, e.g., [14, 17, 125, 127, 153, 161]. On the other hand, past markerless methods use

cameras and infrared-based techniques – including Kinect, multi-view cameras, moving

cameras, and time-of-flight cameras – and require a direct line-of-sight from the sensor to

the person’s body, e.g., [61, 62, 71, 116, 132, 154, 177]. In contrast to all this past work,

RF-Capture focuses on capturing coarse human figures without instrumenting the human

body with any markers and operates correctly even if the subject is behind a wall or furni-

ture.

Prior art has also investigated motion capture in partial occlusions, e.g., [39, 75, 93,

98, 112, 158]. However, these systems require the majority of the human body to be un-

occluded from their sensors, and focus on estimating the positions of occluded limbs or

missing markers by fitting a model. In contrast, since RF-Capture uses RF signals that

can traverse occlusions, it works even when the person is fully occluded from its sensor,

including scenarios where the subject is behind a wall.

Imaging and Reconstruction Algorithms. RF-Capture is related to past work on imaging

hidden shapes using light that bounces off corner reflectors in the scene [74, 90, 150]. These

past systems operate by estimating the time-of-flight of the object’s reflections bouncing off

the corner. RF-Capture’s reconstruction problem is closely related to such transient imag-

ing techniques; this is because by pointing a time-resolved camera onto a white patch of

a wall, that wall essentially becomes a lens-less image sensor with distance information.

However, the reconstruction constraints – both in terms of bandwidth and number of sen-

sors – are more stringent in the case of RF-Capture, which limits itself to 20 antennas and

less than 2 GHz of bandwidth (while cameras use thousands of pixels and light has hun-

dreds of THz of bandwidth). This allows these transient imaging techniques to achieve

higher reconstruction accuracy. Furthermore, in contrast to these systems, RF-Capture

only captures specular reflections because of the wavelength of RF signals it uses. How-

ever, because it uses RF signals that can traverse occlusions, RF-Capture does not require

the placement of corner reflectors in the environment. Furthermore, unlike this past work,

it does not require the hidden shape to be fully static during the acquisition time, and
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hence is evaluated on real human subjects.

Additionally, RF-Capture is related to past work in the Graphics and Vision community

on specular object reconstruction [80, 97]. Specifically, for frequencies that traverse walls,

reflections off the human body have specular properties. However, past work on specular

reconstruction, which operates using visible light, typically assumes the object to be static

and non-deformable and aims at recovering surface geometry. In contrast, in RF-Capture,

the setting is more complex since the object is moving and deformable, but the goal is

simpler since we intend to recover a coarse figure as opposed to surface geometry.

Radar Systems. Radar systems were the first to use RF reflections to detect and track ob-

jects. The vast majority of the radar literature focuses on inanimate objects (e.g., planes,

metallic structures), as opposed to humans. The radar literature that deals with human

subjects can be classified into two categories. The first category is high-frequency imaging

radar using terahertz [168], laser [27], or millimeter and sub-millimeter waves [29, 49, 53].

These systems are intrinsically different from ours since they operate at much higher fre-

quencies, where the wavelength is comparable to the roughness of the surface, and hence

the human body becomes a scatterer as opposed to a reflector [34]. The advantage of these

systems is that they can image the human skeleton at a high accuracy (as in airport ter-

ahertz security scanners). However, they operate at much shorter distances, cannot deal

with occlusions like wall or furniture, and are expensive and bulky.

The second category uses centimeter-waves, i.e., its carrier frequency is around few

GHz, similar to our system. Such designs were discussed in Chapter 2, and we briefly re-

view how they differ from RF-Capture in what follows. These systems have significantly

lower resolution than our design. In particular, see-through radar estimates the location

of a human but does not reconstruct his/her figure [40, 55, 84, 92, 121, 171]. This includes

commercial products, like Xaver-100, Xaver-400, Xaver-800, and Range-R [79]. Unlike RF-

Capture, these systems cannot track individual limbs or construct a human figure. On the

other hand, the few systems that aim to reconstruct the human body demonstrate their

results on a doll covered with foil and require an antenna array larger than the imaged

object [181]. In comparison to these systems, RF-Capture provides finer resolution, and

allows capturing human figures with a granularity that is sufficient for distinguishing be-

tween a set of 15 people. Also, RF-Capture limits itself to a compact array about twice
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the size of a Kinect, as opposed to a large array that is of the size of the human body. In

addition, unlike commercial products that target the military [79], which use restricted fre-

quency bands and transmission powers only available to military and law enforcement,

RF-Capture meets the FCC regulations for consumer devices.

Finally, RF-Capture’s coarse-to-fine algorithm is inspired by radar lock and track sys-

tems of military aircraft, which first identify a coarse location of a target then zoom on

its location to track it [60]. In contrast to these systems, however, RF-Capture does not

separate searching from tracking into different phases at signal acquisition. Additionally,

RF-Capture’s goal of reconstructing a human figure differs from these past systems, result-

ing in differences in the underlying algorithms.

Device-Free Localization and Gesture Recognition. Advances in RF-based indoor local-

ization have led to new systems that can track users without requiring them to carry a

wireless transmitter – this includes our own work in the earlier chapters as well as con-

temporary and follow-up research, e.g., [21, 23, 24, 25, 42, 85, 108, 117, 129, 163, 166, 178].

Some of these systems have demonstrated the potential of using RF signals to recognize

a handful of forward-backward gestures by matching them against prior training exam-

ples [117]. RF-Capture builds on this literature but extracts finer-grain information from

RF signals. In particular, it is the only system that can identify which human limb reflects

the signal at any time. It is also the only system that can combine those limbs to generate

a human figure from behind a wall.

⌅ 6.2 Primer

In this section, we review few RF concepts and signal processing techniques which we

leverage in RF-Capture. Some of these concepts have been introduced before in this dis-

sertation, but we recap them here for pedagogical reasons.

(a) Phase of RF signals: An RF signal is a wave whose phase is a linear function of

the traveled distance. By sampling the signal, we can record both its amplitude and its

phase. The sampled signal can be represented as a complex discrete function of time t as

follows [147]:

s
t

= A
t

e�j2⇡

r

�

t, (6.1)
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where r is the distance traveled by the signal, � is its wavelength, and A is its amplitude.

(b) Antenna Arrays: Antenna arrays can be used to identify the spatial direction from

which the RF signal arrives. This process leverages the knowledge of the phase of the

received signals to beamform in post-processing as shown in Fig. 6-2(a). Mathematically, an

N -element antenna array can compute the power P of signals arriving along the direction

✓ as follows [111]:

P (✓) =

�����

NX

n=1

s
n

ej2⇡
nd cos ✓

�

����� , (6.2)

where s
n

is the wireless signal received at the n-th antenna, d is the separation between

any two antennas, and � is the wavelength of the RF signal.

Furthermore, the larger an antenna array is, the stronger its focusing capability is.

Specifically, an array of length L has a resolution �✓ = 0.886 �

L

[111].
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(a) Antenna Array (b) Frequency Chirp
Figure 6-2: Measuring Location with RF Signals. (a) Antenna arrays can be used to focus on
signals from a specific direction ✓. (b) FMCW chirps can be used to obtain time-of-flight (i.e.,
depth) measurements.

(c) FMCW Frequency Chirps: Frequency Modulated Carrier Wave (FMCW) is a technique

that allows a radio device to measure the depth of an RF reflector. The technique is de-

scribed thoroughly in §4.3, and we briefly review it in what follows. An FMCW device

transmits a frequency chirp –i.e., a periodic RF signal whose frequency linearly increases

in time, as shown in Fig. 6-2(b). The chirp reflects off objects in the environment and trav-

els back to the device after the time-of-flight. The device can measure the time-of-flight

and use it to infer the depth of the reflector. To do so, the device leverages the linear rela-

tionship between time and frequency in chirps. Specifically, it measures the time-of-flight

(and its associated depth) by measuring the frequency shift between the transmitted and

received signal. Mathematically, a frequency chirp of slope k can be used to compute the

signal power P emanating from a particular depth r as follows [102]:
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P (r) =

�����

TX

t=1

s
t

ej2⇡
kr

c

t

����� , (6.3)

where s
t

is the baseband time signal, c is the speed of light, and the summation is over the

duration T of each chirp.

Furthermore, by increasing the bandwidth of the chirp signal, one can achieve finer

depth resolution. Specifically, a frequency chirp of bandwidth B has a depth resolution

�r = c

2B

[102].

(d) Eliminating Static Reflectors: To capture the human figure, we first need to separate

human reflections from the reflections of other objects in the environment (e.g., walls and

furniture). To do so, we use standard background subtraction, where subtraction is per-

formed in the complex domain since an RF signal is a sequence of complex numbers (with

magnitude and phase). Specifically, reflections of static objects remain constant over time

and can be eliminated by subtraction. Hence, we collect the reflections of static objects be-

fore any human enters the room and subtract them from the received chirps at later times.

Of course, this requires knowing whether there are humans in the room or not, which we

achieve by leveraging our work on WiTrack (in Chapters 4 & 5).

⌅ 6.3 RF-Capture Overview

The device: RF-Capture is a system that captures the human figure – i.e., a coarse human

skeleton – through walls. It operates by transmitting low-power RF signals (1/1000 the

power of WiFi), capturing their reflections off different objects in the environment, and

processing these reflections to capture the human figure. RF-Capture’s prototype consists

of a T-shaped antenna array, as shown in Fig. 6-1. The vertical segment of the “T” consists

of transmit antennas and the horizontal segment of the “T” consists of receive antennas.

The antennas are connected to an FMCW transceiver which time-multiplexes its transmis-

sion between the different transmit antennas, and which can be operated from a computer

using a USB cable. The total size of the antenna array is 60⇥18 cm2.

In contrast to typical techniques for imaging humans such as visible light, X-ray, ter-

ahertz, and millimeter-wave, RF-Capture operates at lower frequencies between 5.46GHz

and 7.24GHz. The advantage of operating at such relatively low RF frequencies is that
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(a) Simple Reflector (b) Reflections off Human Body (c) Exploiting Motion to Capture
Various Body Parts

Figure 6-3: RF Reflections. (a) Only signals that fall along the normal to the surface are reflected
back toward the device. (b) The human body has a complex surface, but at any point in time
only signals close to the normal to the surface are reflected back toward the device. (c) As the
person walks, different body parts reflect signals toward the device and become visible to the
device.

they traverse walls. Additionally, operating at these frequencies allows us to leverage the

low-cost massively-produced RF components in those ranges.

The challenge: The key challenge with operating at this frequency range (5-7GHz) is that

the human body acts as a reflector rather than a scatterer. As a result, at any point in time,

our antenna array can capture only a subset of the RF reflections off the human body. To

see why this is the case, consider the simplified example in Fig. 6-3(a). Recall the basic

reflection law: reflection angle is equal to the angle of incidence. Thus, while an antenna

array can transmit signals towards the reflecting body, only signals that fall close to the

normal to the surface are reflected back toward the array. In contrast, signals that deviate

from the normal to the surface are deflected away from our array, making those parts of

the reflector invisible to our device. The human body has a much more complex surface;

however the same principle still applies, as illustrated in Fig. 6-3(b).

The solution idea: Our solution to the above problem exploits user motion to capture his

figure. Specifically, while the antenna array receives reflections only from very few points

on the user’s surface, these points vary as the person moves, and trace the person’s body.

Fig. 6-3(b) and (c) illustrate this concept. The figures show that as the person walks, the

relation between the incident signal and the normal to the surface for his various body

parts naturally changes, providing opportunities for capturing the signals reflected from

various body parts. Hence, we could capture the instantaneous RF reflections over con-

secutive time frames, relate them to each other to identify which reflections are coming

from which body part, and combine their information across time and motion to capture

the human figure.
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In order to transform the above idea into a practical system, we need a design that

satisfies two requirements: on one hand, the system needs to achieve spatial resolution

sufficient for constructing the human figure; on the other hand, the system should process

the signals in real-time at the speed of its acquisition (as in Kinect).

The design of RF-Capture harnesses the above idea while satisfying our design require-

ments. Specifically, the system has two key components:

• Coarse-to-fine 3D Scan: This component generates 3D snapshots of RF reflections by com-

bining antenna arrays with FMCW chirps. A key consideration in designing this algorithm

is to ensure low computational complexity. Specifically, directly scanning each point in 3D

space to collect its reflections is computationally intractable. Thus, this component intro-

duces a coarse-to-fine algorithm that starts by scanning 3D reflections at coarse resolution,

then zooms in on volumes with high power and recursively refines their reflections. The

implementation of this algorithm is based on computing FFTs which allows it to achieve

low computational complexity.

• Motion-Based Figure Capture: This component synthesizes consecutive reflection snapshots

to capture the human figure. It operates by segmenting the reflections according to the

reflecting body part, aligning them across snapshots while accounting for motion, and

then stitching them together to capture the human figure. In §6.8, we demonstrate that

this approach can deliver a spatial resolution sufficient for capturing the human figure

and its limbs through walls and occlusions.

Next, we describe these components in detail.

⌅ 6.4 Coarse-to-Fine 3D Scan

RF-Capture uses a combination of a 2D antenna array and FMCW chirps to scan the sur-

rounding 3D space for RF reflections. However, since much of 3D space is empty, it would

be highly inefficient to scan every point in space. Thus, RF-Capture uses a coarse-to-fine

algorithm that first performs a coarse resolution scan to identify 3D regions with large

reflection power. It then recursively zooms in on regions with large reflected power to

refine its scan. Below, we explain how this coarse-to-fine scan can be integrated with the

operation of antenna arrays and FMCW.
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Each voxel in 3D space can be uniquely identified by its spherical coordinates (r,✓,�)

as shown in Fig. 6-4. By projecting the received signals on ✓ and � using the 2D antenna

array and on r using the frequency chirp, we can measure the power from a particular 3D

voxel. Mathematically, the power arriving from a voxel (r,✓,�) can be computed as:

P (r,✓,�) =

�����

MX

m=1

NX

n=1

TX

t=1

s
n,m,t

ej2⇡
kr

c

tej
2⇡

�

sin✓(nd cos�+md sin�)

����� , (6.4)

where N is the number of receive antennas, and M is the number of transmit antennas,

and s
n,m,t

is the signal received by receive antenna n from transmit antenna m at time t.

Equation 6.4 shows that the algorithmic complexity for computing the reflection power

is cubic for every single 3D voxel. Thus, we want to minimize the number of 3D voxels that

we scan while maintaining high resolution of the final 3D reflection snapshot. To do so,

we refine the resolution of our antenna array and FMCW chirps recursively as described

below.

(r,θ,ϕ)&voxel&

θ!
r!

ϕ!

Figure 6-4: Scanning. A 2D antenna array with FMCW ranging can focus on any (r,✓,�) voxel
in 3D.

Coarse-to-Fine Angular Scan: RF-Capture exploits an intrinsic property of antenna arrays,

namely: the larger an array is, the narrower its beam, and the finer its spatial resolution.

Thus, RF-Capture starts with a small array of few antennas, and uses more antennas only

to refine regions that exhibit high reflection power. Fig. 6-5 illustrates this design. The fig-

ure uses a 1D array for clarity. In the first iteration of the algorithm, RF-Capture computes

power using signals from only the two middle antennas of the array, while ignoring the

signal from the other antennas. This results in a small aperture, and hence a very wide

beam. Using this wide beam, RF-Capture localizes the person to a wide cone as shown

by the red region in Fig. 6-5(a). In the next iteration, it incorporates two more antennas in
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the array. However, in this iteration, it does not need to scan the entire angular space, but

rather only the space where it had detected a person in the previous iteration (i.e., the red

region in Fig. 6-5(a)). The algorithm proceeds in the same manner until it has incorporated

all the antennas in the array and used them to compute the finest possible direction as

shown in Fig. 6-5(b).

Used%antennas% Used%antennas%

Scanned%
region%

(a) Coarse Estimate (b) Finest Estimate

Figure 6-5: Coarse-to-Fine Angular Scan. We start by using a small number of antennas which
gives us a wide beam and coarse angular resolution. Then, we refine our estimate by using
more antennas to achieve a narrower beam and finer resolution, but use that beam only to scan
regions of interest.

While the above description uses a 1D array for illustration, the same argument applies

to 2D arrays. In particular, our 2D array has a T-shape. Thus, in each iteration, we refine

the resolution by including an extra antenna from the vertical segment and two antennas

from the horizontal segment.

Coarse-to-Fine Depth Scan: Recall that the depth resolution of FMCW is inversely pro-

portional to the bandwidth of the signal (see §6.2(c)). Hence, RF-Capture can recursively

refine its depth focusing by gradually increasing the amount of bandwidth it uses.

Specifically, it starts by using a small chunk of its bandwidth, which would result in

very coarse resolution as shown in Fig. 6-6(a). It then localizes the person to a wide spher-

ical ring. In the following iteration, it uses a larger amount of bandwidth but scans only

the spherical ring where it identified the reflector. It proceeds iteratively until it has used

all of its bandwidth, as shown in Fig. 6-6(b).

But, what does it mean for us to iteratively increase the bandwidth? Similar to our an-

tenna array iterative approach, we still collect all the data, but process it selectively. Specif-
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Scanned%
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Tx/Rx%
(a) Coarse Estimate (c) Finest Estimate

Figure 6-6: Coarse-to-Fine Depth Scan. We start by using a small chunk of bandwidth which
gives us coarse depth resolution. Then, we refine our estimate by adding more bandwidth to
achieve finer resolution, but use that bandwidth only to scan regions of interest.

ically, recall that a frequency chirp consists of a signal whose frequency linearly increases

over a sweep as shown in Fig. 6-2(b). Whereas all the samples of a sweep collectively cover

the entire bandwidth, a subset of those samples covers a subset of the sweep’s bandwidth.

Similar to iteratively adding more antennas to our processing, RF-Capture iteratively adds

chirp samples to achieve finer depth resolution.

Additional Points: A few points are worth noting:

• RF-Capture performs the above iterative refinement in both FMCW bandwidth and an-

tenna arrays simultaneously as shown in Fig. 6-7.

Used%antennas%

Scanned%
region%

Figure 6-7: Coarse-to-Fine 3D Scan. We can partition and iterate jointly using chirps and an-
tenna arrays. In any given iteration, we only scan the small region identified by the previous
iteration.

• Standard antenna array equations (as described in §6.2(b) and Fig. 6-2(a)) rely on an ap-

proximation which assumes that the signals received by the different antennas are all par-

allel. To improve the final accuracy of reconstruction and achieve higher focusing capa-
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bilities, we use a more complex model in the final iteration of the coarse-to-fine algo-

rithm [126]. Specifically, the power from an (x, y, z) voxel in 3D space can be expressed

as a function of the round-trip distances r
(n,m)

(x, y, z) to each transmit-receive pair (m,n)

as follows:1

P (x, y, z) =
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• Finally, the coarse-to-fine algorithm (in our current implementation) allows RF-Capture

to generate one 3D snapshot (a 3D frame) of the reflection power every 75ms on Nvidia

Quadro K4200 GPU. This represents a speedup of 160,000⇥ over a standard non-linear

projection of Eq. 6.5 which requires on average 200 minutes for rendering a single time

snapshot on the same GPU platform. Furthermore, because the switched antenna array has

a signal acquisition time of 80ms, the 75 ms rendering time allows RF-Capture to generate

a new 3D snapshot within the same signal acquisition period. In addition, it results in a

frame rate that is sufficient to continuously track human motion across time. Being able to

assume that reflecting bodies smoothly move across a sequence of 3D frames is important

for identifying human body parts and tracking them, as we explain in the next section.

⌅ 6.5 Motion-based Figure Capture

Now that we have captured 3D snapshots of radio reflections of various human body parts,

we need to combine the information across consecutive snapshots to capture the human

figure. This process involves the following four steps:

• Compensation for Depth: Since RF-Capture collects 3D snapshots as the user moves, the

subject’s body is at different depths in different snapshots. Therefore, RF-Capture needs to

compensate for differences in depth before it can combine information across consecutive

snapshots.

• Compensation for Swaying: As the person walks, his body naturally sways. To combine

information across consecutive snapshots, RF-Capture has to compensate for this swaying

1The inverse square law is implicit in s
n,m,t

and doesn’t need to be inverted in the phased array formu-
lation. This is a standard approximation in antenna arrays since the phase varies by 2⇡ every wavelength,
which is a much bigger effect than changes in amplitude. Accounting for the minute variations in amplitude
can produce minor sidelobe reductions, but is often negligible [126].
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and re-align the 3D voxels across snapshots.

• Body Part Segmentation: Recall that each of the 3D snapshots reveals a small number of

body parts. In the next step, RF-Capture segments each snapshot to extract the body parts

visible in it and label them (e.g., head, chest, left arm, left hand, etc.).

• Skeletal Stitching: In the final step, RF-Capture uses a simple model of the human skeleton

to combine the detected body parts across a few consecutive snapshots and capture the

human figure.

In what follows, we describe each of these steps in detail. To make the exposition

clearer, we describe these steps by applying them to the output of an experiment collected

with RF-Capture. In this experiment, the RF-Capture sensor is behind a wall. We ask a

user to walk toward the RF-Capture device starting from a distance of about 3 m from

the sensor. The antennas of RF-Capture are positioned at 2 m above the ground, so that

reflections from humans arrive along upward directions.

⌅ 6.5.1 Compensating for Depth

When imaging with an antenna array, an object looks more blurry as it gets farther away

from the array. This is because the beam of an antenna array has the shape of a cone,

and hence is wider at larger distances. Since our 3D snapshots are taken as the subject

walks towards the array, the subject is at different depths in different snapshots, and hence

experiences different levels of blurriness across snapshots. Thus, before we can combine a

subject’s reflections across RF snapshots, we need to compensate for his change in depth.

To do so, we first need to know the subject’s depth in each snapshot. This is easy since

our snapshots are three-dimensional by construction –i.e., we know the depth of each voxel

that reflects power. Of course, the human body is not flat and hence different body parts

exhibit differences in their depth. However, these differences are relatively small. Thus,

for our purpose, we take the median depth of the RF reflections in each 3D snapshot, and

consider it as the person’s depth in that snapshot.

Next, we compensate for depth-related distortion by deconvolving the power in each

snapshot with the point spread function caused by the antenna-array beam at that depth.

The point spread function is computed directly from the array equation, Eq. 6.5, and the

deconvolution is done using the Lucy-Richardson method [100].
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Fig. 6-8 illustrates this process. The top row shows different RF snapshots as the person

walks towards the antenna array. The snapshots are plotted by slicing the 3D snapshot at

the median depth for the reflected signals, and showing the power as a heat map, where

red refers to high reflected power and dark blue refers to no reflection. It is clear from this

row that reflected bodies look wider and more blurry at larger depths. The second row

shows the same snapshots after compensating for depth distortion. These snapshots are

less blurry and more focused on the actual reflection points.

Depth = 3 m Depth = 2.8 m Depth = 2.3 m Depth = 2.2 m
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(a) Heatmaps from slicing each 3D snapshot at its estimated depth
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(b) Output after deconvolving the images with the depth-dependent point-spread func-
tion
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(c) Kinect skeletal tracking as a baseline for comparison. We rotate the Kinect output by
45� to visualize the angles of the limbs as the user moves.

Figure 6-8: RF-Capture’s heatmaps and Kinect skeletal output as a user walks toward the
deployed sensors. As the user walks toward the device, RF-Capture captures different parts of
his body at different times/distances since its antennas’ perspective changes with respect to his
various body parts.
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⌅ 6.5.2 Compensating for Sway

Next, RF-Capture compensates for the user’s sway as he walks by using the reflection from

his chest as a pivot. Specifically, because the human chest is the largest convex reflector in

the human body, it is expected to be the dominant reflector across the various snapshots,

enabling us to identify it and use it as a pivot to center the snapshots. From an RF per-

spective, the human chest is said to have the largest radar cross section [56]. Indeed, the

heatmaps in Fig. 6-8(b) show a dominant reflection (dark red) around the height of the

subject’s chest (z = 1.4m).

To align the snapshots, we first determine the dominant reflection point in each snap-

shot. In most snapshots, this would correspond to the human chest. We then perform

robust regression on the heights of these maxima across snapshots, and reject the outliers.2

This allows us to detect snapshots in which the chest is not the most dominant reflection

point and prevent them from affecting our estimate of the chest location. Once we have

identified the chest location in each snapshot, we compensate for minor sways of the hu-

man body by aligning the points corresponding to the chest across snapshots.

Note that aligning the human body across snapshots makes sense only if the human is

walking in the same direction in all of these snapshots. Thus, RF-Capture considers the tra-

jectory of the point with the highest reflection power on the human body, and performs the

above alignment only for periods during which the human is walking toward the device

without turning around.

⌅ 6.5.3 Body Part Segmentation

After identifying the human chest as a pivot and aligning the consecutive snapshots, we

segment the areas around the chest to identify the various human body parts.

Specifically, RF-Capture defines a bounding region centered around the subject’s chest.

For example, Fig. 6-9(a) shows the rectangle in orange centered around the detected sub-

ject’s chest. (This is the second image from Fig. 6-8(b) after sway compensation.) Using the

chest as a pivot, RF-Capture automatically segments the remainder of the heatmap into 8

2To perform robust regression, we use MATLAB’s default parameters, i.e., bisquare weighting function
with a tuning constant of 4.685, and eliminate outliers whose heights are more than two standard deviations
away from the mean.
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regions, each corresponding to a different body part of interest. The first region constitutes

the rectangle below the chest, which corresponds to the user’s lower torso, while the re-

gion above the chest corresponds to the subject’s head. The regions to the left and right

of the chest correspond to the arms and the hands. Finally, the regions below the torso

correspond to the subjects’ legs and feet. In our implementation, we specify the width of

the torso region to 35 cm, and the height of the upper torso (chest) to 30 cm, while the

lower torso is 55 cm. These numbers work well empirically for 15 different adult subjects

with different ages, heights, builds, and genders. We envision that exploiting more power-

ful segmentation and pose estimation algorithms – such as those that employ recognition

or probabilistic labeling, e.g., [70, 107, 132] – would capture better human figures. Such

techniques are left for future work.
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Figure 6-9: Body Part Segmentation and Captured Figure. (a) shows the different regions used
to identify body parts, and (b) shows the captured synthesized from 25 time frames.

Once RF-Capture performs this segmentation, the blobs in the heatmaps of Fig. 6-8(b)

become more meaningful, and can be automatically assigned body part labels. For exam-

ple, for the heatmap generated at 2.8m, it can now automatically detect that the blob to

the left of the chest is the right arm, and the blob below it is the right hand. On the other

hand, the heatmap at 2.2m shows the subject’s left hand and his head, but none of his right

limbs.

To gain a deeper understanding into the segmented images, we use a Kinect sensor as

a baseline. The Kinect is placed in the same room as the moving subject, while the RF-

Capture sensor is outside the room. Both devices face the subject. We plot in Fig. 6-8(c)

the output of Kinect skeletal tracking that corresponds to the RF snapshots in Fig. 6-8(b).
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We rotate the Kinect skeletal output by 45

� in Fig. 6-8(c) so that we can better visualize the

angles of the various limbs. We also perform a coordinate transformation between the RF-

Capture’s frame of reference and the Kinect frame of reference to account for the difference

in location between the two devices. Comparing Kinect’s output with that of RF-Capture,

we note the following observations:

• RF-Capture can typically capture reflections off the human feet across various distances.

This is because the feet reflect upward in all cases, and hence they reflect toward RF-

Capture’s antennas.

• It is difficult for RF-Capture to capture reflections from the user’s legs. This is because even

as the legs move, they deflect the incident RF signals away from the antenna array (toward

the ground) rather than reflecting them back to the array since the normal to the surface

of the legs stays almost parallel to the ground. (Note that placing the antenna array on the

ground instead would enable it to capture a user’s legs but would make it more difficult

for the array to capture his head and chest reflections.)

• The tilt of a subject’s arm is an accurate predictor of whether or not RF-Capture can capture

its reflections. For example, in the third snapshot of Fig. 6-8(c) (i.e., at 2.3m), the subject’s

right arm (color-coded in pink) is tilted upward; hence, it reflects the incident signal back

to RF-Capture’s antennas allowing it to capture the arm’s reflection. Indeed, this matches

RF-Capture’s corresponding (third) heatmap in Fig. 6-8(b). On the other hand, the subject’s

left arm (color-coded in red) is tilted upward in the fourth snapshot (i.e., at 2.2m), allowing

RF-Capture to capture its reflections in the corresponding heatmap.

⌅ 6.5.4 Skeletal Stitching

After segmenting the different images into body parts, RF-Capture stitches the various

body parts together across multiple snapshots to capture the human figure. We distinguish

between two types of body reflectors: rigid parts and deformable parts:

• Rigid Parts, i.e., head and torso: Once RF-Capture compensates for depth and swaying,

these structures do not undergo significant deformations as the subject moves. Hence, RF-

Capture sums up each of their regions across the consecutive snapshots (i.e., sum up their

reflected power). Doing so provides us with a more complete capture of the user’s torso

since we collect different reflection points on its surface as the user walks. Furthermore, we
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Figure 6-10: RF-Capture’s Hardware Schematic. The setup consists of a chirp generator con-
nected to a 2D antenna array via a switching platform. The figure shows the Tx chain, and two
of the Rx chains.

found that such a more complete capture of the torso is very helpful in identifying users

as we show in §6.8.

• Deformable parts, i.e., arms and feet: RF-Capture cannot simply add the segments corre-

sponding to the human limbs across snapshots. This is because as the human moves, his

arms sway back and forth, and adding the different snapshots together results in smearing

the entire image and masking the form of the hand. Instead, our approach is to identify the

highest-SNR (signal-to-noise ratio) segment for each body part, and select it for the overall

human figure. This is because a higher SNR indicates less sensitivity to noise and hence

higher reliability.

Finally, to ensure that the resultant figure is smooth, we perform alpha blending [141].

Fig. 6-9(b) shows the result of synthesizing 25 frames together, collected over a span of

2 seconds as the user walks towards our antenna setup. The figure shows that by combin-

ing various snapshots across time/distance, RF-Capture is capable of capturing a coarse

skeleton of the human body.

⌅ 6.6 Implementation

Our prototype consists of hardware and software components.

Hardware: A schematic of RF-Capture’s hardware is presented in Fig. 6-10. It has the

following components:
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• FMCW Chirp Generator: We built an FMCW radio on a printed circuit board (PCB) using

off-the-shelf circuit components, and based on the design in §4.6. The resulting radio can

be operated from a computer via the USB port. It generates a frequency chirp that repeat-

edly sweeps the band 5.46 � 7.24 GHz every 2.5 ms. The radio has an average power

of 70µWatts, which complies with the FCC regulations for consumer electronics in that

band [18].

• 2D Antenna array: (shown in Fig. 6-1): The antenna array consists of 16 receive antennas

(horizontal section of the T ) and 4 transmit antennas (vertical section of the T ); the anten-

nas are log-periodic with 6dBi gain. This multiple-transmit multiple-receive architecture is

equivalent to a 64-element antenna array. The overall array dimension is 60 cm⇥ 18 cm.3

• Switching Platform: We connect all four transmit antennas to one switch, so that at any point

in time, we transmit the chirp from only one antenna. Similarly, we connect every four

receive antennas to one switch and one receive chain. Each receive chain is implemented

using a USRP software radio equipped with an LFRX daughterboard. The sampled signals

are sent over an Ethernet cable to a PC for processing. This design allows us to use a single

transmit chain and only four receive chains for the entire 2D antenna array.

Software: RF-Capture’s algorithms are implemented in software on an Ubuntu 14.04 com-

puter with an i7 processor, 32GB of RAM, and a Nvidia Quadro K4200 GPU. We implement

the hardware control and the initial I/O processing in the driver code of the USRP. The

coarse-to-fine algorithm in §6.4 is implemented using CUDA GPU processing to generate

reflection snapshots in real-time. In comparison to C processing, the GPU implementation

provides a speedup of 36⇥.

Calibration: FMCW and antenna array techniques rely on very accurate phase and fre-

quency measurements. However, various hardware components – including filters, wires,

switches, and amplifiers – introduce systematic phase and frequency offsets. To make sure

these offsets do not introduce errors for our system, we perform a one-time calibration of

the system where we connect each of the Tx and Rx chains over the wire and estimate these

offsets. We then invert these offsets in software to eliminate their effect.

3The antenna separation is 4 cm, which is around �. Such separation is standard for UWB arrays since the
interference region of grating lobes is filtered out by the bandwidth resolution [128].
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⌅ 6.7 Evaluation Environment

(a) Participants: To evaluate the performance of RF-Capture we recruited 15 participants.

Our subjects are between 21–58 years old (µ = 31.4), weigh between 53–93 kg (µ = 78.3),

and are between 157–187 cm tall (µ= 175). During the experiments, the subjects wore their

daily attire, including shirts, hoodies, and jackets with different fabrics. The experiments

were conducted over a span of 5 months; the same subject had different clothes in different

experiments. These experiments were approved by our IRB.

(b) Experimental Environment: All experiments are performed with the RF-Capture sen-

sor placed behind the wall as shown in Fig. 6-1. The experiments are performed in a stan-

dard office building; the interior walls are standard double dry walls supported by metal

frames. The evaluation environment contains office furniture including desks, chairs,

couches, and computers. The antennas are located 2m above the ground level, ensuring

that the device is higher than the tallest subject.

(c) Baseline: We use Kinect for baseline comparison. In our experiments, both Kinect

and RF-Capture face the subject, but Kinect is in line-of-sight of the subject, while the

RF-Capture sensor is behind the room’s wall. We use Kinect’s skeletal output to track

the subject, and we perform a coordinate transformation between RF-Capture’s frame of

reference and Kinect’s frame of reference.

⌅ 6.8 Results

RF-Capture delivers two sets of functions: the ability to capture the human figure through

walls, and the ability to identify and track the trajectory of certain body parts through

walls. Below, we evaluate both functions in detail.

⌅ 6.8.1 Body Part Identification and Tracking

Body Part Identification

We first evaluate RF-Capture’s ability to detect and distinguish between body parts. We

run experiments where we ask each of our subjects to walk toward the device (as shown

in Fig. 6-1), stop at her chosen distance in front of it, then move one of the following body
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parts: left arm, right arm, left foot, right foot, and head. The subject can stop at any dis-

tance between 3m and 8m away from RF-Capture. We perform 100 such experiments.

Throughout these experiments, the subjects performed different movements such as: nod-

ding, waving an arm, sliding a leg, or rotating a hand in place.

Classification: We would like to identify which body part the subject moved by mapping

it to the segmented 3D snapshots. Hence, in each experiment, we collect the reflection

snapshots as the user walks and process them according to the algorithms in §6.4 and §6.5

to capture the segmented body parts. Then, we focus on the snapshots after the user stops

walking, and moves one limb while standing still. We determine the location of the body

part that the user has moved. We compare the identified body part against the user’s

reported answer for which body part she/he moved after she/he stopped walking and

was standing still.

Results: Fig. 6-11 plots the classification accuracy among the above 5 body parts as a

function of the user’s distance to the RF-Capture sensor. When the user is at 3 m from

the antenna setup, the classification accuracy is 99.13%. The accuracy gradually decreases

with distance, and reaches 76.48% when the user is 8 m away.
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Figure 6-11: Body Part Identification Accuracy with Distance. The figure shows RF-Capture’s
accuracy in identifying the moving body part as a function of the user’s distance to the device.

To better understand the source of the errors, we show the confusion matrix in Table 6-1

for the case where one of our subjects stands 5 m away from RF-Capture. The table shows

that most errors come from RF-Capture being unable to detect a user’s body part motion.

This is because while the user did move his limbs, some of these motions may have not

altered the reflection surface of the limb to cause a change detectable by the antennas. The

other main source of classification errors resulted from misclassifying an upper limb as a

lower limb, as opposed to confusing a left limb with a right limb. For example, the right
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leg and right hand are confused in 5.6% of the experiments, while the right hand and the

left hand are never confused. The reason is that our antenna array is wider along the

horizontal axis than the vertical axis, as can be seen in Fig. 6-1. Hence, the antenna has a

narrower beam (i.e., higher focusing capability) when scanning horizontally than when it

scans vertically.

Estimated

Left Hand Right Hand Left Leg Right Leg Head Undetected

Left Hand 91.6 0.0 5.6 0.0 2.8 0.0

A
cu

ta
l Right Hand 0.0 90.2 0.0 9.4 0.4 0.0

Left Leg 0.0 0.0 89.7 0.0 0.0 10.3

Right Leg 0.0 0.0 0.0 86.8 0.0 13.2

Head 0.0 0.0 0.0 0.0 90.5 9.5

Table 6-1: Confusion Matrix of Body Part Identification. The table shows the classification
accuracy of the various body parts at 5 m.

Body Part Tracking

Next, we would like to evaluate the accuracy of localizing a detected body part in RF-

Capture’s 3D snapshots. Recall however that human body parts appear in a 3D snapshot

only when the incident signal falls along a direction close to the normal to the surface.

To ensure that the body part of interest remains visible in the 3D snapshots during the

experiment, we focus on localizing the human palm as the user moves his/her hand in

front of the device, as in Fig. 6-12. In particular, the user is asked to raise his hand as in

Fig. 6-12, and write an English letter of his/her choice in mid-air.

RF#Capture+
Kinect+

Figure 6-12: Tracking the Human Hand Through Walls. RF-Capture tracks the subject’s palm
through a wall while the Kinect tracks it in line-of-sight.
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Note that in each of the 3D snapshots, RF-Capture detects multiple body parts. Hence,

we only focus on reflections that change over time and ignore static reflections from static

body parts. Once we localize the moving reflection, we attribute it to the location of the

subject’s palm and define our error as the difference between this location and the Kinect-

computed location for the subject’s hand.4

Results: We plot the CDF (cumulative distribution function) of the 3D tracking error across

100 experiments in Fig. 6-13. The figure shows that the median tracking error is 2.19cm

and that the 90

th percentile error is 4.84cm. These results demonstrate that RF-Capture

can track a person’s body part with very high accuracy. To gain further insight into these

results, we show two of the letters written by our subjects in Fig. 6-14. The figure shows

the trajectory traced by by RF-Capture (in blue) and Kinect (in red), as the subject wrote

the letters “S” and “U”.
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Figure 6-13: Body Part Tracking Accuracy. The figure shows the CDF of RF-Capture’s accuracy
in tracking the 3D trajectory of the subject’s hand.
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Figure 6-14: Writing in the Air. The figure shows the output of RF-Capture (in blue) and Kinect
(in red) for two sample experiments were the subject wrote the letters “S” and “U” in mid-air.

4 We perform a coordinate transformation between RF-Capture’s frame of reference and that of Kinect to
account for their different locations.
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⌅ 6.8.2 Human Figure Capture and Identification

In this section, we focus on evaluating the quality of the figures captured by RF-Capture,

as well as the amount of motion required to capture such figures.

Amount of Motion Required for Figure Capture

We would like to understand how much walking is needed for our figure capture. Thus,

we ask users to walk towards the device, and we divide each experiment into windows

during which the subject walks by only two steps. Our intuition is that two steps should

be largely sufficient to capture reflections off the different body parts of interest because

as a human takes two steps, both his left and right limbs sway back and forth, providing

RF-Capture with sufficient perspectives to capture their reflections.

Results: Fig. 6-15(a) shows the results from 100 experiments performed by our subjects.

The x-axis denotes the body parts of interest, and the y-axis shows the percentage of exper-

iments during which we detected each of those body parts. The figure shows that the hu-

man torso (both the chest and lower torso) is detected in all experiments; this matches our

initial observation that the chest is a large convex reflector that appears across all frames.

The other human body parts are detected in more than 92% of the experiments.
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Figure 6-15: Body Part Detection Accuracy. In these experiments, the user walks in exactly two
steps. The figure shows the percentage of experiments during which RF-Capture was able to
capture a particular body part in the human figure, using only two steps of motion.

To understand detection accuracy for finer human figures, we segment each arm into

upper and lower parts and show their corresponding detection accuracy in Fig. 6-15(b).

The plot shows that the upper arm is detected in a smaller number of experiments, which

is also expected because humans usually sway the lower segments of their arms more than
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the upper segments of their arms as they walk.
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(a) Subject A (b) Subject B (c) Subject C (d) Subject D
Figure 6-16: Human Figures Obtained with RF-Capture. The graphs show examples of the
human figures generated by RF-Capture. Each column shows a different human subject, while
each row shows figures of the same subject across different experiments.

Sample Captured Figures

Next, we would like to gain a deeper understanding of the figures captured by RF-Capture,

and how they relate to the human’s heights and builds. Thus, we plot in Fig. 6-16 the fig-

ures of four of our subjects as output by RF-Capture. Each of the columns corresponds to

a different subject, and each of the rows corresponds to the output of an experiment per-

formed on a different day. In the final row of Fig. 6-16, we overlay the obtained heatmaps
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over the subject’s photo. Based on these plots, we make the following observations:

• Figures of the same subject show resemblance across experiments and differ from figures of

a different subject. This indicates that RF-Capture can be useful in differentiating between

people when they are occluded or behind a wall.

• RF-Capture can capture the height of a subject. Fig. 6-16 shows that subject A’s head is

higher than the rest, while subjects B and D are around the same height. In reality, subject

A is 187cm tall, while subjects B and D are 170cm and 168cm respectively.

• Depending on the subject and the experiment, the feet may appear separated or as a single

blob at the bottom of the heatmap. This is typically due to whether the subject is walking

with his feet separated or closer to each other.

Human Identification

We want to evaluate whether the human figures generated by RF-Capture reveal enough

information to differentiate between people from behind a wall. Hence, we ask our sub-

jects to walk towards RF-Capture from behind a wall, as described in §6.7(b), and use

RF-Capture to synthesize their figures. We run experiments with 15 subjects. In each ex-

periment, we ask one of the subjects to walk toward the device from a distance of 3 m to a

distance of 1 m. We run four experiments with each subject across a span of 15 days.

Classification: We divide our experiments into a training set and a testing set. In partic-

ular, out of each user’s four experiments, three are used for training and one is used for

testing. To obtain our feature vectors for classification, we transform the 2D normalized

reconstructed human to a 1D-feature vector by concatenating the rows. For dimensional-

ity reduction, we apply PCA on the feature vectors and retain the principal components

that cover 99% of the variance. We then use the PCA features to train an SVM model. The

SVM model is a multi-class classifier, with a cost of 10, and a first-order polynomial kernel

of � = 1 and coefficient = 1. The classification is performed in MATLAB on the skeleton

generated from our C++/CUDA code.

Results: Fig. 6-17 shows RF-Capture’s classification accuracy as a function of the number

of users it is trained on. The results show that when RF-Capture is used to classify between

only two users, the accuracy is 98.1%. We note that this accuracy is the average accuracy

resulting from tests that consist of randomly choosing two of our fifteen subjects, and
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repeating for different pairs. The standard deviation of this classification across all possible

pairs of subjects is 8.1%. As the number of users we wish to classify increases, RF-Capture’s

classification accuracy decreases. In particular, looking back at Fig. 6-17, we see that the

accuracy decreases to 92% for classifying 10 subjects, and 88% for 15 subjects.
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Figure 6-17: Identification Accuracy as a Function of the Number of Users. RF-Capture uses
the captured figures to identify users through classification. The accuracy decreases as the num-
ber of users we wish to classify increases.

To gain a deeper understanding into the classification errors, we show the confusion

matrix of the 10-subjects experiments in Table 6-2. Among these subjects, subject 7 corre-

sponds to subject A in Fig. 6-16. This subject has been misclassified often as subject 9 in the

table. In fact, these two subjects were the tallest among all of our volunteers. Subject 4 is

the shortest and is never misclassified as anyone else. Generally, as one would expect, the

more distinctive one’s height and build are, the easier it is to classify him.

Estimated

1 2 3 4 5 6 7 8 9 10

1 99.7 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 96.0 0.4 1.3 0.3 0.0 0.9 0.0 0.4 0.7

3 0.0 0.0 99.9 0.0 0.0 0.1 0.0 0.0 0.0 0.0

A
cu

ta
l

4 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 2.1 0.0 90.8 0.0 4.8 2.3 0.0 0.0

6 0.0 0.0 5.1 0.0 0.0 94.2 0.0 0.7 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.1 86.9 0.0 13.0 0.0

8 0.0 1.0 0.0 0.0 0.0 0.0 0.8 97.6 0.0 0.6

9 0.0 0.0 0.0 0.0 0.0 0.0 8.8 0.0 91.2 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.8 0.0 98.1

Table 6-2: Confusion Matrix of Human Identification. The table shows the classification accu-
racy for each of our subjects.
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⌅ 6.9 Discussion

We present RF-Capture, a system that can capture the human figure through walls, and

identify users and body parts even if they are fully occluded. However, the system exhibits

some limitations:

• It assumes that the subject starts by walking towards the device, hence allowing RF-Capture

to obtain consecutive RF snapshots that expose his body parts. Future systems should ex-

pand this model to a more general class of human motion and activities.

• The current method captures the human figure by stitching consecutive snapshots, and

hence cannot perform fine-grained full skeletal tracking across time. Future work may

consider combining information across multiple RF-Capture sensors to refine the tracking

capability.

• Our implementation adopts a simple model of the human body for segmentation and

skeletal stitching. Future work can explore more advanced models to capture finer-grained

human skeleta.

Despite these limitations, we believe that RF-Capture marks an important step towards

motion capture that operates through occlusions and without instrumenting the human

body with any markers. It also motivates a new form of motion capture systems that rely

on, or are augmented with, RF sensing capabilities. We envision that as our understanding

of human reflections in the context of Vision and Graphics evolve, these capabilities would

extend human pose capture to new settings. For example, they can expand the reach of

gaming consoles, like the Xbox Kinect, or gesture recognition sensors, like those embedded

in smart TVs, to operate through obstructions and cover multiple rooms. They would also

enable a new form of ubiquitous sensing which can understand users’ activities, learn their

habits, and monitor/react to their needs. In addition, they can provide more representative

motion capture models in biomechanics, ergonomics, and character animation.



CHAPTER 7

Smart Homes That Monitor

Breathing and Heart Rate

The past few years have witnessed a surge of interest in ubiquitous health monitoring [73,

82]. Today, we see smart homes that continuously monitor temperature and air quality

and use this information to improve the comfort of their inhabitants [106, 175]. As health-

monitoring technologies advance further, we envision that future smart homes would not

only monitor our environment, but also monitor our vital signals, like breathing and heart-

beats. They may use this information to enhance our health-awareness, answering ques-

tions like “Do my breathing and heart rates reflect a healthy lifestyle?” They may also

help address some of our concerns by answering questions like “Does my child breathe

normally during sleep?” or “Does my elderly parent experience irregular heartbeats?”

Furthermore, if non-intrusive in-home continuous monitoring of breathing and heartbeats

existed, it would enable healthcare professionals to study how these signals correlate with

our stress level and evolve with time and age, which could have a major impact on our

healthcare system.

Unfortunately, typical technologies for tracking vital signals require body contact, and

most of them are intrusive. Specifically, today’s breath monitoring sensors are inconve-

nient: they require the person to attach a nasal probe [64], wear a chest band [152], or lie

on a special mattress [4]. Some heart-rate monitoring technologies are equally cumber-

125
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(a) Inhale Motion (b) Exhale Motion

Figure 7-1: Chest Motion Changes the Signal Reflection Time. (a) shows that when the person
inhales, his chest expands and becomes closer to the antenna, hence decreasing the time it takes
the signal to reflect back to the device. (b) shows that when the person exhales, his chest con-
tracts and moves away from the antenna, hence the distance between the chest and the antenna
increases, causing an increase in the reflection time.

some since they require their users to wear a chest strap [63], or place a pulse oximeter

on their finger [68]. The more comfortable technologies such as wristbands do not capture

breathing and have lower accuracy for heart rate monitoring [46]. Additionally, there is a

section of the population for whom wearable sensors are undesirable. For example, the el-

derly typically feel encumbered or ashamed by wearable devices [65, 138], and those with

dementia may forget to wear them. Children may remove them and lose them, and infants

may develop skin irritation from wearable sensors [148].

In this chapter, we ask whether it’s possible for smart homes to monitor our vital signs

remotely – i.e., without requiring any physical contact with our bodies. While past research

has investigated the feasibility of sensing breathing and heart rate without direct contact

with the body [52, 57, 58, 59, 88, 113, 179], the proposed methods are more appropriate for

controlled settings but unsuitable for smart homes: They fail in the presence of multiple

users or extraneous motion. They typically require the user to lie still on a bed facing the

device. Furthermore, they are accurate only when they are within close proximity to the

user’s chest.

We introduce Vital-Radio, a new input device for tracking breathing and heartbeats

without physical contact with the person’s body. Vital-Radio works correctly in the pres-

ence of multiple users in the environment and can track the vital signs of the present users

simultaneously. Also, Vital-Radio does not require the user to face the device or be aware

of its presence. In fact, the user can be sleeping, watching TV, typing on her laptop, or
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checking her phone. Furthermore, Vital-Radio can accurately track a user’s breathing and

heart rate even if she is 8 meters away from the device, or in a different room.

Vital-Radio works by using wireless signals to monitor the minute movements due to

inhaling, exhaling, and heartbeats. Specifically, it transmits a low-power wireless signal

and measures the time it takes for the signal to reflect back to the device. The reflection

time depends on the distance of the reflector to the device, and changes as the reflector

moves. Fig. 7-1 illustrates the impact of breathing on the signal’s reflection time. When

the person inhales, his chest expands and moves forward, reducing the reflection time. In

contrast, when the person exhales, his chest contracts moving away from the device, hence

increasing the reflection time. Generally, even when the person is not directly facing our

device, the wireless signal traverses his body and his vital signs cause periodic changes

in the signal’s reflection time. Vital-Radio measures these changes and analyzes them to

extract breathing and heartbeats.

A key feature of Vital-Radio is its ability to monitor the vital signs of multiple peo-

ple and operate robustly without requiring the users to lie still. The main challenge in

delivering this feature is that any motion in the environment can affect the wireless sig-

nal and hence interferes with tracking breathing or heartbeats. Past work addresses this

challenge by requiring that only one person be present in front of the device and that the

person remains still. In contrast, Vital-Radio recognizes that one can address this problem

by building on WiTrack (described in Chapters 4 & 5), which localizes users using wireless

signals. Specifically, Vital-Radio first localizes each user in the environment, then zooms in

on the signal reflected from each user and analyzes variations in his reflection to extract his

breathing and heart rate. By isolating a user’s reflection, Vital-Radio also eliminates other

sources of interference including noise or extraneous motion in the environment, which

may otherwise mask the minute variations due to the user’s vital signs. This enables Vital-

Radio to monitor multiple users’ breathing and heart rates, and to operate at distances up

to 8 m from the user or even from behind a wall.

We built a real-time prototype of Vital-Radio and validated its capabilities by conduct-

ing experiments with 14 subjects. For baselines, we use FDA-approved breathing and heart

rate monitors; these include chest straps for monitoring the inhale-exhale motion and pulse

oximeters placed on the subject’s finger to monitor their heart rate. In our benchmark eval-
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uation, we ask the users to wear the baseline monitors, while Vital-Radio monitors them

remotely without any body contact. We compare the output of Vital-Radio with the ground

truth from the FDA-approved baselines, demonstrating that Vital-Radio accurately tracks

breathing patterns and heartbeats. Over more than 200 two-minute experiments, our re-

sults show that:

• Vital-Radio can accurately track a person’s breathing and heart rate without body contact,

even when the user is up to 8 meters away from the device, or behind a wall.

• Vital-Radio’s median accuracy for breathing is 99.3% (error of 0.09 breath/minute) and for

heart rate is 98.5% (0.95 beat/minute) when the person is 1 m away from the device. The

accuracy decreases to 98.7% (error of 0.15 breath/minute) and 98.3% (1.1 beat/minute)

when the person is 8 m away from the device.

• In an area that spans 8 m ⇥ 5 m, Vital-Radio can monitor the vital signs of up to three

individuals with the same accuracy as for one person.

We also perform activity-focused experiments to explore Vital-Radio’s monitoring ca-

pabilities. Specifically, we demonstrate that Vital-Radio can accurately measure users’

breathing and heart rates while they are typing on their computer or using their cell

phones. We also demonstrate that Vital-Radio can track sharp changes in vital signs.

Specifically, we perform experiments where users are asked to exercise, and show how

Vital-Radio accurately tracks the change in breathing and heart rates after exercising.

We believe Vital-Radio takes a significant step toward enabling smart homes that allow

people to monitor their vital signals, and that its capabilities can have a significant impact

on our health awareness and our health-care system.

⌅ 7.1 Related Work

The desire for non-contact monitoring of vital signs has occupied researchers since the late

70’s [96]. Early work presented a proof of concept that the wireless signal is affected by

movements of the chest. In these experiments, the person lies still on a bed and the sensor

is placed only 3 cm away from the apex of the heart. The results are qualitative with no

evaluation of accuracy.

Subsequently, military research explored the potential of building radars that can de-
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tect human presence through walls or under rubble by relying on the fact that breathing

impacts wireless signals [84, 151, 171, 176]. Specifically, because wireless signals traverse

obstacles, they could be used to sense the chest movements of a trapped victim through

rubble or enable SWAT teams to sense movement from behind an obstacle and avoid be-

ing ambushed. However, since these systems target the military, they typically transmit

at excessive power and use military-reserved spectrum bands [171, 176], which is not fea-

sible for consumer devices. More importantly, this line of work generally focused on the

detection of users by sensing motion due to their vital signs rather than estimating or mon-

itoring the vital signs themselves.

Recently, the mounting interest in technologies for well-being has led researchers to

investigate non-contact methods for analyzing vital signs. Current research on this topic

can be divided into two areas: vision-based techniques and wireless systems. Specifically,

advances in image processing allowed researchers to amplify visual patterns in video feeds

(such as color changes due to blood flow) to detect breathing and heart rate [31, 169];

however, such video-based techniques require the user to face the camera and do not work

when he/she turns around or is outside the camera’s field of view.

Similarly, advances in wireless transmission systems and signal processing have en-

abled researchers to detect and analyze human vital signs. Past proposals use one of

the following techniques: Doppler radar [57, 58, 59], WiFi [88, 113], or ultra-wideband

radar [28, 52, 179]. The key challenge in using wireless signals to extract vital signs is

that any motion in the environment affects the signal. Since breathing and heartbeats are

minute movements, they can be easily masked by interference from any other source of

movement in the environment. Furthermore, the presence of multiple users – even if none

of them moves – prevents these systems from operating correctly since the wireless signal

will be affected by the combination of their vital signs, making it hard to disentangle the

vital signs of each individual. Past proposals deal with this problem by ensuring that there

is only one source of motion in the environment: namely, the vital signs of the monitored

individual. Hence, their experimental setup has one person, who typically lies still in close

proximity to the device [6, 28, 52, 57, 58, 59, 88, 113, 179].

In contrast to these past systems, Vital-Radio has an intrinsic mechanism that enables

it to separate different sources of motion in the environment. To do so, Vital-Radio builds
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on state-of-the-art wireless localization techniques [24], which can identify the distance be-

tween the device and different moving objects. Vital-Radio, however, uses these methods

to disentangle the incoming signals based on distance, rather than estimate the actual loca-

tion. This allows it to separate signals reflected off different bodies and body parts. It then

analyzes their motion independently to estimate the breathing and heart rate of potentially

multiple individuals.

⌅ 7.2 Context and Scope

We envision that Vital-Radio can be deployed in a smart home to monitor its inhabitants’

breathing and heart rates, without body instrumentation. The device can monitor multiple

users’ vital signs simultaneously, even if some of them are occluded from the device by a

wall or a piece of furniture. A single device can monitor users’ vital signs at distances up

to 8 meters, and hence may be used to cover a studio or a small apartment. One can cover

a larger home by deploying multiple Vital-Radio devices in the environment.

Vital-Radio’s algorithms run continuously, separating signals from different users, then

analyzing the signal from each user independently to measure his/her vital signs. How-

ever, when a user walks (or performs a large body motion), the chest motion is mainly

impacted by the walk and no longer representative of the breathing and heart rate.1 At

home, there are typically sufficient intervals when a user is quasi-static; these include sce-

narios where the user is watching TV, typing on a laptop, reading a newspaper, or sleeping.

Vital-Radio can use all of these intervals to monitor a user’s vital signs, and track how they

vary throughout the day.

⌅ 7.3 Theory of Operation

Vital-Radio transmits a low power wireless signal and measures the time it takes its signal

to travel to the human body and reflect back to its antennas. Knowing that wireless signals

travel at the speed of light, we can use the reflection time to compute the distance from the

1The vast majority of vital signs monitors, including chest bands that monitor breathing and pulse oxime-
ters that monitor heart rate, cannot provide accurate estimates when the user walks or moves a major
limb [43, 91, 114]. To prevent such motion from causing errors in its vital-signs estimates, Vital-Radio au-
tomatically detects periods during which the user is quasi-static and computes estimates only during such
intervals.
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device to the human body. This distance varies slightly and periodically as the user inhales

and exhales and his heart beats. Vital-Radio captures these minute changes in distance and

uses them to extract the user’s vital signs.

However, natural environments have a large number of reflectors, such as walls and

furniture as well as multiple users whose bodies all reflect the wireless signal. To address

these issues, Vital-Radio’s operation consists of three steps:

• Isolate reflections from different users and eliminate reflections off furniture and static

objects.

• For each user, identify the signal variations that are due to breathing and heartbeats, and

separate them from variations due to body or limb motion.

• Analyze signal variations to extract breathing and heart rates.

In what follows, we describe how these steps enable us to monitor users’ vital signs using

Vital-Radio.

⌅ 7.3.1 Step 1: Isolate Reflections from Di↵erent Users and Eliminate Re-

flections o↵ Furniture and Walls

To understand the operation of Vital-Radio, let us consider the scenario in Fig. 7-2, where

the device is placed behind the wall of a room that has two humans and a table. When

Vital-Radio transmits a wireless signal, part of that signal reflects off the wall; the other

part traverses the wall, reflects off the humans and the table inside the room, and then

traverses the wall back to the device.

Vital&Radio*

Reflec.ons*

Transmission*

Bucket1* Bucket*2* Bucket*3* Bucket*4*

Figure 7-2: Separating Reflectors into Different Buckets. Vital-Radio uses a radar technique
called FMCW to separate the reflections arriving from objects into different buckets depending
on the distance between these objects and the device.
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To isolate signals reflected off different objects, Vital-Radio uses a radar technique

called FMCW (Frequency Modulated Carrier Waves). We refer the reader to §4.3 for a

detailed description of how FMCW works. A key property of FMCW that we exploit in

this chapter is that it enables separating the reflections from different objects into buckets

based on their reflection times. Since wireless signals travel at the speed of light, signals

reflected off objects at different distances would fall into different buckets.

However, in contrast to WiTrack (of Chapters 4 & 5), which uses FMCW to sense the

amount of power arriving from different distances to localize the users, Vital-Radio uses

the FMCW technique as a filter –i.e., it uses it to isolate the reflected signals arriving from

different distances in the environment into different buckets, before it proceeds to analyze

the signals in each of these buckets to extract the vital signs (step 2 below).

We use the same implementation of FMCW as the earlier chapters in this dissertation;

in this implementation, the resolution of FMCW buckets is about 8 cm. This has two im-

plications:

• Reflections from two objects that are separated by at least 8 cm would fall into different

buckets. Hence, two users that are few feet apart would naturally fall into different buck-

ets. For example, in Fig. 7-2, the wall, Bob, the table, and Alice are at different distances

from our device, and hence FMCW isolates the signals reflected from each of these entities

into different buckets, allowing us to focus on each of them separately.

• Using FMCW as a filter also allows us to isolate some of the limb motion from chest move-

ments due to breathing and heartbeats. For example, the signal reflected off the user’s feet

will be in a different bucket from that reflected off the user’s chest. Thus, having the user

move his feet (in place) does not interfere with Vital-Radio’s ability to extract the breathing

and heart rate.

After bucketing the reflections based on the reflector’s distance, Vital-Radio eliminates

reflections off static objects like walls and furniture. Specifically, since static objects don’t

move, their reflections don’t change over time, and hence can be eliminated by subtracting

consecutive time measurements.

At the end of this step, Vital-Radio would have eliminated all signal reflections from

static objects (e.g., walls and furniture), and is left with reflections off moving objects sep-
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arated into buckets.2

⌅ 7.3.2 Step 2: Identifying Reflections Involving Breathing and Heart Rate

After Vital-Radio isolates reflections from different moving users into separate buckets,

it proceeds by analyzing each of these buckets to identify breathing and heart rate. For

example, in Fig. 7-2, we would like to identify whether the user in bucket 2 is quasi-static

and his motion is dominated by his vital signs, or whether he is walking around or moving

a limb.

To do that, Vital-Radio zooms in on the signal reflection which it isolated in the corre-

sponding bucket. This wireless reflection is a wave; the phase of the wave is related to the

distance traveled by the signal as follows [147]:

�(t) = 2⇡
d(t)

�
, (7.1)

where � is the wavelength of the transmitted signal, and d(t) is the traveled distance from

the device to the reflector and back to the device. The above equation shows that one

can identify variations in d(t) due to inhaling, exhaling, and heartbeats, by measuring the

resulting variations in the phase of the reflected signal.
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Figure 7-3: Phase variation due to vital signs. The figure shows the variations in phase due
to breathing and heartbeats, where peaks and valleys in the phase correspond to exhale and
inhale motions respectively; also, zooming in on the signal allows us to observe the heartbeats
modulated on top of the breathing motion.

To illustrate how the phase varies with vital signs, let us consider the example in Fig. 7-

2While unlikely, it is possible that multiple users are at the same distance from the device and hence fall
into the same bucket. To deal with such cases, one may deploy multiple devices so that if two users are at the
same distance with respect to one device, they are at different distances with respect to another device.
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1, where a user sits facing the device. When the person inhales, his chest expands and gets

closer to the device; and when he exhales, his chest contracts and gets further away from

the device. Because the phase and the distance to a reflector are linearly related, Vital-

Radio can track a person’s breathing. Fig. 7-3 shows the phase of the captured reflection

as a function of time. Specifically, a peak in the phase corresponds to an exhale (highest

distance from the device), and a valley in the phase corresponds to an inhale (smallest

distance from the device). We note that our implementation uses a wavelength � around

4.5 cm. According to the above equation, sub-centimeter variations in the chest distance

due to breathing cause sub-radian variations in the phase, which is what we observe in the

figure.

Similarly, a person’s heartbeats cause minute movements of different parts of his body.

Specifically, the physiological phenomenon that allows Vital-Radio to extract heart rate

from signal reflections is ballistocardiography (BCG). BCG refers to movements of the

body synchronous with the heartbeat due to ventricular pump activity [115]. Past work

has documented BCG jitters from the head, torso, buttock, etc. [20, 31]. Periodic jitters

cause periodic variations in the wireless signal allowing us to capture the heart rate. These

movements translate to smaller fluctuations on top of the breathing motion in the wireless

reflection as we can see from local peaks in Fig. 7-3. Note that the periodicity of breath-

ing and heartbeats is independent of the user’s orientation. For example, if the user has

his back to the device, the valleys become peaks and vice versa, but the same periodicity

persists.
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Figure 7-4: Limb motion affects vital sign monitoring. The figure shows the subject breathing
until right before the 1 minute mark where he waves his hand. The device eliminates time
intervals when such motion happens.

Still, an important question to answer is: what happens when a person moves around

or moves a limb, and how can Vital-Radio distinguish such motions from breathing and

heartbeats? To help answer this question, we show in Fig. 7-4 a scenario where the user
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waves his hand before the one minute mark resulting in aperiodic phase variations of the

signal.

To deal with such scenarios, Vital-Radio exploits that motion due to vital signs is pe-

riodic, while body or limb motion is aperiodic. It uses this property to identify intervals

of time where a user’s whole body moves or where she performs large limb movements

and discards them so that they do not create errors in estimating vital signs. To achieve

this, Vital-Radio operates on time windows (30 seconds in our implementation). For each

window, it measures the periodicity of the signal. If the periodicity is above a threshold, it

determines that the dominant motion is breathing and heart rate; otherwise, it discards the

window. A typical approach to measure a signal’s periodicity is evaluating the sharpness

of its Fourier transform (or FFT) [38]. Hence, we perform an FFT on each window, choose

the FFT’s peak frequency, and determine whether the peak’s value is sufficiently higher

than the average power in the remaining frequencies.3

This metric allows us to maintain intervals where a user does not perform large limb

movements, including scenarios where the user types on her laptop or checks her phone.

This is because, while these movements are indeed aperiodic, they do not mask the breath-

ing or the heart rate since their power does not overwhelm the repetitive movements due

to our vital signs.4 Additionally, in some of these scenarios, the user’s hands are stretched

out to the laptop and away from his chest as he is typing. As a result, the major part of his

typing motion falls into a separate FMCW bucket than the user’s chest. Naturally, because

the human body is connected, hand movements would still result in muscle stretches and

minor shoulder jitters that are close to the user’s chest; however, because such movements

are weak and aperiodic, they are diluted at the output of the FFT. In contrast, periodic

movements due to vital signs are enforced in the FFT operation, which results in maintain-

ing intervals of such quasi-static scenarios.

The above steps allow us to filter out extraneous motion and focus on time windows

where the dominant motion for each user is the breathing and heart rate. In the following

section, we show how Vital-Radio extracts breathing and heart rate from these intervals.

3In our implementation, we choose this peak to be at least 5⇥ above the average power of the remaining
frequencies.

4Mathematically, these signals would appear as “white noise” in low frequencies, and are filtered out in
Step 3 of Vital-Radio’s operation.
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⌅ 7.3.3 Step 3: Extracting Breathing and Heart Rate

Breathing Rate Extraction

Because breathing is a periodic motion, we can extract the frequency (rate) of breathing by

performing a Fourier transform (an FFT). The peak at the output of the FFT will correspond

to the dominant frequency, which in our case is the breathing rate. Specifically, we perform

an FFT of the phase signal in Fig. 7-3 over a 30 second window and plot the output in

Fig. 7-5. The peak of this signal gives us an initial estimate of the person’s breathing rate.
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Figure 7-5: Output of Fourier Transform for Breathing. The figure shows the output of the
FFT performed on the phase of the signal of Fig. 7-3. The FFT exhibits a peak around 10
breaths/minute, providing a coarse estimate of the breathing rate.

However, simply taking the peak of the FFT does not provide an accurate estimate of

breathing rate. Specifically, the frequency resolution of an FFT is 1/window size. For a

window size of 30 seconds, the resolution of our breath rate estimate is ⇡ 0.033Hz, i.e.,

2 breaths/minute. Note that a larger window size provides better resolution, but is less

capable of tracking changes in breathing rate. To obtain a more precise measurement, we

exploit a well-known property in signal processing which states that: if the signal contains

a single dominant frequency, then that frequency can be accurately measured by perform-

ing a linear regression on the phase of the complex time-domain signal [110]. Hence, we

perform an additional optimization step, whereby we filter the output of the FFT, keeping

only the peak and its two adjacent bins; this filtering allows us to eliminate noise caused

by extraneous and non-periodic movements. Then, we perform an inverse FFT to obtain

a complex time-domain signal s0(t). The phase of s0(t) will be linear and its slope will

correspond to the breathing frequency, i.e., the breathing rate. Mathematically, we can

compute an accurate estimate of the breathing rate (in terms of breaths per minute) from

the following equation:

Estimate = 60⇥

slope{\s0(t)}
2⇡

, (7.2)
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where the factor of 60 transforms this frequency from Hz (i.e., 1/second) to breaths/minute.

Heart Rate Extraction

Similar to breathing, the heartbeat signal is periodic, and is modulated on top of the breath-

ing signal, as shown in Fig. 7-3. However, the breathing signal is orders of magnitude

stronger than the heartbeat. This leads to a classical problem in FFT’s, where a strong

signal at a given frequency leaks into other frequencies (i.e., leaks into nearby bins at the

output of the FFT) and could mask a weaker signal at a nearby frequency.

To mitigate this leakage, we filter the frequency domain signal around [40-200] beats

per minute; this allows us to filter out breathing, which is typically between 8 and 16

breaths per minute [149]5 as well as high frequency noise (which is higher than 200 beats

per minute).

We plot the output of this obtained frequency domain signal in Fig. 7-6, and pick the

maximum peak of this output as the frequency that corresponds to the heart rate. Note that

we do not simply pick the absolute maximum of the FFT, because this absolute maximum is

typically the first bin after filtering (i.e., around 40 beats/minute), and is due to the leakage

from the breathing. In contrast, in this example, the peak occurs at 66 beats/minute.
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Figure 7-6: Output of Fourier Transform for Heart Rate. The figure shows the output of the
FFT after applying a hanning window and filtering between [40-200] beats/minute. The highest
peak (i.e., “local maximum”) provides a coarse estimate of the heart rate.

Similar to breathing, simply taking the peak of the FFT leads to poor resolution. To

obtain a more precise estimate of the heart rate, we take an inverse FFT of the signal in

the FFT bin corresponding to the heart rate peak and the two adjacent FFT bins. We then

regress on the phase of this signal using equation 7.2. After this regression step, the ob-

tained heart rate is 66.7 beats/minute, whereas the ground truth heart rate obtained from

5In fact, this filtering allows us to filter out the breathing signal and its first harmonic.
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a pulse oximeter is around 66.5 beats/minute.

Finally, we note that for computing heart rate, we use an FFT window of 10 seconds

only. This window is long enough to capture the periodicity of heartbeats but it is short

enough to quickly react to an increase/decrease in heart rate. Also note that the FFT is

computed over overlapping windows that are shifted by 30ms, hence providing a new

estimate every 30ms.

⌅ 7.4 Implementation

Our implementation consists of the following components:

Hardware: We use the FMCW radio described in §4.6. The device generates a signal that

sweeps from 5.46 GHz to 7.25 GHz every 2.5 milliseconds, transmitting sub-mW power.

These parameters are chosen such that the transmission system is compliant with FCC

regulations for consumer electronics.

The FMCW radio connects to a computer over Ethernet. The received signal is sampled

(digitized) and transmitted over the Ethernet to the computer for real-time processing.

Software: We implement the signal processing algorithms described in the previous sec-

tions in C++. The code runs in realtime, plotting on the screen the breathing and heart

rate as function of time and at the same time logs them to a file. The code operates on

shifted overlapping FFT windows and generates new estimates every 30ms. The output

also shows user motion –i.e., the code tags every 30ms window to show whether the user

is quasi-static or performing a major motion.

⌅ 7.5 Experimental Evaluation

Participants: To evaluate the performance of Vital-Radio we recruited 14 participants (3 fe-

males). These participants were between 21 and 55 years old (µ = 31.4), weighed between

52 and 95 kg (µ= 78.3), and were between 164 and 187 cm tall (µ= 175). During the exper-

iments, the subjects wore their daily attire, including shirts, T-shirts, hoodies, and jackets

with different fabric materials.

Ground Truth: To determine Vital-Radio’s accuracy, we compare its output against the
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Figure 7-7: Experimental Setup. (a) shows a user sitting about 2.5m away from Vital-Radio’s
antennas; the user also wears a chest strap and a pulse oximeter, which are connected to the
Alice PDx for obtaining ground truth measurements. (b) shows one of Vital-Radio’s antennas
placed next to a quarter.

Alice PDx [1], an FDA approved device for monitoring breathing and heart rate. The Alice

PDx is equipped with a chest band and a pulse oximeter. The chest band is strapped

around each subject’s chest to monitor breathing, and the pulse oximeter is placed on

his/her finger to monitor heart rate during the experiment.

Experimental Environment: We perform our experiments in a standard office building;

the interior walls are standard double dry walls supported by metal frames with sheet

rock on top. The evaluation environment contains office furniture including desks, chairs,

couches, and computers.

Throughout the experiments, Vital-Radio’s antennas are placed on a table, about 3 feet

above the ground as shown in Fig. 7-7. The user sits at some distance from these antennas

and wears the Alice PDx’s chest band and pulse oximeter to obtain the ground truth mea-

surements as shown in the figure. In our evaluation, we vary the distance and orientation

of the user with respect to Vital-Radio to determine its accuracy in different scenarios as

we show in the next section.

⌅ 7.5.1 Core Experiment: Accuracy Versus Distance

We would like to validate Vital-Radio’s ability to monitor a subject’s breathing and heart

rate at different distances from our device. In this experiment, we place the device in the

corner of a large room, whose floor plan is shown in Fig. 7-8. The device’s antennas are

pointed toward the center of the room to ensure that they capture motion inside that room.

We ask the subject to sit on a chair at marked locations whose distances range from 1 m
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to 8 m away from the device. In each experiment, the subject sits on a chair facing Vital-

Radio’s antennas and wears the Alice PDx, as shown in Fig. 7-7.

4m#

Subject##
loca.ons#

Device#

(through#wall)#

Figure 7-8: Testbed. The figure shows a layout of our experimental setup, marking the location
of Vital-Radio in navy blue, and the different locations where our monitored subjects sat down
in red.

We run a total of 112 experiments, where we ask each of the 14 subjects to sit at the

marked locations from 1m to 8 m.6 Each experiment lasts for two minutes, during which

the user sits facing the device in each of these locations. We extract the breathing and heart

rate in real-time using Vital-Radio and log these vital signs using the AlicePDx. During

each two minute experiment, Vital-Radio outputs a vital sign estimate every 30 millisec-

onds, leading to a total of 448,000 measurements across all experiments and all locations.

Based on the ground truth measurements using the Alice PDx, the subjects’ breath-

ing rates range from 5 to 23 breaths/minute, while their heart rates vary from 53 to 115

beats/minute. These rates span the range of adult breathing and heart rates [104, 149].7

Breathing Rate Accuracy

We compare the output of Vital-Radio with that of the Alice PDx, and plot the median and

90

th percentile accuracy of breathing as a function of distance from 1 to 8 meters in Fig. 7-9.

The figure shows that our median accuracy is 99.3% at 1 m and remains as high as 98.7%

at 8 m from the device. It also shows that our 90th percentile accuracy is higher than 90%

across all these distances.

6We limit the experiments to distances of 8 m because the localization accuracy of FMCW-based systems
for consumer applications drops beyond this range (see §4.8.2).

7We note that one of our subject has a significantly high heart rate of 115 beats/minute. We confirmed with
the subject that this value, which was measured with the Alice PDx, is compatible with his medical records.
Also one of our subjects has a low breathing rate of 5 breaths/minute, as measured by the Alice PDx. This
subject practices yoga on a daily basis.
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Figure 7-9: Breathing Accuracy vs Distance. The figure shows Vital-Radio’s breathing accuracy
versus its distance to the subject.

Heart Rate Accuracy

We plot the median and 90

th percentile accuracy of heart rate as a function of distance

from 1 to 8 meters in Fig. 7-10. The figure shows that our median accuracy is 98.5% at 1

meter and drops to 98.3% at 8 meters from the device. It also shows that our 90th percentile

accuracy remains higher than 90%, even with the subject is 8 m away from the device.
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Figure 7-10: Heart Rate Accuracy vs Distance. The figure shows Vital-Radio’s heart rate accu-
racy versus its distance to the subject.

⌅ 7.5.2 Accuracy in Various Scenarios

Accuracy versus Orientation

To validate that Vital-Radio operates correctly even when subjects do not directly face the

device, we run experiments where we ask our subjects to orient themselves in different

directions with respect to the device. Specifically, we ask each subject to sit at the 4 m

distance from Vital-Radio and we run experiments in four different orientations: subject

faces the device, subject has his back to the device, and the subject is facing left or right

(perpendicular) to the device.
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We plot the median accuracies for breathing and heart rate for these four different ori-

entations in Fig. 7-11. The figure shows that, indeed, when the user faces the device, the

median accuracy of breathing and heart rate is highest (99.1% and 98.7% respectively).

However, this accuracy only slightly drops by at most 3% across all the different orienta-

tions. Note that the device can detect chest motion even when that motion is perpendicu-

lar. This is because when one inhales, his chest expands in all directions, and Vital-Radio

can detect a chest side expansion though it is minute.8
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Figure 7-11: Accuracy versus Orientation. The figure shows Vital-Radio’s median accuracy for
breathing and heart rate for a user sitting 4 m from the device and facing different directions.

Next, we validate that Vital-Radio does not require the user to be along a straight line

facing the antenna. Specifically, we place the antennas at the center of the room, and ask

users to sit at a distance of 4 m from the antennas and at angles ranging from �90� to

+90

� with respect to the pointing direction of the antennas. We perform 20 one-minute

experiments with different subjects at different angles. The results show that Vital-Radio

can capture the user’s vital signs as long as she is at an angle between �75� and +75

� with

respect to the antenna’s pointing direction. Specifically, the median accuracy is above 98%

when the user is on a straight line with respect to the antenna, and decreases to 96% at the

far edge (i.e., ±75

�).9

Through-Wall Accuracy

In order to test the ability of Vital-Radio to measure user’s vital signs even when they are

in a different room, we run a set of through-wall experiments where the device is placed in

a different room than our subjects. Specifically, we use the experimental setup in Fig. 7-8.

8Such expansion is no smaller than variations due to heartbeats.
9This result is expected since Vital-Radio uses log-periodic antennas whose directionality is around 150�.
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The device is kept in the larger room, while the subject sits in an adjacent room behind a

wall. The subject faces the device and is about 4 m from it.

Across all experiments, our median accuracies are 99.2% and 90.1% respectively for

breathing and heart rate. These results indicate that the breathing rate remains almost the

same both in the presence and absence of the wall (at the same distance of 4 m). However,

the median heart rate accuracy drops due to the fact that the wall attenuates the heart rate

signal significantly (which was already a very minute signal), hence, reducing our signal-

to-noise ratio. Still, the heart rate accuracy remains around 90% even in such through-wall

scenarios.

Multi-User Accuracy

We are interested in evaluating Vital-Radio’s accuracy for multi-user vital sign monitoring.

Hence, we perform controlled experiments, where we ask three of our users to sit on a chair

at the 2 m, 4 m, and 6 m marks in Fig. 7-8. In each experiment, Vital-Radio determines that

there are 3 users, each at his respective distance from the device, and outputs the vital

signs of each; however, the baseline (AlicePDx) can only monitor a single user at any point

in time. Hence, to evaluate accuracy, we first connect the baseline to the first user and

compare its output to the output of VitalRadio for the user at that distance and for that

moment. Then, we move the baseline to the remaining users in succession.

We run 20 experiments with different sets of subjects and plot the accuracies in Fig. 7-

12. The figure shows that Vital-Radio’s breathing and heart rate monitoring accuracy is

around 98% for all three users. Note also that the median accuracy of the nearest user is

higher than that of the further two users because of the increase in distance between these

users and the device. These results verify that Vital-Radio can monitor multiple users’ vital

signs, and that its monitoring accuracy for multiple users is the same as that for a single

user.

Next, we would like to confirm that Vital-Radio can accurately capture the vital signs

of a quasi-static user while other users are moving in the environment. In principle, Vital-

Radio should still operate correctly since FMCW separates reflections from different users

based on their distance to the device. Hence, we run experiments where we ask one of our

subjects to sit on a chair at the 3 m mark in Fig. 7-8 while asking another subject to walk
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Figure 7-12: Multi-User Accuracy. The figure shows Vital-Radio’s median accuracy in monitor-
ing the vital signs of 3 users simultaneously. The users are sitting at 2 m, 4 m, and 6 m from the
device.

around in the room. Over 20 experiments with different subjects, the median accuracy of

breathing and heart rate remains above 98% for the monitored user as long as the moving

user is at a distance of at least 1.5 m away from him. This accuracy drops below 75% when

the moving user gets closer than 1 m to the monitored person. This is because when the

two users are closer than 1 m, the reflections off their bodies interfere with each other,

preventing Vital-Radio from isolating the signal variations due to the monitored user’s

vital signs.

⌅ 7.5.3 Activity-Focused Experiments

Daily In-Place Activities

We would like to evaluate Vital-Radio’s accuracy in monitoring users as they perform in-

place day-to-day activities, such as typing on their laptops, watching TV, or sleeping. Thus,

we divided the subjects into two groups: one interacting with their laptops and another

interacting with their smartphones. In each experiment, we ask the subject to sit at 4 m

from the device and naturally use his/her phone or laptop. Each experiment lasts for 5

minutes; the user reports at the end the activities he/she performed with their laptop or

phone. The reports show that the users performed various tasks ranging from checking

and responding to their emails to reading news on the web or logging on to Facebook or

Instagram. Some users were texting using their phones and one user worked on a problem

set on his laptop.

Throughout the experiments where our subjects used their phones, the median accu-

racies for breathing and heart rate were 99.4% and 98.9% respectively. These accuracies
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slightly dropped to 99.3% and 98.7% when our subjects were using their laptops. This mi-

nor drop in accuracy is expected because using a laptop typically involves slightly larger

movements than using a phone, leading to a slight reduction in Vital-Radio’s accuracy.

Note, however, that these accuracies are almost the same as those when subjects were sit-

ting still at the same distance with respect to our antenna. Hence, Vital-Radio was able to

monitor users’ breathing and heart rate as they perform day-to-day activities that do not

require them to move around their apartments.

Exercising and Health-Awareness

Heart rate recovery – which corresponds to how fast a person’s heart rate decreases after

exercising – is an important metric for determining how healthy a person’s heart is. Specif-

ically, a stronger heart has a fast heart rate recovery, and that recovery rate is a predictor

of mortality [48, 81]. Hence, an important way in which Vital-Radio may contribute to a

smart home inhabitants’ well-being is by accurately measuring the heart rate after users

exercise.

To evaluate this capability, we evaluate the accuracy of Vital-Radio’s real-time vital sign

monitoring after asking our subjects to exercise. Specifically, each of the subjects jumps

rope for 2 minutes then sits down on a chair, 4 m away from the device, and breathes nor-

mally. During these experiments, we also ask our subjects to wear the Alice PDx chest band

and oximeter to obtain ground truth measurements for their vital signs. While both Vital-

Radio and Alice PDx cannot accurately measure heart rate during the excessive motion of

jumping, they can both measure the vital signs when a user sits down after exercising.

Fig. 7-13 overlays the heart rate estimated by Vital-Radio (in red) on top of the the

ground-truth heart rate of a subject as monitored by the pulse oximeter (in black), through-

out a two-minute period after the subject stops exercising. The figure shows that Vital-

Radio can effectively track the variations in the heart rate. Note that, throughout this two-

minute period, there’s a downward trend in the heart rate (from about 93 beats/minute to

around 70 beats/minute), which is expected since the subject is in a resting state after exer-

cising. Also, note that throughout this period, the heart rate varies continuously about that

trend, and that both the ground truth and Vital-Radio are able to capture these variations.

Across the experiments with multiple subjects, Vital-Radio’s median accuracy in mea-
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Figure 7-13: Tracking Heart Rate after Exercising. The figure shows how Vital-Radio’ can
accurately and in real-time track a user’s heart rate as it decreases after exercising.

suring breathing and heart rate is 99.4% and 99% respectively, and the 90

th percentile is

91.7% and 96.8%. These figures are similar to the accuracy achieved in our previous exper-

iments, where subjects were fully rested, indicating that Vital-Radio can indeed capture

our vital signs and track them accurately even as they vary.

⌅ 7.6 Limitations

In this section, we elaborate on the limitations of Vital-Radio:

• Minimum Separation between Users: Vital-Radio uses FMCW to separate reflections from

different users before extracting the per-user vitals. For ideal point reflectors, FMCW can

separate reflections from two objects if they are at least C/2B apart (see §4.3), where B is

the bandwidth and C is the speed of light. For Vital-Radio, this translates to a theoretical

minimum separation of 8 cm. However, because a human is not a point reflector, our

experiments show that a separation of 1–2 m is needed for high accuracy.

• Monitoring Range: Since Vital-Radio is a wireless system, it requires a minimum signal-

to-noise ratio (SNR) to extract the signal from the noise, and this SNR bounds its range

and accuracy. Specifically, the maximum distance at which Vital-Radio detects users is 8m.

This is because the SNR drops with user distance from the device.

• Quasi-static Requirement: Our implementation measures the vital signs only for quasi-static

users (e.g., typing, watching TV). This is because signal variations due to full body motion

would otherwise overwhelm the small variations due to vital signs, and prevent Vital-

Radio from capturing the minute movements.

• Non-human Motion: Vital-Radio uses FMCW to separate reflections from different objects

in space; hence, it can separate the reflection of various moving objects (e.g., humans, fans,
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pets). It then analyzes the reflections of each moving object to detect breathing. Since

the periodicity of breathing is much lower than fans, the device never confuses a fan as

a human. Even if the device confuses a fan for a human, it will not affect the vital signs

of the real humans since their signals are separated from the fans by FMCW. However, it

may still identify the presence of a pet and output its breathing and heart rate assuming it

is another user in the environment.

⌅ 7.7 Future Opportunities

The HCI community has significant literature on the use of physiological sensing for var-

ious applications [33, 76, 103, 143]. In particular, HCI researchers have used physiological

sensing to evaluate user experience including emotional reactions, stress levels, cognitive

performance, and user engagement. But, a key concern with past sensors (e.g., oximeters,

EEG, FNIRs, GSR) is that they require direct contact with the user’s body, and hence may

affect a user’s response. In contrast, Vital-Radio doesn’t require users to to be aware of its

presence, and hence doesn’t interfere with user experience.

Additionally, Vital-Radio enables new interface and interaction capabilities. For example,

it may be incorporated into user interfaces to adapt to a user without requiring him to

wear sensors. Also, it can enable environments to adapt the music or lighting by sensing

the user’s vital signs and inferring his mood. Further, a user walking up to a Vital-Radio-

enabled kiosk in an unfamiliar location (such as an airport) might receive customized as-

sistance based on his stress level.

Beyond these applications, we believe that Vital-Radio can impact a wide array of ar-

eas in HCI including quantified self, smart homes, elderly care, personal health and well-

being, and mobile emotional sensing.
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CHAPTER 8

Conclusion

Can wireless signals extend our senses? This dissertation answers the question affirma-

tively. It introduces new algorithms and software-hardware systems that use radio fre-

quency (RF) signals to extend our senses along multiple dimensions. The presented tech-

nologies demonstrate that we can “see” through walls, track the exact location of a person

in a closed room, and identify the person by relying purely on the reflections of RF signals

off his/her body. These systems can also track our gestures in mid-air and enable us to

control appliances by simply pointing at them. They can even monitor our breathing and

heart rate without any physical contact with our bodies, even if we are behind a wall.

Summary of Contributions: The contributions of our research can be viewed through

various lenses:

• From a ubiquitous sensing perspective, we present a fundamentally new approach for

sensing the human body. In particular, in contrast to traditional approaches which re-

quired instrumenting the human body with sensors, our research does not require any

physical contact with the human body.

• From a networking perspective, this dissertation expands the role that wireless networks

can play in our daily lives. Specifically, in contrast to today’s networks which use wire-

less signals to communicate, we show that future networks may use these signals for

sensing, gesture control, and health monitoring.

• Our contributions may also be viewed from graphics/vision perspective, whereby we

149
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demonstrate how RF signals can be used to gain visual access to new information, which

we could not otherwise see.

Broader Impact: The research in this dissertation has already borne fruit, particularly in

the health-care domain. First, it is the core underlying technology for a device that is cur-

rently deployed in elderly homes to enhance elderly safety. In particular, in contrast to

today’s fall detection solutions, which require the elderly to wear pendants, our devel-

oped technology on 3D motion tracking can detect falls without requiring the elderly to

hold or wear any device. This device is being developed by a recent startup, Emerald. Sec-

ond, this research is currently being used in a clinical study for sleep apnea monitoring at

Massachusetts General Hospital. Specifically, in contrast to today’s solutions for sleep ap-

nea diagnosis require instrumenting the patient’s body with many sensors, our developed

technology on remote monitoring of breathing and heart rate can be used to detect sleep

apnea without any physical contact with the patient’s body. Finally, multiple medical insti-

tutions – including the medical centers at Boston University and University of California

at San Francisco – are studying applications for this research in domains that range from

pediatrics to geriatrics.

⌅ 8.1 Looking Forward

We have only started scratching the surface of possibilities for RF as a sensing modality.

While this dissertation has taken major steps in unlocking some of these possibilities, the

presented designs exhibit limitations which would be interesting to explore in the future.

In this section, we revisit these limitations and highlight some of the exciting avenues for

future research.

We start by recapitulating the limitations highlighted in the earlier chapters of this

dissertation:

• Scale: Our implementations can accurately track up to 4 moving users and 5 static users

(as demonstrated in Chapter 5). These numbers may be sufficient for in-home tracking.

However, it is always desirable to scale these systems to track more users. Furthermore,

our sensing range is limited to 10m due to the low transmitted power. To cover larger

areas and track more users, one may deploy multiple devices and hand off the trajectory
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tracking from one to the next, as the person moves around. Managing such a network of

devices, coordinating their hand-off, and arbitrating their medium access are interesting

problems to explore.

• Reconstruction Resolution: Our current method for reconstructing a human figure (de-

scribed in Chapter 6) captures the human figure by stitching consecutive snapshots. In

addition, our implementation adopts a simple model of the human body for segmenta-

tion and skeletal stitching. Future work can explore more advanced models to capture

finer-grained human skeleta and over finer time resolutions.

• Uninterrupted Vital-Sign Monitoring: Our implementation of Vital-Radio measures the

vital signs only for quasi-static users (e.g., typing, watching TV). This is because sig-

nal variations due to full body motion would otherwise overwhelm the small variations

due to vital signs, and prevent Vital-Radio from capturing the minute movements. Our

current implementation identifies such events and discards the corresponding measure-

ments to prevent them from creating errors. Overcoming this limitation to enable unin-

terrupted vital sign monitoring is an interesting avenue for future work.

• Non-human Motion: Our designs in Chapters 5 & 7 use FMCW to separate reflections

from different objects in space; hence, they can separate the reflection of various moving

objects (e.g., humans, fans, pets). However, they do not try to distinguish the type of

moving objects. Future work may combine the vital-sign estimates (from Chapter 7)

with a model of a human body (as in Chapter 6) to overcome this limitation.

Beyond overcoming these limitations, we envision that future wireless systems will use

RF as a sensing modality along multiple avenues:

• Emotion Recognition: RF sensing can enable machines to interact with us at deeper levels

than today’s interfaces. In particular, past research on affective computing has shown

that our vital signs are correlated with our emotions. Thus, by bridging Vital-Radio

(which can track breathing and heart rate) with affective computing, we can enable

smart environments and interfaces to sense and adapt to our emotional reactions, stress

levels, and cognitive performance.

• Health Diagnosis and Prediction: Non-invasive monitoring and diagnosis are active areas

of research, and we believe that wireless sensing can deliver powerful solutions. Vital-
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Radio has taken an initial step towards this vision by enabling remote sensing of breath-

ing and heart rate using RF. While powerful, this technology cannot capture critical vital

signs that do not cause body movements, such as blood pressure, oxygen saturation, and

glucose levels. Extending RF to capture such vitals can render ICU vital sign monitors

completely non-invasive and enable continuous monitoring of diabetes patients.

• Robotic Systems: Wireless sensing can empower robots with new capabilities in home

and industrial environments. Our research has shown how we can detect, track, and

reconstruct human figures from RF signals through occlusions. Such capabilities can

be used by autonomous vehicles to detect pedestrians, by drones in search-and-rescue

scenarios, and by personal robots for more natural human-robot interaction.

• Smart Environments: The systems we built can accurately track humans, recognize their

gestures, and monitor their vital signs; however, they lack higher-level semantics in

understanding human activities – i.e., they cannot understand exactly what a person is

doing. By composing gestures and movements into higher level tasks, we can enable

smart environments to understand and adapt to our behavior and to actively contribute

to our lifestyles and well-being.

In sum, we believe that future wireless systems will use RF for sensing to deliver ser-

vices that touch our everyday lives, similar to how their use of RF for communications

has made Wi-Fi and cellular indispensable. This dissertation has made multiple strides

in that direction. To do so, it bridges state-of-the-art concepts and tools from diverse ar-

eas including networking, signal processing, HCI, and Graphics. It also builds on a deep

understanding of RF signals, operates across software-hardware boundaries, and intro-

duces new systems and new algorithms that require redesigning the entire computing

stack, from the hardware to the applications. We believe that this approach will become

a necessity as wireless devices become ever-more ubiquitous and as their services keep

expanding beyond communications in the coming decades.



APPENDIX A

Convergence of Iterative Nulling in

WiVi

We prove why iterative nulling proposed in §3.3 converges. Vital-Radio models the chan-
nel estimate errors as additive (in line with common practice of modeling quantization
error [110]). Hence, by substituting ˆh

1

with h
1

+�

1

, and ˆh
2

with h
2

+�

2

, in Eq. 3.1, we
obtain:

h
res

= h
1

+ h
2

✓
�

h
1

+�
1

h
2

+�
2

◆
⇡

h
1

h
2

�
2

��
1

+
�

1

�
2

h
2

(A.1)

which follows from the first order Taylor series approximation of 1

1�x

since �

2

<< h
2

.

Iterating on h
1

alone. We first analyze how the algorithm converges if it were iterating

only on Step 1. According to Algorithm 1, ˆh
1

is refined to h
res

+

ˆh
1

. By updating the

precoding vector, the new received channel after nulling h0
res

is h
res

�

2

h

2

by applying the

first order Taylor series approximation of 1

1+�

2

/h

2

since �

2

<< h
2

. Hence, |h0
res

| << |h
res

|.

Therefore, after the i-th iteration, h(i)
res

becomes h(0)
res

⇣
�

2

h

2

⌘
i

.

Iterating on h
2

alone. We now analyze how the algorithm converges if it were iterating
only on Step 2. According to Algorithm 1, ˆh

2

is refined to
⇣
1�

h

res

ˆ

h

1

⌘
ˆh
2

. By updating the
precoding vector, the new received channel after nulling is:

h0
res

⇡ h
1

�

ĥ
1

ĥ
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Wojciech Matusik, and Jovan Popović. Practical motion capture in everyday sur-
roundings. In ACM Transactions on Graphics (TOG), volume 26, page 35. ACM, 2007.

[154] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. Articulated mesh
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