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Lecture Objectives

• Recap the fundamental techniques for wireless imaging 
and 3D reconstruction

• Learn how state-of-the-art systems build on these 
fundamentals to improve non-line-of-sight (NLOS) 
reconstruction performance

• Discuss the applications of various NLOS imaging 
technologies



Recap: Using FMCW and AoA for 3D Imaging

Airplane with
Radar

Synthetic Aperture
Produce a 3D SAR Image

Range
(FMCW)

Azimuth
(AoA)

Elevation
(AoA)

2D Synthetic Aperture

TomoSAR, 1997
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Recap: Using FMCW and AoA for 3D Imaging

Synthetic Aperture
Produce a 3D SAR Image

Range
(FMCW)

Azimuth
(AoA)

Elevation
(AoA)

2D Synthetic Aperture

Generate 3D point cloud
TomoSAR, 1997
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Non-Line-of-Sight Wireless Imaging and 3D Reconstruction

Wireless 3D Reconstruction
Through Boxes

Around-the-Corner
Wireless Imaging

Wireless Reconstruction 
In Low Visibility
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Non-Line-of-Sight 3D Object Reconstruction
via mmWave Surface Normal Estimation

Laura Dodds, Tara Boroushaki, Kaichen Zhou, Fadel Adib

Cartesian



Can we enable high-accuracy non-line-of-sight 
3D object reconstruction with millimeter-waves?
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High-Accuracy Non-Line-of-Sight 3D Reconstruction has Many Applications

Robotics Augmented RealityShipping & Logistics



Object to 
Reconstruct

Why are existing 3D reconstruction methods limited?

Reconstruction quality is limited by 
SAR resolution (i.e., bandwidth)

Produce a 3D SAR Image

Generate 3D point cloud

IMWUT ‘23, Mobicom ‘24



Why are existing 3D reconstruction methods limited?

Reconstruction quality is limited by 
SAR resolution (i.e., bandwidth)

Real-World
3D Point Cloud



Why are existing 3D reconstruction methods limited?

Points are spread 
due to limited 

resolution

First-Principles Methods Machine-Learning Methods

Requires Significant Training Data

Typically operate on very small 
subset of objects

Reconstruction quality is limited by 
SAR resolution (i.e., bandwidth)

3D Model

We need a fundamentally new approach for
 mmWave 3D object reconstruction

Our Idea: Directly estimate the curvature of the object

CVPR ‘20, Mobicom ‘24



Surface
Normal
Vector
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by estimating surface normal vectors
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Synthetic
Aperture
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Surface 
Normal 
Vector 
Field
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Synthetic
Aperture

Object 
Surface

Our Idea: Directly estimate the curvature of the object
by estimating surface normal vectors



Synthetic
Aperture

mmWave signals experience primarily specular reflections

Object 
Surface

No Signal Received
Signal Received



At a given voxel, what direction is the surface normal?

Voxel

Possible 
Surface 
Normals

Due to specularity, these normal 
do not produce reflections 

towards the aperture

Lets say one of these antennas receive a reflection from this voxel



At a given voxel, what direction is the surface normal?

Voxel

v1 v2 v3 v4 v5 v6 v7

Reflection amplitude acts as a vote
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Weighted Sum

At a given voxel, what direction is the surface normal?
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Weighted Sum

How do we compute the voting function?
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How do we compute the voting function?
Reflection amplitude                                                                   acts as a votearriving from this voxel in SAR image



𝑒 !"#$%(',))
+!ℎ 𝑖, 𝑘&

/,-

0

𝐼(𝑘) = S &
),-

.

𝐼(𝑘)=

Voting Function: 𝑣) =
ℜ 3 ) ℜ 4 5ℑ 3 ) ℑ{4}

| 4 |

Reflection amplitude                                                                   acts as a votearriving from this voxel in SAR image

Large 
Projection 
Magnitude mmWave

Voxel
Value

Antenna 
1 Value

Q

I

Antenna 
2 Value

Small 
Projection 
Magnitude

We repeat this at every voxel in space to produce a normal vector field

How do we compute the voting function?



Our Idea: Directly estimate the curvature of the object
by estimating surface normal vectors

1. Normal Field 
Estimation

2. Multiple Valid 
Surfaces

3. Single Unifying
Function

4. Isosurface 
Optimization
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Final Surface 
Estimate



How can we capture all ambiguous surfaces in one function?
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Positive 
values

Negative 
values

Computer Graphics Community

0 at surface 
of object

Signed 
Distance 
Function

𝑑
𝑑𝑥 Normal 

Vector 
Field

mmNorm

Normal 
Vector 
Field

5𝑑𝑥

Relative 
Signed 

Distance 
Function

How can we capture all ambiguous surfaces in one function?

Unknown constant offset

We can determine the surface by finding this unknown constant offset



Our Idea: Directly estimate the curvature of the object
by estimating surface normal vectors

1. Normal Field 
Estimation

2. Multiple Valid 
Surfaces

3. Single Unifying
Function

4. Isosurface 
Optimization

Isosurface: Surface 
of constant value

Relative Signed 
Distance Function

Final Surface 
Estimate
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Implementation

Cardboard
Occlusion

Robot Arm

• UR5e Robot Arm

• TI IWR1443Boost 77GHz Radar

• Intel Realsense RGB-D camera 
for ground truth

• Measured experiments in line-of-
sight and non-line-of-sight 
(cardboard occlusion)

• Collected experiments across 61 
different everyday objects

Camera 
(Ground-Truth)

77GHz Radar



Qualitative Results

Select every voxel in SAR 
image above power 

threshold
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Quantitative Results: 3D F-Score
Measured 3D F-Score of each reconstruction relative to ground-truth

Precision
How many points in prediction are accurate?

Recall
How many points in ground-truth are covered?

Ground Truth
Reconstruction

P = True Positives / Total Recon
 = 13 / 20

R = True Positives / Total GT 
= 15 / 24

F = #
"
#5

"
$



Quantitative Results: 3D F-Score
Measured 3D F-Score of each reconstruction relative to ground-truth
Measured across 61 objects in LOS and NLOS



mmNorm Limitations & Future Work

Novel Downstream Tasks Large Scale ScenesShape Completion

Robotics

Augmented Reality

Indoor
Scenes

Autonomous Driving



Non-Line-of-Sight Wireless Imaging and 3D Reconstruction

Wireless 3D Reconstruction
Through Boxes

Around-the-Corner
Wireless Imaging

Wireless Reconstruction 
In Low Visibility



Around-the-Corner mmWave Imaging
in Practical Environments

Laura Dodds, Hailan Shanbhag, Junfeng Guan, 
Saurabh Gupta, Haitham Hassanieh



Classic Sensing Modalities are Limited to Line-of-Sight



Can We Produce RF Images of Objects Around-the-Corner?



The Ability to Image Around-the-Corner has Many Applications

Robotic Navigation Search and RescueAutonomous Driving



State-of-the-Art RF Non-Line-of-Sight Sensing
RF Through-Occlusion Imaging

Signals Cannot Pass Through 
All Occlusions (e.g., Metal, 
Thick Concrete/Brick, etc)

Limited to Localization

Restricted to Specific Environments
AND/OR

RF Around-the-Corner Sensing



Problem: 
Practical Environments Contain a 

Variety of Reflecting Surfaces



Practical Environments Contain a Variety of Reflecting Surfaces

Planar Surfaces

mmWave 
Antenna Array

Hidden 
Target Object



Planar Surfaces

Practical Environments Contain a Variety of Reflecting Surfaces

Convex Surfaces
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Practical Environments Contain a Variety of Reflecting Surfaces

Planar Surfaces

Convex Surfaces

Concave Surfaces

Composite Surfaces



How Can We Image off Planar Surfaces?

Standard Imaging 
Algorithms Produce 

Mirrored Images



How Can We Image off Planar Surfaces?

Target RFlect



Can We Use the Same Approach for More Complex Surfaces?

Image When Using Standard 
Imaging Algorithms

Convex Building Column

Reflection 
Surface

Hidden Target 
Object

mmWave 
Radar

Complex environments require more sophisticated 
modeling techniques



How can we know the geometry and location of the reflecting surface?

How can we accurately model reflections to enable coherent imaging?

What is the theoretical resolution & coverage for different reflectors?



What Happens When There Are Errors In The Reflector Mapping?

Voxel



Impact of Reflector Mapping Accuracy

3 cm 5 cmTarget

Produce images with RFlect’s Non-Linear Imaging Algorithm
With Small Error in Convex Reflector Location

High-accuracy reflector mapping is key to producing 
accurate around-the-corner images

Image Distortions



Can We Leverage Line-of-Sight Images for Reflector Mapping?

Line-of-Sight Overhead View
Convex Reflector

Line-of-Sight images are not sufficient for mapping 
complex reflectors

Line-of-Sight Overhead View
Planar Reflector

Our Solution: Design a non-linear reflector mapping 
algorithm leveraging line-of-sight reflections



Step 1: Reduce reflectors to low-dimensional model
Solution: Non-Linear Reflector Mapping Algorithm

(x, y, r)



Step 2: Generate Candidate Surface and Evaluate its Match
Solution: Non-Linear Reflector Mapping Algorithm

(x, y, r)
(x’, y’, r’)



Solution: Non-Linear Reflector Mapping Algorithm

Candidate Surface Score

RFlect produces 
candidate scores by 
comparing received 

line-of-sight reflections 
with the candidate model

Step 2: Generate Candidate Surface and Evaluate its Match
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Step 3: Search Across Candidate Surfaces
Solution: Non-Linear Reflector Mapping Algorithm

Candidate Surface Score



Step 3: Search Across Candidate Surfaces
Solution: Non-Linear Reflector Mapping Algorithm

Choose the surface with 
the highest score

Candidate Surface Score

& apply RFlect’s 
non-linear imaging 

algorithm



Step 3: Search Across Candidate Surfaces
Solution: Non-Linear Reflector Mapping Algorithm

RFlectTarget

RFlect’s reflector mapping algorithm enables 
high-accuracy around-the-corner imaging



How can we know the geometry and location of the reflecting surface?

How can we accurately model reflections to enable coherent imaging?

What is the theoretical resolution & coverage for different reflectors?

Introduce Non-Linear Reflector Mapping 



Implementation

• TI AWR1843Boost 77GHz 
mmWave Radar

• 2D Linear Stage to create a 
synthetic aperture

• Leveraged reflectors with 
various materials (concrete, 
wood, glass, metal, plastic)

77GHz
mmWave 

Radar

2D Linear Stage

Reflection 
Surface



Planar Imaging Results
Target Objects

Baseline: Image objects in line-of-sight of radar

RFlect Around-the-Corner Imaging off Planar Surfaces



Complex Imaging Results
Pl

an
e 

#1
Pl
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#2
RF
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ct

Composite Surfaces
(Door and Wall)

Convex Surfaces
(Building Column)

Concave Surface
(Computer Monitor)



Qualitative Results: Concave Reflectors
Curved Computer Monitor



Qualitative Results: Convex Reflectors
Building Column



RFlect Limitations & Future Work

Limitations:

- Can only image if there is a 
reflecting surface (of a given 
geometry)

- Scanning time of SAR

- Range is limited (at some 
point, the surface mapping 
begins to fail)

Future Work:

- Extending to other reflecting 
surface geometries

- Extending modeling to 
include non-specular 
reflections

- Integrating into full systems: 
self-driving cars, 
autonomous robots, etc



Non-Line-of-Sight Wireless Imaging and 3D Reconstruction

Wireless 3D Reconstruction
Through Boxes

Around-the-Corner
Wireless Imaging

Wireless Reconstruction 
In Low Visibility



3D Object 
Reconstruction with 
mmWave Radars

Samah Hussein, Junfeng Guan, 
Swathi Narashiman, Saurabh Gupta, 

Haitham Hassanieh



Can we enable wireless 3D reconstruction for 
self-driving cars?



Challenge #1: Lack of 3D Information



Solution: Combine Information from Perpendicular Radars



Challenge #2: Limited and Noisy Point Clouds
Due to Specularity, Radar Artifacts, etc



RFConstruct



Implementation
• Two perpendicular TI MMWCAS radars
• ZED 2i depth camera for trajectory 

tracking
• All radars and camera synchronized 

through software trigger
• Leverage a mobile platform to simulate 

car motion
• Ground-truth shapes scanned with 

mobile phone using PolyCam app
• Dataset consists of real-world, 

synthetic, and simulated data



Qualitative Results



Non-Line-of-Sight Wireless Imaging and 3D Reconstruction

Wireless 3D Reconstruction
Through Boxes

Around-the-Corner
Wireless Imaging

Wireless Reconstruction 
In Low Visibility


