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This Week in Millimeter Waves
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of incoming tracks so they can be defeated.
As the city upgrades to 5G wireless, the streetscape is changing.
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ADA’s RPS-82 (ieMHR) radar can detect a Group 1 drone at 10 kilomete
see even farther than that. Photo courtesy of RADA.



How to Wirelessly Sense Almost Anything

sensing the physical world & sensing via the wireless signals
transmitting data wirelessly themselves

This lecture is a combination of both
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Objectives of Today’s Lecture

Learn the fundamentals of mm-wave technology and its major
applications

Why iIs mm-wave technology attractive?

What are the major applications of mm-wave technology?
What are the enabling technological advances?

How does FMCW radar work?

Do mm-wave RFIDs exist and what role can they play?




Millimeter wave Technology
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Why millimeter waves?
wWhy Now?



Higher Data Rates

Large Bandwidth - High data rates

Shannon capacity:

C = Blog, (1 +S/N)

C is the channel capacity in bits per second (or maximum rate of data)
B is the bandwidth in Hz available for data transmission

S is the received signal power

N Is the total channel noise power across bandwidth B



BW

> D>

Higher Range Resolution

f

FT

* UHF (900MHz): 25MHz of BW = 6m

e 24GHz Radars: 250 MHz of BW = 60cm
* Automotive Radars (77GHz): 5GHz of BW = 3cm

c/(2*BW)



Antenna Arrays

Gain: Measure of how well you can focalize your power

Isotropic
Antenna

High Gain
Antenna

Gain dBi

Gain 0 dBi

900 MHz 24 GHz



Higher Angular Resolution

* Large Antenna Arrays
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Miniaturization and Flexibility

 Compact and easy to miniaturize
e Easier to design on flexible substrates

24 GHz (.= 12 mm)
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2.4GHz (A= 12cm)

Miniaturization

77 GHz (A= 4 mm)

24 GHz (A= 12 mm)
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Challenge: Atmospheric Attenuation
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Attenuation (dB/km)
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Water vapor

1 10 100 350
Frequency (GHz)
Specific atmospheric attenuation versus frequency [2].
Pressure = 1 atm = 101.325 kPa, temperature = 15°C, water
vapor density = 7.5 g/m3.

Harvey, James F., Michael B. Steer, and Theodore S. Rappaport. "Exploiting high millimeter wave bands for military communications, applications, and design.” IEEE Access 7 (2019): 52350-52359.

mm-waves are susceptible to attenuation under
moist conditions

Below 50 GHz and between 70-110GHz:
attenuation < 1dB/km

With torrential rain (50mm/hour): scattering loss
IS 10dB/km at 30GHz
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Challenge: Path Loss

A 4T
(b)
T A N Dy D, A Beam-
(GHz)|| (cm) (em?) || width
6 5 1 126 | 126 25 52.6°
27 1.11 81 254 | 254 25 11.3°
39 0.769 | 169 | 531 531 25 7.82°
72 0417 | 576 | 1810 | 1810 25 4.23°
141 0.213 | 2209 | 6940 | 6940 25 2.16°
(a)
f A N | D D, Ae Beam-
(GHz)|| (cm) (em?) width
6 500 | 1 ] 164 1.64 3.26 360°
27 1.11 1 | 1.64 | 1.64 || 0.161 360°
39 0769 | 1 | 1.64 | 1.64 ||0.0772|| 360°
72 0417 | 1 | 1.64 | 1.64 ||0.0227|| 360°
141 0213 | 1 | 1.64 | 1.64 |]0.00592| | 360°

Harvey, James F., Michael B. Steer, and Theodore S. Rappaport. "Exploiting high millimeter wave bands for military communications, applications, and design.” IEEE Access 7 (2019): 52350-52359.
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Diving into the Major Applications

Mm-waves for:

* Military/Defense

« Starlink/Space

« 5G

« Automotive Industry



Mm-wave for Defense Applications

How are the properties of mm-waves important for radars?
« Count targets, localize them, identify them, track them, know their
speed



Radar: Detect target (VHF)

Problems:
* Everythi

looks like a target \
b’ (in Iudlng the ground)




Radar: Directive array (X-band)

b/
Problems:
 Needs to be steered
* Misses everything that is not in the

beam




Mechanical Steering

Problems:

Can only transmit and
receive in one
direction at a time
Slow steering
Unreliable mechanical
elements



Passive Electronically Scanned Array (PESA)

Benefits:
* Fast steering
 Can generate

arbitrary radiation
patterns
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Passive radar-guided Missile

* Follows the reflection of
the plane's radar signal
projected onto the
target

Advantages:

* Much longer range
than IR-guided missiles

* More difficult to fool




Radar: Target illumination

Cannot multitask efficiently:
optigotsguidance
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Active Electronically Scanned Array (AESA)

Benefits:

« Can do everything at the same
time

Always receives signals from all
directions

Emminently reconfigurable
(iPhone in the sky)

Problems:

Very expensive

Requires tons of computational
power




The idea of Starlink

Established Satellite Internet:

 Ku (12-18GHz) and Ka band (26-40 GHz)

 GEO orbit (stationary in the sky, 22,236 mi away)

« High latency (600 ms)

Starlink:

« Multiple bands (10-51 GHz)

 LEO orbit (340 mi)
« Path loss decreases by 4000x -> 36 dB better SNR (everything else
equal)
« Latency decreases by 60x




The idea of Starlink

Problems:
« Satellites zoom by quickly

Solution:

* Lots of satellites (about
60,000)

« Lots of ground base-
stations

« Steerable arrays on both
ends




Starlink terminal

Hybrid Mechanical/PESA/AESA:

* |s mechanically tiltable

« Sub-arrays are PESA

 These are put together In
AESA fashion

Benefits:

* Lowers the cost and size

* Not as sensitive to low
manufacturing tolerances

YouTube Channel: The Signal Path



Satellite Imaging with SAR

Satellite Imaging Airport Scanners

Flight Direction

SENTINEL 1

Sub-Satellite Track

Orbit Height
~700 km

~ Extra Wide Swath
Mode

Mode

____ Wave Mode

Interferometric Wide Swath
Mode



5G/mm-waves

 Attractive to Telecom Companies due to high data rates
 New Market: Powering

— High gain, High EIRP (75dBm)

— Small Cell size (180m)

— Indoor and outdoor implementations




Millimeter Waves in Automotive Industry

Why FMCW?

« Easy to integrate into silicon ICs (compared to pulse radars)
 Low IF bandwidth

* Run without interfering with each other (because of chirping)

How does it work?
How do you localize, identify between targets?



What is a chirp?

A

T.=40us

W3 TEXAS INSTRUMENTS



The IF signal

A single object in front of the radar produces an
IF signal with a constant frequency of
foa = S2d/C

beat

W3 TEXAS INSTRUMENTS



Multiple objects in front of the radar

Multiple reflected chirps at the RX antenna

f A e Reflected signal
TX chirp .—--%"" from multiple

- objects

= Al

t
Multiple tones in the IF signal IF frequency spectrum f

w3 TEXAS INSTRUMENTS



Range Resolution In a radar

TX chirp

A-..._.,.:I_ .................. 5\,‘_.._.,

« The two objects can be resolved by increasing the length of the
IF signal.

* Note that this also proportionally increases the bandwidth. Thus
Intuitively: Greater the Bandwidth => better the resolution

IF frequency spectrum fo

The Range Resolution (dres) depends only on the Bandwidth swept by the
Chirp dres=c/2B

W3 TEXAS INSTRUMENTS



Question

* Two objects equidistant from the radar. How will the range—FF T look like?
Q\
O /

W3 TEXAS INSTRUMENTS



How to measure the velocity (v) of an object using 2 chirps

/

T
A 2
/\ .

A K

A

—

Transmit two chirps separated by T,

The range-FFTs corresponding to each chirp will have peaks in
the same location but with differing phase.

The measured phase difference (w) corresponds to a motion in

the object of vT,

4TtvT
— —
A

> V

Aw
41T,

The phase difference measured across two consecutive chirps can be
used to estimate the velocity of the object

W3 TEXAS INSTRUMENTS




Visualizing the 2D-FFT

-Two peaks corresponding
to the different velocities of
the two objects

Two object equidistant from the radar approaching it at different /
velocities /|

N

«—+All the range-FFT's
show only a single
peak

S

>

distance

W3 TEXAS INSTRUMENTS



Max Velocity and Velocity Resolution

The maximum relative speed (v, .) that can be measured by two chirps spaced T, apart is

A
(V] —
max 4TC
Thus higher v, requires closely spaced chirps

Vi, 7/

The velocity resolution of the radar is inversely

proportional to the frame time (T;)and is given by
A
Vies = Z_Tf

max

W TEXAS INSTRUMENTS



Question

Radar B p / / ____________ / \

What can you say about the maximum measurable velocity (Vmax)
and velocity resolution (vres) of the 2 radars?

W TEXAS INSTRUMENTS



Question

Two objects equidistant from the radar and with the same velocity relative to the

radar. How will the range-velocity plot look like?

~
rd

™

velocity

\%

o

How do we separate these two objects?
—Need multiple antennas to estimate the angle of arrival

range

W3 TEXAS INSTRUMENTS



How to measure the AoA of an object using 2 RX antennas

« TX antenna transmits a frame of chirps

* The 2D-FFT corresponding to each RX antenna will have peaks
In the same location but with differing phase.

« The measured phase difference (w) can be used to estimate the
angle of arrival of the object

X

va 21tdsin(0) N
> L by - w = = 0 =sin" " | —
g . 8 A 2md
] 2

_ I

range
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Max AoA and AoA Resolution

The maximum field of view that can be serviced by two antennas spaced d apart is

A
0. = sin~?! (ﬁ)

A spacing d of A/2 results in the largest field of view (+/- 90° )

A
Ndcos(9)

Resolution is often quoted assuming d=A/2 and 6=0 => 0 ... = —

Angle resolution given by : 0. =

W3 TEXAS INSTRUMENTS



Tl Cascade Radar Design

GND* ‘GND
© O o
TPS  Tps

76-81GHz of BW

12 Tx channels, 16 Rx channels
Angular resolution of 1.4deg
Detect objects at a distance beyond
350m with range resolution of 35cm i

Human RCS objects detectable at a EEEE
distance of 150m coo . .- *
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Angular Resolution

 Two Corner Reflectors Separated by 1.5 Degrees
in Azimuth
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10 —

Range-Azimuth FFT Plots Showing Detected,
Separated Peaks From Both Reflectors
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8Orangelazimuth heat map for zero Doppler

Radar Imaging

160
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Radar Imaging

Heat-map FFT
Frame Num =2

meters

-10 -8 6 - -2 0 2 4 6 8 10

W3 TEXAS INSTRUMENTS



Radar Imaging

Heat-map FFT
Frame Num =1
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What if we had smart markers in the environment?

Fully passive

Operate at relatively long-ranges
Can be accurately localized
Low-cost



Basic Principle of Operation

RFID: cheap battery-free stickers

Reader

Reply to wireless reader
with a unique identifier



Retrodirectivity Concept

mmliD Reader

RFID Reader

Credits: Atheraxon

56



T

State-of-the-Art Retrodirective mmiIDs
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mmIDs as Smart Targets
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Where is Millimeter Wave technology today?

1. Research-wise:
 Mm-wave powering
* mmIDs
« Applications: Automotive, Robotics, AR, Health, Digital twinning

2. Real-world Uses:
« Leading companies: Nokia, Ericsson, Texas Instruments
« Multiple startups in the space: Sivers Semiconductors, Kymeta, Echodine, Evolv, Atheraxon
« Used in automotive industry, space, defense, 5G

3. Standards:
¢ 5G FR2



Objectives of Today’s Lecture

Learn the fundamentals of mm-wave technology and its major
applications

Ny IS mm-wave technology attractive?

. What are the major applications of mm-wave technology?
. _What are the enabling technological advances?

How does FMCW radar work?

Do mm-wave RFIDs exist and what role can they play?




Next Class: Low-Power Wide-Area Networks

1) Required

e Choir
 NetScatter

2) Reminders

* Progress Report 1: Fri, November 10



