http://www.mit.edu/~fadel/courses/MAS.s60/index.html

MAS.S60

How to Wirelessly Sense Almost Anything

Lecture 6: Hacking Sensors

<u>Lecturers</u> Fadel Adib (<u>fadel@mit.edu</u>) Aline Eid (<u>alineeid@mit.edu</u>) <u>TA</u> Tara Boroushaki (<u>tarab@mit.edu</u>)

This Week in Wireless Sensing

22 hrs - 🙆

MIT Technology Review 🤣

•••

NEW: Elon Musk said no thanks to using his megaconstellation for navigation. Researchers went ahead anyway.

TECHNOLOGYREVIEW.COM

Starlink signals can be reverse-engineered to work like GPS—whether SpaceX likes it or not

How to Wirelessly Sense Almost Anything

sensing the physical world & transmitting data wirelessly

sensing via the wireless signals themselves

combine principles from both to hack physical sensors

Objectives of Today's Lecture

Learn the fundamentals, applications, and implications of **hacking physical sensors**

- 1. What are the general principles of injection attacks into physical sensors?
- 2. What are some examples of injection attacks: GPS, pacemakers, Alexa/Google Home/Fitbit?
- 3. How do acoustic attacks work on Alexa/Google Home/etc?
- 4. How can we protect against physical sensor attacks?

Discuss projects end to lecture

<u>Mobile Security</u> Inaudible Voice Commands

Light Commands Hacking using Laser

Analog Sensor Security Acoustic Attacks on MEMS Accelerometers

Acoustic "pressure" waves

Drone Security Spoofing GPS Signals

Pacemaker Security Wireless Control of Pacemaker

BackDoor: Making Microphones Hear Inaudible Sounds

Microphones are everywhere

Microphones are everywhere

Microphones record audible sounds

Inaudible, but recordable !

Speaker

Inaudible, but recordable !

Works with unmodified devices

It's not "near-ultrasound"

Exploiting fundamental nonlinearity

What can we do with it?

Application: Acoustic jammer

Application: Acoustic communication

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Blocking 911 calls

Jamming hearing aids

Talk outline

- Microphone Overview
 System Design
 Challenges
- (4) Evaluation

Talk outline

1 Microphone Overview

- 2 System Design
- 3 Challenges
- (4) Evaluation

Microphone working principle

Talk outline

1 Microphone Overview

2 System Design

(4) Evaluation

Talk outline

Microphone Overview System Design

Not sending a single "tone" (sine wave), but sending a command.

How can we send this command?

Reminder on Modulation

E.g., We send WiFi at 2.4GHz or 5GHz What does this mean and Why?

Reminder on Modulation

Why is Modulation useful?

- 1. Interference, Technology Co-existence
- 2. Spectrum Access (Legal)
- 3. Antenna size (wavelength/4)

Not sending a single "tone" (sine wave), but sending a command/message.

How can we send this command message m(t)? m(t) x sin(2πft)

Ultrasonic speaker

$$egin{aligned} S^2_{out,AM} &= A_2ig\{aSin(\omega_m t).Sin(\omega_c t)ig\}^2 \ &= -A_2rac{a^2}{4}ig\{Cos(\omega_c t - \omega_m t) - Cos(\omega_c t + \omega_m t)ig\}^2 \ &= -A_2rac{a^2}{4}Cos(2\omega_m t) + (terms\ with\ frequencies\ above\ \omega_c\ and\ DC) \end{aligned}$$

Problem: speaker has non-linearities => Audible sound

speaker

speaker

Talk outline

Microphone Overview System Design Challenges

Hardware generalizability

Implementation

Communication prototype

Jammer prototype

Communication performance

More power can increase the distance

Jamming performance

BackDoor jammer

Jamming performance

BackDoor jammer

How would you design a system to secure against this attack?

Objectives of Today's Lecture

Learn the fundamentals, applications, and implications of **hacking physical sensors**

What are the general principles of injection attacks into ohysical sensors?

What are some examples of injection attacks: GPS,

pacemakers, Alexa/Google Home/Fitbit?

How do acoustic attacks work on Alexa/Google Home/etc?

How can we protect against physical sensor attacks?

Project Timeline

Oct. 20	Nov. 10	Dec. 12 Final Presentation		
Project Proposal	Progress Report 1			
Oct. 24		Dec. 2	Dec. 14	
Project Meetings		Project Report 2	Final Report	

Feedback to refine your ideas

- 1. Feedback is to help you excel on the final project
- 2. Project is biggest chunk of class (47%)