MAS.S60 How to Wirelessly Sense Almost Anything

Lecture 9: LP-WANs

Lecturers Fadel Adib (<u>fadel@mit.edu</u>) Aline Eid (<u>alineeid@mit.edu</u>)

<u>TA</u> Tara Boroushaki (<u>tarab@mit.edu</u>)

Slides adapted from Rashad Eletreby, Diana Zhang, Swarun Kumar, Osman Yağan, Mehrdad Hessar, Ali Najafi, Shyam Gollakota

This Week in Wireless Sensing

After launching a test satellite last year with Open Cosmos, Sateliot will launch its first commercial nanosatellite with SpaceX. (Pixabay)

Objective of Today's Lecture

Learn the fundamentals, applications, and emerging technologies in LP-WANS

- 1. Why are LPWANs (low-power wide-area networks) and their applications?
- 2. What is LoRa and how does it work?
- 3. How can we increase the network throughout and range of LoRa?
- 4. How can we combine LoRa with backscatter?

Two Papers

Empowering Low-Power Wide Area Networks in Urban Settings, SIGCOMM'17

NetScatter: Enabling Large-Scale Backscatter Networks, NSDI'19

Imagine a world where every single object is connected to the Internet...

The building block for a city-scale Internet of Things...

Smart Infrastructure

Smart Homes

Smart Vehicles

Low-Power Wide-Area Networking (LP-WAN)

How is it different from other standards (WiFi, BLE, cellular)?

Low-Power Wide-Area Networking (LP-WAN) How is it different from other standards (WiFi, BLE, cellular)?

Long Range	Low Data rate	Low Cost	Low Power
 Up to 10	 Order of	• <\$5	• Up to 10
KMs in rural	kilobits per		years of
areas	second		battery life

Initiatives from Industry (LoRa, SIGFOX) and standardization bodies (3GPP LTEM, NBIoT)

Key Challenges

Key Challenges

Interference

Collisions emerge from the sheer density of nodes and the simplicity of the current MAC protocols (e.g., transmit as soon as wakeup)

LPWAN ranges drop by 10x in **urban** areas due to excessive multipath, shadowing, etc.

Range

Choir

Scalability	Range	Preserving simplicity
 Decodes 10's of collided transmissions 	• Extends the range of teams of cooperating nodes	• Fully implemented at a single- antenna base station

Fully implemented and evaluated on

LoRawan base station over an area of 10 Km² in Pittsburgh

Chirp in T.D.

Chirp on a spectrogram

Lorrage Carlot Contending

IN GENERAL, n bits -> divide the BW to 2^n initial frequencies

Choir in action

Collision of chirps

Different data

Collision of chirps

Same data

Hardware imperfections

Carrier frequency offsets (CFO)

Local oscillator mismatch

Hardware imperfections Timing offsets (TO)

Timing offsets (TO)

Frequency

Recall

Chirps are signals whose frequency increases linearly with time

Timing offsets (TO)

Thus,

An offset in time maps to an offset in frequency!

Timing offsets (TO)

Hardware offsets := { CFO + TO}

Collision of chirps

Same data

160

180

idea Exploit hardware imperfections to resolve collisions!

idea

Data bits are discrete, hardware offsets are continuous!

Integer part depends on both data and hardware offsets Fractional part depends only on hardware offsets

How to know which user is which? Use preambles with ID

Choir in action

Interference

Range Extension

Range Extension

Can we exploit data correlations to obtain a coarsegrained view of the sensed data?

Coalesce these peaks around an aggregate value

Approach Signal processing based on exploiting frequency offsets to coalesce transmissions

Details in the paper...

Implementation

Evaluation

Hardware offsets

Hardware offsets are truly diverse across LPWAN radios

Resolving interference

Resolving interference

Resolving interference

Extending range

Number of collaborating nodes	Range	
1	1 Km	1
10	2.5 Km	2.65X
30	2.65 Km	

NetScatter

- First backscatter protocol supporting hundreds of concurrent transmissions
- Distributed coding mechanism which works below noise floor and can be decoded using a single FFT
- Network deployment of 256 devices using only 500 kHz
- Improvements in PHY-layer data rate (7-26x), link-layer throughput (14-62x) and network latency (15-67x)

Core Idea: Distributed CSS

We assign each cyclic shift to a backscatter device

Each device uses ON-OFF keying on cyclic-shift to communicate Alice: Bit '1' Alice: Bit '1' Alice: Bit '0' Alice: Bit '0' Bob: Bit '1' Bob: Bit '0' Bob: Bit '1' Bob: Bit '0' Fr More power in the network \rightarrow Higher network rate f Amplitude Amplitude Amplitude Amplitud Ń 1 Ν 1 1 Ν Ν **FFT Bin FFT Bin FFT Bin FFT Bin**

Network of Hundred Backscatter Devices

Typical LoRa configuration

Uses 500 kHz BW

512 cyclic-shifts

Theoretically, can support 512 concurrent transmissions using only 500 kHz BW

Practical Issues: Timing Synchronization

Causes interference between Alice and Bob

Timing Variation Across Devices

Hardware delay variations cause timing mismatch

 $2 \mu s$ delay translates to 1 FFT bin with 500kHz BW

Timing Synchronization Solution

We use every other cyclic-shift

Reduces concurrent transmissions from 512 to 256

Practical Issues: Near-Far Problem

Solution: Power-Aware Cyclic Shift Assignment

Similar power devices are clustered together

Implementation

Backscatter device

- Baseband: IGLOO nano FPGA
- Downlink: envelope detector and MSP430
- RF switch: ADG904
- Three levels power adjustment

Access point

- USRP X-300 with UBX-40 daughterboard
- Co-located RX/TX antennas separated by 3 feet

Evaluation: Large-Scale Deployment

We deployed a network of 256 devices in an office building

Evaluation

We compared NetScatter with:

- LoRa-Backscatter (9 kbps)
- LoRa-Backscatter with rate adaptation

Evaluation: Network PHY Data-Rate

LoRa Backscatter (9 kbps) — — • LoRa Backscatter with Rate Adaptation –

NetScatter •••••

PHY data-rate improves by 7x - 26x

Objective of Today's Lecture

Learn the fundamentals, applications, and emerging technologies in LP-WANS

Why are LPWANs (low-power wide-area networks) and their applications?
 What is LoRa and how does it work?

How can we increase the network throughout and range of LoRa?

How can we combine LoRa with backscatter?

Next Class: Smart Surfaces & Metamaterials

1) Required

- Programmable Radio Environments
- Metamaterials for Satellites

2) Optional

- Large Inexpensive Arrays
- <u>Rfocus</u>
- Metasurface IoT

