http://www.mit.edu/~fadel/courses/MAS.s60/index.html

MAS.S60

How to Wirelessly Sense Almost Anything

Lecture 8: Millimeter Waves

<u>Lecturers</u>

Fadel Adib (<u>fadel@mit.edu</u>)

Aline Eid (alineeid@mit.edu)

<u>TA</u> Tara Boroushaki (<u>tarab@mit.edu</u>)

This Week in Millimeter Waves

The New York Times

What Are Those Mysterious New Towers Looming Over New York's Sidewalks?

As the city upgrades to 5G wireless, the streetscape is changing. Not everyone is impressed.

Give this article

RADA's RPS-82 (ieMHR) radar can detect a Group 1 drone at 10 kilometers, and if a target is bigger than Group 1 it can see even farther than that. Photo courtesy of RADA.

This lecture is a combination of both

Objectives of Today's Lecture

Learn the fundamentals of mm-wave technology and its major applications

- 1. Why is mm-wave technology attractive?
- 2. What are the major applications of mm-wave technology?
- 3. What are the enabling technological advances?
- 4. How does FMCW radar work?
- 5. Do mm-wave RFIDs exist and what role can they play?

Millimeter wave Technology

Millimeter waves in the EM Spectrum

Why millimeter waves? Why Now?

Higher Data Rates

Large Bandwidth \rightarrow High data rates

Shannon capacity:

 $\mathrm{C} = \mathrm{B} \log_2 \left(1 + \mathrm{S/N}
ight)$

C is the channel capacity in bits per second (or maximum rate of data)

- B is the bandwidth in Hz available for data transmission
- **S** is the received signal power
- **N** is the total channel noise power across bandwidth B

Higher Range Resolution

- UHF (900MHz): 25MHz of BW → 6m
- 24GHz Radars: 250 MHz of BW \rightarrow 60cm
- Automotive Radars (77GHz): 5GHz of BW → 3cm

Antenna Arrays

<u>Gain</u>: Measure of how well you can focalize your power

 $G_r = \frac{A_r 4\pi}{\lambda^2}$

Higher Angular Resolution

• Large Antenna Arrays

Doppler Effect

Miniaturization and Flexibility

- Compact and easy to miniaturize
- Easier to design on flexible substrates

Miniaturization

2.4GHz (λ= 12cm)

Challenge: Atmospheric Attenuation

- mm-waves are susceptible to attenuation under moist conditions
- Below 50 GHz and between 70-110GHz: attenuation < 1dB/km
- With torrential rain (50mm/hour): scattering loss is 10dB/km at 30GHz

Challenge: Path Loss

Diving into the Major Applications

Mm-waves for:

- Military/Defense
- Starlink/Space
- 5G
- Automotive Industry

Mm-wave for Defense Applications

How are the properties of mm-waves important for radars?

Count targets, localize them, identify them, track them, know their speed

Radar: Detect target (VHF)

Problems:

- Everything looks like a target (including the ground)
- No ability to count targets (resolution)
- Easily detectable by ground radars

Radar: Directive array (X-band)

Mechanical Steering

Problems:

- Can only transmit and receive in one direction at a time
- Slow steering
- Unreliable mechanical elements

Passive Electronically Scanned Array (PESA)

Benefits:

- Fast steering
- Can generate
 arbitrary radiation
 patterns

Problems:

 All antennas transmit the same signal

Passive radar-guided Missile

 Follows the reflection of the plane's radar signal projected onto the target

Advantages:

- Much longer range than IR-guided missiles
- More difficult to fool

Radar: Target illumination

Active Electronically Scanned Array (AESA)

Benefits:

- Can do everything at the same time
- Always receives signals from all directions
- Emminently reconfigurable (iPhone in the sky)

Problems:

- Very expensive
- Requires tons of computational power

The idea of Starlink

Established Satellite Internet:

- Ku (12-18GHz) and Ka band (26–40 GHz)
- GEO orbit (stationary in the sky, 22,236 mi away)
- High latency (600 ms)

<u>Starlink</u>:

- Multiple bands (10–51 GHz)
- LEO orbit (340 mi)
 - Path loss decreases by 4000x -> 36 dB better SNR (everything else equal)
 - Latency decreases by 60x

The idea of Starlink

Problems:

• Satellites zoom by quickly

Solution:

- Lots of satellites (about 60,000)
- Lots of ground basestations
- Steerable arrays on both ends

Starlink terminal

Hybrid Mechanical/PESA/AESA:

- Is mechanically tiltable
- Sub-arrays are PESA
- These are put together in AESA fashion

Benefits:

- Lowers the cost and size
- Not as sensitive to low manufacturing tolerances

YouTube Channel: The Signal Path

Satellite Imaging with SAR

Satellite Imaging

Airport Scanners

5G/mm-waves

- Attractive to Telecom Companies due to high data rates
- New Market: Powering
 - High gain, High EIRP (75dBm)
 - Small Cell size (180m)
 - Indoor and outdoor implementations

Millimeter Waves in Automotive Industry

Why FMCW?

- Easy to integrate into silicon ICs (compared to pulse radars)
- Low IF bandwidth
- Run without interfering with each other (because of chirping)

How does it work?

How do you localize, identify between targets?

What is a chirp?

The IF signal

A single object in front of the radar produces an IF signal with a constant frequency of $f_{beat} = S2d/c$

Multiple objects in front of the radar

Multiple reflected chirps at the RX antenna

Range Resolution in a radar

The Range Resolution (d_{res}) depends only on the Bandwidth swept by the chirp $d_{res} = c/2B$

• Two objects equidistant from the radar. How will the range-FFT look like?

How to measure the velocity (v) of an object using 2 chirps

- Transmit two chirps separated by T_c
- The range-FFTs corresponding to each chirp will have peaks in the same location but with differing phase.
- The measured phase difference (ω) corresponds to a motion in the object of vT_c

$$\boldsymbol{\omega} = \frac{4\pi v T_{C}}{\lambda} \Rightarrow \mathbf{v} = \frac{\lambda \omega}{4\pi T_{c}}$$

The phase difference measured across two consecutive chirps can be used to estimate the velocity of the object

Visualizing the 2D-FFT

Max Velocity and Velocity Resolution

The maximum relative speed (v_{max}) that can be measured by two chirps spaced T_c apart is $v_{max} = \frac{\lambda}{4T_c}$ Thus higher v_{max} requires closely spaced chirps

Question

What can you say about the maximum measurable velocity (v_{max}) and velocity resolution (v_{res}) of the 2 radars?

Question

Two objects equidistant from the radar and with the same velocity relative to the radar. How will the range-velocity plot look like?

How do we separate these two objects? –Need multiple antennas to estimate the angle of arrival

How to measure the AoA of an object using 2 RX antennas

- TX antenna transmits a frame of chirps
- The 2D-FFT corresponding to each RX antenna will have peaks in the same location but with differing phase.
- The measured phase difference (ω) can be used to estimate the angle of arrival of the object

$$\omega = \frac{2\pi d \sin(\theta)}{\lambda} \Rightarrow \theta = \sin^{-1}\left(\frac{\lambda\omega}{2\pi d}\right)$$

Max AoA and AoA Resolution

The maximum field of view that can be serviced by two antennas spaced d apart is $\theta_{max} = sin^{-1} \left(\frac{\lambda}{2d}\right)$ A spacing d of $\lambda/2$ results in the largest field of view (+/- 90°)

Angle resolution given by :
$$\theta_{res} = \frac{\lambda}{Ndcos(\theta)}$$

Resolution is often quoted assuming d= $\lambda/2$ and $\theta=0 => \theta_{res} = \frac{2}{N}$

TI Cascade Radar Design

- 76-81GHz of BW
- 12 Tx channels, 16 Rx channels
- Angular resolution of 1.4deg
- Detect objects at a distance beyond 350m with range resolution of 35cm
- Human RCS objects detectable at a distance of 150m

Angular Resolution

- Two Corner Reflectors Separated by 1.5 Degrees in Azimuth
- Range-Azimuth FFT Plots Showing Detected, Separated Peaks From Both Reflectors

Radar Imaging

Radar Imaging

Radar Imaging

What if we had smart markers in the environment?

- Fully passive
- Operate at relatively long-ranges
- Can be accurately localized
- Low-cost

Basic Principle of Operation

RFID: cheap battery-free stickers

Retrodirectivity Concept

Credits: Atheraxon

State-of-the-Art Retrodirective mmIDs

mmIDs as Smart Targets

Where is Millimeter Wave technology today?

1. Research-wise:

- Mm-wave powering
- mmIDs
- Applications: Automotive, Robotics, AR, Health, Digital twinning

2. Real-world Uses:

- Leading companies: Nokia, Ericsson, Texas Instruments
- Multiple startups in the space: Sivers Semiconductors, Kymeta, Echodine, Evolv, Atheraxon
- Used in automotive industry, space, defense, 5G

3. Standards:

• 5G FR2

Objectives of Today's Lecture

Learn the fundamentals of mm-wave technology and its major applications

Why is mm-wave technology attractive?
 What are the major applications of mm-wave technology?
 What are the enabling technological advances?
 How does FMCW radar work?
 Do mm-wave RFIDs exist and what role can they play?

Next Class: Low-Power Wide-Area Networks

1) Required

- Choir
- NetScatter

2) Reminders

• Progress Report 1: Fri, November 10