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Abstract

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic
Interference on High Frequency Electronic Systems.

by

Luca Daniel
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto L Sangiovanni-Vincentelli, Chair

Many future electronic systems will consist of several significantly heterogeneous modules such as Opto-
Electronic and analog RF links, mixed-signal analog to digital converters (ADC), digital signal processors
(DSP), Central Processor Units (CPU), Memory modules, Microfabricated Electro-Mechanical (MEM) res-
onators, sensors and actuators with power electronics converters. When assembling such an heterogeneous
set of modules on a single package (Systems on Package: SoP) or integrated circuit substrate (Systems on
Chip: SoC), compatibility issues are soon to arise from many possible point of views. In this thesis, we will
address the physical electromagnetic point of view. We aim to encompass phenomena that range from the
well known electric field capacitive cross-talk, to the more challenging magnetic field inductive coupling,
and even full-wave propagating electromagnetic field couplings. We find the standard approach to Electro-
Magnetic Compatibility (EMC) used on Systems on Board (SoB) quite inappropriate for Systems on Chip
(SoC) where prototyping, metal shielding and ground planes are often expensive, and sometimes completely
impractical. In the first part of the thesis we propose instead an accurate and efficient three dimensional
electromagnetic field solver as a valuable tool for verifying the design against all sorts of electromagnetic
interference before fabrication. In the second part, we propose modeling techniques as a valuable tool for
characterizing each module with respect to its electromagnetic properties, so that higher level circuit simula-
tors can be used effectively to check the compatibility of different blocks. In the third part of the thesis we
argue that compatibility should be achieved through an automatic interconnect synthesis process, enabled by
our newly developed parameterized modeling technique.

The new generation of fast electromagnetic analysis programs, based on accelerated integral equation
methods, has reduced the time required to analyze thousands of simultaneously interacting conductors from
days to minutes. However such solvers are either inappropriate for, or are very inefficient at, analyzing
interconnect exhibiting high frequency effects. With processor clock speeds exceeding two gigahertz and
harmonics exceeding twenty gigahertz, high frequency effects cannot be ignored. The effects that are most
troublesome for fast solvers are skin and proximity effects. Such phenomena can significantly affect inter-
connect performance and should not be neglected, in particular when either wire width or thickness is greater
than two “skin-depths.” Interconnect performance on Printed Circuit Boards (PCB) and on IC Packages has
suffered from such effects for many years. Even some Integrated Circuits are now starting to be affected
at the global interconnect level (power, ground and clock distribution networks). For instance skin-depth in
aluminum interconnect at the tenth harmonic of a two gigahertz clock is around a half micron. Skin and prox-
imity effects are troublesome for current fast solvers because they generate an exponentially varying current
distribution inside each conductor. Trying to represent that current variation using the standard piecewise
constant basis functions commonly available in fast solvers requires a large number of unknowns. Since the
computation time for fast solvers is supposed to increase only linearly (more precisely O(nlog(n))) with the
total number n of basis functions used in the problem, it may seem that the increase in unknowns to rep-
resent current variation is not that problematic. However, when many basis functions are used to represent
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the current variation in a cross-section of a conductor, those basis functions interact densely in a way that
can not be reduced by the algorithms used on most fast solvers. Thus, the computation time for modeling
high frequency effects increases with the square of the number of unknowns required to model the current
variation within conductors even for fast solvers. Two contributions of this specific Ph.D. work concentrate
on addressing this issue by generating specialized basis functions, which more efficiently capture the expo-
nential variation in the conductor current. Specifically we use the Helmholtz equation for the interior of the
conductors to generate analytic solutions in one case (the conduction modes basis functions) and numerical
solutions in the other case (the proximity templates basis functions). Both basis functions can be employed
to discretize the Mixed Potential Integral Equation (MPIE) with a Galerkin technique. Both new sets of basis
functions result in simulation times and memory requirements 400 times smaller than with piecewise constant
basis functions. The analytical basis functions are more flexible when combined with model order reduction
algorithm. The numerical basis functions are more flexible when handling general wire cross-sections.

Electromagnetic analysis of a collection of interconnect is an essential tool for the verification of modern
electronic circuits. However, of possibly greater importance, is the ability to capture such detailed, accurate
and typically time consuming electromagnetic analysis into a small model. Quick evaluation of the model is
essential for an acceptable time domain simulation speed in a circuit simulator. At the same time, parasitic
extractor accuracy is essential for providing to the circuit designer the confidence that the actual fabricated
electronic circuit will perform as predicted by the circuit simulation. Finally, producing models that preserve
important system properties such as stability, passivity, and causality is crucial for a numerically stable be-
havior of the models when used in any time domain simulator. The problem of preserving passivity has been
partially address only recently by an algorithm (PRIMA). PRIMA can be applied only when the system to
be modeled can be formulated in a very specific form. A way to formulate systems in such form has been
given in literature for a general collection of conductors. No approach to preserve passivity is available in-
stead when dielectrics or an IC substrate are present, or when full-wave analysis is needed to model systems
whose dimensions are not small compared to wavelength (such as on todays’ PCB and packages, and in fu-
ture IC power network grids). Two contributions in this thesis address exactly such points providing passivity
preserving reduced order modeling algorithms for such applications.

Model order reduction is typically a two-step procedure. In a first step one would typically apply the
algorithms mentioned above since they can handle extremely large collection of interconnect and they can
reduce them to an intermediate model. In a second step, better reductions are typically obtained employing
the more optimal but also more computationally demanding Truncated Balance Realization (TBR) algorithm.
Unfortunately this algorithm, in the form available in literature, does not necessarily preserve the passivity
of the models it reduces. In another contribution, we developed a technique that has the same compression
capabilities as TBR, but in addition it is also guaranteed to preserve passivity. Furthermore, our algorithm
does not require the system to be in any special form.

All interconnect models mentioned so far are intended for a higher level circuit simulator for verification
of a given design. In a third part of this thesis we begin to address the “synthesis” problem. We develop
a parameterized model order reduction technique that produces models that feature field solver accuracy
when some pre-identified geometrical parameters (such as wire widths or wire spacing) are allowed to vary
in a design exploration space. Our models are small enough to be used within an optimization loop by
for example an interconnect router. Furthermore, the presented model generation approach is automatic. It
is based on a very fast multi-parameter moment matching model-reduction algorithm. Thus parameterized
reduced models can be constructed “on the fly”, and can account for any possible interconnect or circuit
block already committed to layout, e.g. when designing and optimizing an interconnect bus or power and
clock distribution networks.

Professor Alberto L Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

Figure 1.1: Electro-Magnetic Interference (EMI). Arrows indicate static, quasi-static electric or magnetic
fields, and propagating electromagnetic fields that are produced by electronic circuits and can cause their
malfunction or the malfunction of other nearby circuits.

Many future electronic systems will consist of several significantly heterogeneous modules such as Opto-
Electronic and analog RF links, mixed-signal analog to digital converters (ADC), digital signal processors
(DSP), Central Processor Units (CPU), Memory modules, Microfabricated Electro-Mechanical (MEM) res-
onators, sensors and actuators with power electronics converters. When assembling such an heterogeneous
set of modules on a single package (Systems-on-Package: SoP) or integrated circuit substrate (Systems-on-
Chip: SoC), compatibility issues are soon to arise from many possible point of views. In this thesis we will
address the physical electromagnetic point of view.

Electronic circuits inevitably produce both static and quasi-static electric and magnetic fields, as well as
also propagating electromagnetic fields. At the same time, similar fields present in the environment where an
electronic circuit is supposed to operate, could potentially cause its malfunction. Such phenomenon is iden-
tified with the general term Electro-Magnetic Interference (EMI). Ensuring Electro-Magnetic Compatibility
(EMC) of an electronic system means ensuring its correct operation with respect to all possible electromag-
netic interference phenomena.

A way to achieve EMC consists of finding a compromise between the levels of emissions from a device
and the levels of susceptibility of other adjacent devices. For this purpose, standards have been introduced to
specify maximum emission levels, and, in some cases, to specify susceptibility levels. Designing for EMC,
according to the classical methodology, means ensuring that each device satisfies the predefined standards.

Traditionally, electromagnetic interference is classified as conducted and radiated, according to the method
of transmission of the disturbances. Fig. 1.1 illustrates some of the EMI phenomena. Conducted interference
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refers to any transmission of disturbances by means of conductors. In power electronics, such disturbances
are induced into the power delivery network by for example electric motors, or switching power supplies.
In integrated circuits (ICs), conducted interference would include substrate currents, or the current spikes
induced into the chip power supply network by the switching activity of the digital gates. In a broader def-
inition, interference transmitted a short distance by a simple electric field (capacitive cross-talk coupling) or
by a simple magnetic field (inductive coupling), could also be considered as conducted interference. Quasi-
static circuit modeling theory is applicable for their analysis. For example, coupled inductors can model the
magnetic coupling between two close pins of a package. Capacitors could model the cross-talk due to electric
field coupling between two long and close conductors. Conducted interference has been studied and exten-
sively characterized in the literature at the Printed Circuit Board level (PCB). At that level, many methods
to control its effects are known at that level. For example, in power electronics and electric motors, filters
have been designed to suppress such interference into the power delivery network. In contrast, in ICs or IC
packages, only a few problems concerning conducted interference have been addressed. For instance, sub-
strate noise on ICs has been characterized [91, 22], and design techniques to control cross-talk effects have
been developed [75]. However, much research work is still needed, in particular with respect to conducted
emissions produced by the switching activity of digital IC’s onto the power and ground system.

Radiated interference is concerned with transmission of disturbances by means of propagating electro-
magnetic waves. In this case, distances between source and victim are usually not negligible compared to the
wavelength. The electric and magnetic fields are interdependent. Simple quasi-static circuit models cannot be
used to model this type of transmission. Efficient and accurate analysis and modeling techniques for radiated
interference are not available for any type of electronic system (ICs, packages or even PCBs).

In this research, we have developed a design methodology for EMC consisting of a simulation tool and of a
set of modeling and design techniques considering both conducted and radiated emissions in PCBs and in ICs.
In this introduction we first show the emerging trend toward component-based design styles such as Systems-
on-Chip (SoC)[60]. We then describe the classical approaches to EMC and analyze if they can be employed
also for SoC. To handle complexity, we formalize the compatibility problem using a hierarchical abstraction
of the electronic systems. We conclude by suggesting a design methodology working on the principles of
our hierarchical model. In the reminder of this thesis subsequent chapters will be geared toward supporting
our methodology by providing a collection of tools and techniques both for the EMI analysis, modeling, and
the EMI-aware synthesis of electronic circuits. In particular, the remaining chapters are grouped into three
“Parts”:

� Chapters 2 to 6 in Part I describe the design of our EMI simulator. Chapters 2 and 3 review existing
techniques, while Chapters 4 and 5 provide two contributions aimed at enabling full-board or full-chip
EMI analysis by speeding up simulator runtime and reducing memory requirements by factors of 400.

� Chapters 7 to 13 in Part II describe techniques for constructing small and accurate electromagnetic
models of interconnect that can be used in higher level circuit simulators. Introductory Chapters 7
to 10 describe the state of the art in this new field. Chapters 11 to 13 provide the details of three
contributions, aimed at preserving crucial properties such as passivity for the generated interconnect
models.

� Chapters 14 to 16 in Part III describe some modeling techniques supporting automatic and optimized
synthesis, such as constructing geometrically parameterized interconnect models (in Chapter 15), and
optimally sizing decoupling capacitors (in Chapter 16).

1.1 The high frequency electronic system design scenario

1.1.1 Systems-on-Board (SoB)

Electronic systems consist nowadays of one or more Printed Circuit Boards (PCB), on which different
components (e.g. ICs and discrete elements as shown in Fig. 1.2), are placed and interconnected. The system
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designer chooses from different available integrated circuit providers. The ICs are mounted on the board and
connected using planar interconnect wires (sometimes referred to as traces).

Figure 1.2: System-on-Board (SoB).

1.1.2 Systems-on-Chip (SoC)

With the advent of Deep Sub-Micron (DSM) technologies, an entire system can be embedded on a sin-
gle integrated circuit, including programmable components, memory and peripheral units [44, 1, 60, 70] as
sketched in Fig. 1.3.

Figure 1.3: Complete electronic systems, once assembled as Systems on Board (SoB) are beginning to be
assembled as Systems on Package (SoP) or Systems on Chip (SoC).

Electronic systems will then consist of a single package or a single chip as shown in Fig. 1.4, on which
different components are placed and interconnected, e.g. digital, analog and power electronics Intellectual
Property (IP) circuit blocks, integrated inductors and Micro-Electro-Mechanical (MEM) devices both for RF
signal filtering and for power electronics energy storage and conversion. The system designer chooses from
different available IP component providers. The IP circuit blocks or microfabricated passive components are
then realized on a common integrated circuit and interconnected, using on chip wires.

Because of the enormous complexity of these ICs, few companies will be able to design the entire set
of components for SoC. Hence, system companies will create pressure on semiconductor manufacturers to
incorporate components designed by other design companies. A new market of IPs will come of age, where
designs will be produced and traded as chips are today. To make this evolution possible, IP blocks will have
to be easily mixed and matched with other IP’s coming from many sources. This requires each component to
be somewhat insensitive with respect to its environment, both at the functional and the physical level.

1.1.3 Main EMI problems for system design

To support the emerging design style described above, increasing attention needs to be devoted to ensure
proper component encapsulation. Encapsulation is relative to a particular phenomenon of interest. While



4 CHAPTER 1. INTRODUCTION

Figure 1.4: System-on-Package (SoP) or System-on-Chip (SoC)

Figure 1.5: Spikes of current produced by the internal switching activity of the digital components employed
in a SoB, SoP or SoC can escape as conducted emissions and contaminate the global power distribution
system. There, they can find long enough wires to be irradiated as propagating electromagnetic fields. On
the other hand, significant electromagnetic fields can induce noise currents and voltages in long interconnect
wires that will result in component malfunctions.

electric cross-talk, impedance matching, electro-migration have all been considered in a way, all other con-
ducted and radiated EMI phenomena have not been properly addressed this far. Since EMI emissions and
susceptibility are of growing importance, as frequencies keep increasing in the GHz region, this encapsula-
tion aspect needs to be addressed as well, in order to ensure the design quality and design time expected by
this new SoC design style.

We further recognize that EMI problems are mainly due to two mechanisms: EMI emissions due to the
components’ switching activity, and emissions and susceptibility of the communication wires interconnecting
the components.

EMI emissions due to the switching activity of digital components

Most of the components used to assemble SoB, SoP or SoC, typically contain fast switching digital circuit
blocks. Thousands to millions of gates may switch at the same time producing large spikes of currents in the
power and ground connections of the block. Such currents are very-high-frequency conducted emissions that
escape from the component, “polluting” the entire power and ground system. Flowing on the much longer
wires of the power and ground grid, they can easily find favorable “dimension to wavelength” ratios and
radiate. This phenomenon, depicted in Fig 1.5, can be responsible for the largest portion of EMI emissions.
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Figure 1.6: Typical harmonic contents and wire lengths on present and future electronic systems.

Emissions and susceptibility of communication wires among system components

Components are connected by wires to provide the necessary functionality. I/O communication wires
represent a second very important issue, both for EMI emissions, and for susceptibility.

Such wires carry high frequency communication signals between blocks and can be long compared to the
wavelengths of the harmonics of the signals they carry. EMI emissions in this situation are very likely unless
a close return path is provided.

Such wires can be very susceptible to radiation present in the environment, or coming from nearby sys-
tems. Incident electromagnetic fields can induce currents and voltages on such wires as shown in Fig. 1.5.
These are mixed with the signals on the wires, and act as noise to the receiving input buffers. Severe and
apparently inexplicable faults can result when this noise exceeds than the noise margins of the receiver.

1.1.4 Is EMI a problem for System-on-Package or System-on-Chip?

The problems described in the previous section are already a major concern in the design of today’s SoB
while they have not been a concern at package and IC levels yet. We believe that EMI due to communication
wires connecting components will become a problem for SoP where dimensions will be comparable to signal
wavelengths. This specific problem is not instead expected for SoC since on-chip communication wires
between distant circuit blocks will always be “segmented” by buffers (repeaters), latches, registers or even
“relay stations [17]”.

However, EMI emissions due to digital switching activity, will represent a major concern both for future
SoP’s and for SoC’s. We outline our arguments in the following.

1. ICs dimensions have been too small compared to the signal frequencies and their harmonics. However,
there is a steady trend toward higher frequencies, meaning smaller wavelengths. Soon SoC power and
distribution networks will have the same wire-lengths to wavelengths ratios observed in present SoB as
shown in Fig. 1.6 and 1.7. Power and ground wires of length comparable to the wavelength can pose
a severe risk on EMI emissions and susceptibility in IC’s. Fig 1.7 shows the wire dimension ranges of
electronic systems compared to their ranges of frequencies; signal harmonics are included in the plot.
For example, consider a typical today’s system-on-PCB. Wire dimensions can be on the order of 10 cm,
clock frequencies on the order of 100 MHz, with harmonics on the order of 1 GHz and wavelengths
on the order of 30 cm. Such systems can be quite susceptible to EMI problems. This happens mainly
because the wire dimensions are as long as wavelengths. The same ratio between wire dimensions and
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Figure 1.7: Future IC’s power and ground wires will have the same wire-length over wavelength ratios
observed in todays PCB, responsible for most EMI problems.

Figure 1.8: Trend of interconnect behavior for global on-chip interconnect (ground, supply and clock distribu-
tion networks). Power distribution networks on global interconnect are not so resistive as local interconnect
and may be then affected by resonances.

wavelength can be found in future Systems-on-Chip. For example, consider a chip with power and
ground wires on the order of 1 cm, clock frequencies on the order of 3 GHz, harmonics on the order of
30 GHz, and wavelengths on the order of 1 cm. These systems would have the same ratio, about 1, and
could possibly have EMI problems similar to the today’s PCB systems.

2. One objection to the argument above might be that wires on chips are quite resistive, and tend to behave
like RC lines, rather than transmission lines and therefore cannot resonate. This has been true so far,
but there is a trend toward the use of lower resistivity materials such as copper in place of aluminum.
Inductance is already becoming a problem for global on-chip interconnect. Such interconnects behave
now very much as RLC lines, rather than RC lines as shown in Fig 1.8. This suggests a behavior
similar to PCB, where one can observe both RLC resonances, as well as resonances related to wire
wavelengths. Such resonances could cause large oscillations on IC power networks resulting in the
same EMI problems observed on todays’ PCBs.

3. In today’s SoB the highly inductive pins or wire bonding often provide a natural physical isolation for
digital components (ICs) by blocking their high frequency conducted emissions due to their internal
switching activity. This isolation is slowly disappearing in SoP where less inductive solder balls are
used. Low inductive connections are desirable for a circuit block because they increase the speed of
I/O communication with other blocks, and they increase the internal switching speed providing faster
di=dt. However that fast di=dt becomes a problem for the environment by leaking very high frequency
harmonics to the power and ground networks. This phenomenon will be particularly relevant in SoC
where each digital circuit block does not have any inductive isolation from the rest of the on-chip global
ground and supply network as shown in Fig. 1.9.
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Figure 1.9: Some issues in high frequency SoC Design: digital IP circuit blocks, because of their internal
switching activity, can leak high frequency currents and contaminate in this way the power and ground
distribution grid of the entire package of IC.

4. One might argue that on-chip nearby metal interconnects would provide enough return current paths
to eliminate any radiation or susceptibility problem. This would be true if every single interconnect
would be close enough to the power or ground grid. However, today’s digital designers do not address
this condition; thus return current paths are typically very complicated as illustrated in Fig. 1.10. The

Figure 1.10: Return current paths.

layers above and below a wire usually carry orthogonal wires. Although for capacitive purposes such
orthogonal wires look like an almost uniform metal plane, they often cannot provide a useful return
path for inductive or radiation purposes. In some designs, tens of layers are available, e.g. relatively
expensive modern and fast microprocessors, and one or more layers are used as complete metal planes.
However, many ICs cannot afford such waste in routing area.

1.2 The present approaches to EMC for System-on-Board

1.2.1 The “Build, Test and Hope!” design methodology

In many electronic design companies, the following approach to EMC is used. A prototype of the circuit
is built, usually with very little, or no regard for EMI issues. Emissions, and sometimes susceptibility, of
the prototype are then measured in a semi-anechoic chamber. If the prototype does not pass the test allowed
by the compatibility standard in use, an EMC expert is employed. who tries to guess what the problem is,
mainly based on previous experience with somewhat similar problems. Once problems are identified, the
EMC expert tries to suppress them using a broad range of techniques and tricks, e.g. adding components
(such as decoupling capacitors), metal shields, suggesting a re-routing of some wires, or the addition of
ground planes. Even worse, the re-layout of the whole circuit might become necessary!

This approach, in almost all cases, leads to the solution of the problem at PCB level. However, it has
potentially for high costs in terms of added components and metal shields. Furthermore, if the whole circuit
needs to be re-designed, design time and cost could double, causing the company to miss the tightly budgeted
market window for insertion of the product.
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Figure 1.11: Metal shielding around an electronic circuit. Some disadvantages are here shown: internal
interference is not blocked, the shield may cause reflections toward the circuit itself, and the emissions from
apertures and cables still persist.

1.2.2 Shielding

As mentioned, shielding, shown in Fig. 1.11, is a common technique for obtaining compatibility. A metal
shield can block electromagnetic waves. Even though shielding might seem the solution to all EMI problems,
it has several important disadvantages. For instance, shielding can be very expensive, specially for “cheap
systems.” Using metal shields for relatively expensive equipment such as desktop computers, servers etc.
might not affect the overall cost of the product very much. However, shields in portable computers, cellular
phones, pagers, embedded systems, etc. where cost and weight are a major concern, might not be feasible.

Furthermore, a metal shield can block interference between the circuit and the surrounding environment,
but it cannot block interference between components within the circuit itself as depicted in Fig. 1.11. As
a matter of fact, a metal shield acts as a mirror, thereby blocking electromagnetic waves from propagating
further. The incident field induces currents on the metal surface of the shield. Such currents radiate back
toward the circuit inside the shield (Fig. 1.11). Thus the circuit inside the shield can be affected by its own
radiation emissions.

A completely closed shield would be an effective way to block almost all emissions. Unfortunately,
apertures on the shield are needed for communication and power cables, or for cooling. Such apertures
interrupt the flow of the previously mentioned currents. Electric fields can then develop across the apertures,
acting as emitting antennas toward the exterior of the shield. In some cases, emissions from apertures can be
as large as the emissions without a shield.

Communication and power cables can carry high frequency currents, such as common mode currents.
Such currents can easily radiate, but the shield would not be able to block such emissions. Cables can also
pick up external fields, and conduct the disturbance to the circuit. Once again the shield cannot block such
interference.

1.2.3 Ground planes

Insertion of a uniform metal plane as a layer of a PCB is a very effective and commonly adopted technique
to control EMI. A uniform metal plane presents a very small impedance return path for all wires of the layers
above and below. Thus very close current loops are achieved, and small emissions and susceptibility are
possible. This is a very good solution for all electronic systems that can afford it, i.e. reasonably large and
expensive systems, but many other electronic systems cannot afford this. Often a PCB designer is constrained
to work with 2 or 4-layer boards; thus routing area cannot be wasted in a uniform metal plane. Examples
of such applications are small portable devices (pagers, cellular phones, etc.), printers, embedded systems,
ignition circuits for the automotive industry. Surprisingly, even a system running at relatively low frequencies
can present large EMI problems. While large and fast servers and computers can benefit from all kinds of
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ground planes and metal shielding, the slower embedded system circuitry cannot afford such amenities and
often has EMI problems not easy to solve.

1.3 Motivations for an EMI simulator and an EMC design methodol-
ogy

In the previous sections discussed how the present approach to EMC at the board level is both costly and
time consuming, especially for cheap systems where shielding and ground planes are not an option. A key
problem of the present approach, is that EMC is addressed only after the design stage. Often the EMI problem
becomes evident only after a prototype has been built and tested. To address these concerns, simulation tools
and a design methodology that addresses the problem at the design stage are needed.

Among the advantages of simulation we note that it can cut the cost and time needed to build and test a
physical prototype. A simulator could, in fact, check if a circuit will pass measurement tests in the early stages
of the design. It can help isolate the problems. Measurements of quantities at points otherwise unreachable
by physical instruments become possible. It can provide fast exploration of alternative solutions. “What if”
analysis can be performed and an optimal solution with small cost can be achieved in short time.

In addition to simulation, we propose a new “correct by construction” design style, where each action is
taken and verified as part of a budgeting plan that ensures EMC during the design process. Prototyping should
stop being an iterative process. We hope that, with some of the techniques presented and others developed
in the future, prototyping will eventually become simply the one time and final certifying step of the design
cycle.

1.4 Our design methodology for EMC

We propose a design methodology to help ensure EMC at the design stage. This consists of a collection of
EMI-aware tools and techniques that can be used according to a hierarchical budgeting/verification strategy
early in the design and assembly of today’s Systems-on-PCB or tomorrow’s Systems-on-Chip. First, we
present a hierarchical abstraction of an electronic circuit from the EMC prospective. This model leads to a
formal definition of the compatibility problem. Finally, we describe the suggested procedure step by step.

1.4.1 A hierarchical abstraction of an electronic circuit from the EMC prospective

Considering a system under different abstracted points of view is a useful design technique. For example,
timing issues are usually analyzed separately from functionality issues. In this section, a system abstraction
of an electronic circuit from the EMC prospective is given, which decouples the EMC problem from other
design issues such as timing and functionality.

Every wire on a circuit can potentially interact with every other wire. Considering all such interactions
during the design stage would be too complex for a large circuit. To handle complexity and to facilitate
design re-usability, a hierarchical structure is proposed. As illustrated in Fig. 1.12, at each level of the
hierarchy the following components are considered: circuit block components, the wires connecting them,
and the surrounding environment.

Component characterization

Each of these elements is regarded as a “system component”. A system component can be characterized
from the EMC point of view specifying:

� Radiated emission spectrum, i.e. the field jR(d0)j radiated from the component at, for example, a
standard distance d0 as shown in Fig. 1.13.



10 CHAPTER 1. INTRODUCTION

Figure 1.12: Hierarchical abstraction of an electronic circuit from the EMC prospective

Figure 1.13: Component characterization from the EMC point of view.

� Radiated susceptibility spectrum, i.e. the maximum field jSj that does not cause malfunctions in the
component

� Conducted emission spectrum. Radiation from wires attached to component terminals depends on
which currents excite them. For each pair of terminals, equivalent current or voltage sources and
impedances should be specified in order to derive the actual currents exciting the attached wires.

� Conducted susceptibility spectrum, i.e. the maximum tolerable noise level for each pair of terminals
that does not cause malfunctions.

A similar characterization is required in part by the several EMC standards imposed by the governments
of many countries. Our proposed characterization approach is different from the existing EMC standards
since such standards typically specify only emission requirements. Susceptibility requirements are usually
imposed only by military standards, or by some specific markets such as the automotive electronics. However,
susceptibility characterization might become necessary for any product, if a top-down design approach is
used. Susceptibility characterization might also be useful for re-usability issues, or when subcomponents are
bought from other providers in a system-assembly design style.

Furthermore, EMC standards usually impose limits on conducted emissions by specifying the voltage
levels developed on a standard impedance load for frequencies up to 30MHz. However, for the abstracted
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model presented in this methodology, also conducted characterization should be specified in the range of
frequencies associated with radiation (typically up to 30GHz).

1.4.2 Formal definition of Compatibility

Definition 1 Electromagnetic compatibility, with respect to radiated EMI in a system abstracted as in the
previous section, exists if for each level of the system hierarchy, for each component j, and each frequency f :

∑
i

Ri( f ;x j) � S j( f ); (1.1)

where Ri( f ;x j) is the field produced by component i at position x j and frequency f , while S j( f ) is the
susceptibility level of component j at frequency f , i.e. the maximum field at frequency f that component j
can tolerate without malfunctioning.

This definition, simply states that the total field at position x j, where component j is located, and due to the
contributions Ri of all the other components, should not exceed the maximum field S j that it can tolerate. A
similar definition is given in [134].

A simplifying assumption

A further simplification can be used if directions are neglected and only distances are used in the charac-
terization of every component. Values Ri and Si corresponding to the directions of maximum radiation and
susceptibility should be used in this case. Using such an assumption, the definition of compatibility becomes

∑
i

Ri( f ;di j) � S j( f ) (1.2)

where di j is the distance between component i and component j.
To evaluate the compatibility constraint in the previous equation, the radiation R i( f ;di j) of component

i at the general distance di j can be related through a function T ( f ;di j) to the available information on its
radiation Ri( f ;d0) at its characterization distance d0, as illustrated in Fig. 1.14,

Ri( f ;di j) � T ( f ;di j)Ri( f ;d0); (1.3)

Figure 1.14: Field at a general distance d can be related to the field at the characterization distance d 0.
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A matrix formulation for the compatibility problem

Assume the radiation and susceptibility spectra are specified over a finite set of frequencies
f f1; f2; :::; fMg, typically the clock and its first twenty harmonics. Define the radiation vector as

R = [R1( f1;d0);R2( f1;d0); :::;RN( f1;d0);

R1( f2;d0);R2( f2;d0); :::;RN( f2;d0);

:::;

R1( fM ;d0);R2( fM ;d0); :::;RN( fM;d0)]:

where N is the number of components. Define the susceptibility vector as

S = [S1( f1);S2( f1); :::;SN( f1);

S1( f2);S2( f2); :::;SN( f2);

:::;

S1( fM);S2( fM); :::;SN( fM)]

Now construct the matrix T evaluating the function T ( f n;di j) for every frequency fn and distance di j. The
general entry in position [ j;(n�1)N + i] of the matrix T is given by the evaluation of the function T ( f n;di j)
where fn is the nth frequency in the considered set of frequencies and d i j is the distance between component
i and component j.

With the previous definitions, the compatibility problem can be reformulated in matrix form

TR � S: (1.4)

1.4.3 A top-down Constraint-driven design methodology to ensure EMC

In this section, a top-down constraint driven design methodology is proposed, to ensure the EMC of an
electronic system. This methodology has been used for other design problems such as analog IC design [20].
A somewhat similar methodology has been suggested for EMC design in [134].

The design methodology is summarized with the following steps:

1. Some of the components could be already available. For example a component library could be avail-
able, or components could be acquired from external providers. Such available components are as-
sumed completely characterized. Their radiation and susceptibility spectra are known and just inserted
in the vectors R and S.

2. Radiation and susceptibility levels of the components to be designed are budgeted according to the
constraints stated by Eq. (1.4).

3. Once individual budget levels are known, the design of each component proceeds independently and
hierarchically. Constraints are “down propagated”. The radiation and susceptibility budgets of a com-
ponent become its environmental constraints. Down propagation continues until “leaves”, i.e. wires,
are encountered.

4. Down propagation of budgeted radiation and susceptibility levels to wires can be achieved using the
parameterized models presented in the Chapter 15. For example, radiation and susceptibility constraints
easily translate into physical layout constraints on the maximum length of the wires, and in particular
on the maximum allowed separation between a current and its return path. In case of emissions from
the Vdd and Gnd systems due to the switching activity of a digital block, constraints can be down
propagated to the sizing of decoupling capacitors as proposed in more detail in Section 16.2.

5. A “bottom-up” accurate verification phase is then required to check the actual radiation and suscep-
tibility levels of the designed component against the assigned budget level. Chapters 2- 6 in Part I
describe our design and implementation of such a tool.
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6. If a large positive margin is found at the end of a component design and verification, a “re-budgeting”
phase could redistribute this margin to other components where, for example, constraints were more
difficult, or could not be met at all.

The main contribution in this thesis, described in the following chapters, is the development of a collection
of tools and techniques both for the EMI analysis, modeling, and the EMI-aware synthesis of electronic
circuits in order to support our methodology or similar design methodologies.
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Chapter 2

Background: analysis tools

Examining the Signal Integrity (SI) and EMI simulation literature and market, one can distinguish, two
general types of techniques: transmission lines based simulators, and three dimensional (3D) electromagnetic
field solvers.

2.1 Transmission line simulators

The main steps of the Transmission-line (T-line) based simulators can be summarized as follows. Each
wire is referred to its closest metal plane or planes (above and below) and modeled using a transmission
line. Two nearby parallel wires carrying a fully differential signal can also be modeled with a transmission
line, and group of nearby parallel wires can be treated as multiconductor transmission lines. Characteristic
parameters of the line are calculated from the interconnect geometry by a parameter extractor, The extractor
is typically a two dimensional electric field solver that calculates per-unit-length capacitance and inductance
matrices C and L, as well as a series per-unit-length resistance matrix R accounting for conduction losses,
and a a parallel per-unit-length conductance matrix G, accounting for dielectric losses,

dV
dz

= �(R+ jωL)I (2.1)

dI
dz

= �(G+ jωC)V: (2.2)

V and I are vectors with the voltages and currents along direction z of the conductors lines. Such model
can be integrated in different ways with a SPICE like circuit simulator. For instance a a subcircuit model
of the multiconductor T-line can be generated and included directly with the rest of the circuit for a SPICE
like simulator analysis. Or one can use a specialized solver to handle the multiconductor transmission lines,
and run a SPICE like simulator in parallel handling the rest the circuit. Electromagnetic radiation can be
calculated once all currents on the lines are known, using superposition and Green Function integrals [103].

2.1.1 Advantages and disadvantages of T-line based simulators

As described above, the main and almost only disadvantage of T-line based simulators is the need for a
clear and well defined return path for the current such as a parallel ground wire nearby or a metal reference
plane. Without such a reference, the transmission line propagation hypothesis fails, and T-line based sim-
ulators cannot be used. In particular, we would like to underline that by metal reference plane we mean a
complete and uniform metal plane. A layer divided into some islands of ground and Vdd partial planes does
NOT satisfy this hypothesis. All wires crossing the intersection from a ground plane region to a Vdd plane re-
gion will not be in general simulated correctly. Holes on the plane and gaps can produce severe radiation that
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would not be captured by T-line simulators. For these reasons T-line simulators may not be the appropriate
choice for handling for instance two-layers PCB or 4-layers PCB without at metal plane reference.

Assuming a good reference is present, any T-line based simulator becomes a wonderful tool for Signal
Integrity and maybe even for EMI analysis. Speed is for instance among the main advantages of the T-line
based simulators. Such simulators can usually handle entire PCB systems. Their computation speed is as fast
as a SPICE like circuit simulator. T-line simulators can also account naturally for reflections from unmatched
loads or terminations. Because they work in the time domain, they can also easily account for non-linear
devices and loads. Reflections from wire bends could be included without much effort, even though not
many available simulators implement this feature yet.

2.2 Three dimensional field solvers

We have seen in the previous section how Transmission line simulator can be the tools of choice for all
systems with a uniform metal plane or for those interconnect in a system that are fully differential. How-
ever, we have also discussed how such simulators are completely inadequate for systems with a partial and
segmented metal plane or with no plane at all. For these systems, one cannot make any assumption on the
type of propagation (e.g TEM transmission line modes). The best approach for this situation at the moment
is solving numerically the Maxwell equations. There exist many different numerical methods. Each method
has its own peculiar characteristics that makes it suitable for one particular application rather than another. It
seems that so far no one single method is suitable for all types of application and simulation analysis. In this
section, we try to give a brief summary of the main characteristics of the most important numerical methods
in computational electromagnetics. Our focus will be in trying to underlying the advantages and disadvan-
tages of each method rather than on giving any technical description of the method itself. We will point out
what we think are the best applications for each method, and in the process, we will select an approach for
our specific application: EMI simulation in electronic circuits.

Before we show the differences among the methods, let us present some common features. In particular,
almost all numerical methods are characterized by the following three phases:

1. Discretization of the simulation domain. Numerical methods cannot generally work with continuous
quantities. The simulation domain is therefore subdivided into elementary cells. The main idea for
most methods is that such cells are so small that field or charge and current quantities within such
cells can be considered uniform. Some methods need to use the same size cell for the entire domain.
This usually leads to waste of memory. Others can discretize with smaller cell sizes regions of space
where fields or other quantities vary more rapidly in space. Some methods need to discretize the entire
domain of simulation. This also can lead to waste of memory and computation power. Other methods
can discretize only the parts of the simulation domain that are of interest for the particular application
(for example only conductors, or only the surface of conductors).

2. Setup of a linear system of equations. The main purpose of the discretization is to be able, in a second
phase, to convert some forms of the Maxwell equations into a linear system of algebraic equations.

3. Solution of the linear system. Finally the system is solved using algebraic techniques that in some
cases can exploit the underline physical structure of the problem.

3D solvers all discretize some form of Maxwell equations. We can distinguish four main classes based on
the the domain of the operator (giving differential equation methods or integral equation methods); and the
domain of the variable (giving time domain methods or frequency domain methods).

2.2.1 Differential methods vs. Integral equation methods.

The natural form of Maxwell equation is a system of differential equations. We call differential meth-
ods those methods that directly discretize such system. Examples are the Finite Difference Time Domain
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(FDTD) method and the Finite Element Method (FEM). Differential equations methods discretize the entire
domain. Hence they usually end up with huge linear systems to be solved (tens to hundreds of millions of
unknowns). Fortunately, the matrices are very sparse because each cell in the discretization only interacts
with its neighbor. Hence, they massively exploit sparse matrix algorithms for the solution of their system.
Because they discretize the entire domain, they can easily handle very inhomogeneous problems, for example
when material properties vary quite rapidly in space. However, modeling of open boundary problems can be
problematic because of numerical reflections at the boundaries.

Maxwell differential equations can also be rewritten in an integral equation formulation as we show later
the next Chapter 3. Tools that discretize such formulation are called integral equation methods. Examples
are for instance the Method of Moments (MoM), or the Partial Element Equivalent Circuit (PEEC) method.
Integral methods need to discretize only the “active” regions, for example the conductors, or the surface of the
conductors. Hence, they usually end up with much smaller systems than the differential methods (hundred
thousands to millions of unknowns). Unfortunately, the resulting linear system has a very dense matrix
because each element in the discretization interacts to all other elements. Highly inhomogeneous media
are difficult to model with these methods. On the other hand, open boundary conditions and thin wire-like
geometries such as in circuits can be modeled easily.

We summarize in Table 2.1 the main characteristic of both integral and differential methods.

Table 2.1: Comparison of differential vs. integral equation methods.

2.2.2 Time domain vs. Frequency domain methods

A second important classification of numerical methods can be done based on the domain of the variables.
Time-domain methods can easily handle non-linearities, furthermore they can produce very educational and
intuitive animations of the wave propagation phenomena. Among the main disadvantages, in order to produce
a spectrum result they need to run a very long time simulation in which all the significant modes need to be
exited and need to be given enough time to develop and eventually decay. Finally, a Fast Fourier Transform
of the resulting time waveforms gives the desired spectrum. The most important example of a time domain
method is the Finite Difference Time Domain (FDTD) method. Another example of a time domain method
is the Partial Element Equivalent Circuit (PEEC) method [121].
Frequency-domain methods consider harmonic solutions of Maxwell equations, simulating the system only
at specified frequency points, Among the advantages, they naturally provide the frequency response at the
specified frequency with a reasonably short simulation time, so that if only a small frequency range is re-
quired, much computation can be saved. They produce dynamical linear systems on which it is possible
to apply the Reduced Order Modeling techniques described in Part II to get very accurate broad range fre-
quency responses without having to evaluate every single frequency point. Non linearities are problematic
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for frequency domain methods. Usually the system needs to be separated into a non linear part and a linear
part. The frequency domain method only handles the linear part. Examples of frequency domain methods
are the Finite Element Method (FEM), and the Method of Moments (MoM). The Partial Element Equiva-
lent Circuit (PEEC) method can be modified and used not only in the time domain but also in the frequency
domain [68, 67].

We summarize in Table 2.2 the main characteristic of both time and frequency domain methods.

Table 2.2: Comparison of time vs. frequency domain methods.

2.2.3 Examples of 3D field solver methods

Table 2.3 identifies according to the previous type of classifications some of the most popular electromag-
netic field solvers.

Table 2.3: Classification of some of the most popular numerical methods.

FDTD: Finite-Difference Time-Domain. It is a differential, time domain method. For most of its im-
plementations the entire simulation domain needs to be discretize in uniform cells. Maxwell differential
equations are approximated by difference equations. One very simple and intuitive (although not optimal)
example of such an approximation is illustrated in Fig. 2.1. As initial conditions one needs to specify the
fields in every cell at the initial simulation time. Then, as shown in Fig. 2.1 cell fields are calculated for the
next time step. The smallest feature of interest and the smallest wavelength of interest determine the cell size.
The cell size and the desired accuracy, together with stability requirements, decide the size of the time step.
This usually leads to large memory requirements to store fields on all cells, and very long simulation times to
analyze significantly long system responses to excitations. This method is becoming appealing only recently
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Figure 2.1: One very simple and intuitive (although not optimal) example of a finite-difference time-domain
(FDTD) numerical method.

thanks to the availability of large computer memory and speed. FDTD can produce very nice movie-type an-
imations of the wave propagation, facilitating very good understandings of the electromagnetic phenomena.
FDTD can easily handle non-linearities being a time domain method. Furthermore it can also handle non
homogeneous materials. The most critical disadvantage is the simulation of open field environment. In fact,
field reflections due to numerical errors can be produced at the boundaries of the discretized domain. To over-
come this problem, absorbing boundary conditions have been developed [117], but are still problematic in
some applications. The simulation of the effectiveness of metal shields is one of the applications most suited
for this method. The closed simulation environment of a shield is ideal for this method. Small apertures and
attenuation across thick metals can also be modeled quite easily.

FEM: Finite Element Method. FEM is a differential method working in the frequency domain. The entire
domain is discretized into cells. Cell sizes can be chosen according to the fast or slow variations of fields
around some parts of the simulation domain. In particular, much larger cells can be used far away from
sources or conductors or non-homogeneous media. Because the entire domain is discretized and non uniform
cell sizes can be used, this method is ideal for highly inhomogeneous materials. Because of the non uniform
cell sizes, the method has smaller memory requirements than FDTD for storing computed fields. However
additional memory is required when storing explicit matrices for the computation. Because it works in the
frequency domain, it naturally provides frequency responses but cannot handle non-linearities. The method
has the similar problems of FDTD when dealing with open field environment.



22 CHAPTER 2. BACKGROUND: ANALYSIS TOOLS

MoM: Method of Moments. An integral equation method working in the frequency domain. Only the
surface of the conductors are discretized. The method accounts for the interactions between all surface
currents using for instance the Electric Field Integral Equation (EFIE) (eq. 3.14) formulations of Maxwell
differential equations. The linear system resulting from the discretization is much smaller than in FDTD
and FEM. This implies smaller memory requirements when using fast methods [152] that do not require
explicit storage of the system matrix. The system is unfortunately very dense, because every surface element
interacts with every other surface element. This method is ideal for open field environment simulations and
can handle very efficiently antenna design application. In fact, in intentional antennae, frequencies are so
high that currents mainly flows only on the surface of the conductors.

PEEC: Partial Element Equivalent Circuit. This is an integral equation method originally developed in
the time domain [121]. A similar type of discretization based on the same integral equation can also be used in
the frequency domain [67]. Conductor surfaces are discretize to capture charge accumulation or displacement
currents. Conductor volumes are discretize to capture skin effects and proximity effects. This volume integral
equation discretization seems suitable for the mixed simulation of electromagnetic and circuit phenomena.
In this thesis we develop techniques for improving the frequency domain volume integral equation method
which we describe in details in Chapter 3. Using such volume integral equation formulation in combination
with fast methods requires a smaller amount of memory than FDTD and FEM for many electronic systems
applications. The surface integral formulation of the MoM when combined with the same fast methods would
have required an even smaller amount of memory. However, the MoM, in its original formulation [54], does
not capture accurately current distributions inside the conductors that are important for the range of EMI
frequencies and geometries. However new surface integral equation formulations are very recently being
developed with good accuracy on wide frequency bands [152] and memory requirements smaller than the
volume integral equation formulations.
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Chapter 3

Background: a frequency domain
integral equation 3D solver

In this Chapter we describe in details a frequency domain integral equation 3D field solver. In Section 3.1
we formulate Maxwell equation in a Mixed Potential Differential Equation form (MPDE). In Section 3.2 we
show the correspondent Mixed Potential Integral Equation form (MPIE). In Section 3.3 we identify the main
unknowns of the problem (charges on the surface of conductors and currents in the interior) and we show how
to discretize them with a classical choice of piece-wise constant basis functions. In Section 3.4 we show how
to generate from the MPIE a system of linear equations. Sections 3.5 and 3.6 show how to solve efficiently
such system. Finally in Section 3.7 we show what kind of simulation outputs can be produced for Signal
Integrity and EMI analysis.

3.1 The Mixed Potential Differential Equation formulation (MPDE)

Maxwell differential equations expressed in the frequency domain with respect to the the magnetic field
H, and the electric field E are [62],

∇�H = jωεE+J (3.1)

∇�E = � jωµH: (3.2)

∇ �µH = 0 (3.3)

∇ � εE = ρ (3.4)

The charge density is indicated with ρ and the current density with J. The frequency is ω = 2π f , while µ is
the magnetic permeability, and ε is the dielectric constant in free space.
From (3.3) we can define a vector A (the magnetic vector potential), such that

B = µH = ∇�A: (3.5)

Substituting (3.5) into (3.2) we obtain
∇� (E+ jωA) = 0: (3.6)

Hence we can define a scalar potential φ such that

E+ jωA =�∇φ: (3.7)

This equation expresses the electric field E in terms or the basic potential quantities A and φ. We will now
express A and φ in terms, respectively, of the current density J, and in terms of the charge density ρ. First
calculate A in terms on J. After substituting (3.5) and (3.7) into (3.1) we obtain

∇�∇�A = jωµε(� jωA�∇φ)�µJ (3.8)
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Using the Laplacian identity
∇�∇�A = ∇(∇ �A)�∇2A (3.9)

and choosing the Lorenz gauge
∇ �A =� jωµεφ (3.10)

equation (3.8) becomes an Helmholtz equation for the magnetic vector potential (3.11).
Taking the divergence of (3.7), substituting (3.4) and using the Lorenz gauge (3.10), we can express the
potential φ(r) in terms of the charge density ρ using the Helmholtz equation (3.12).
In summary the Maxwell equations in Mixed Potential Differential Equation (MPDE) form are

∇2A+ω2µεA = �µJ (3.11)

∇2φ+ω2µεφ = �ρ
ε

(3.12)

3.2 The Mixed Potential Integral Equation formulation (MPIE)

In an homogeneous medium, the solution of (3.11) for the magnetic vector potential A in position r due
to a current distribution in the volume V is given by [62]

A(r) =
µ

4π

Z
V

J(r0)
e j ω

c jr�r0j

jr� r0j dr0: (3.13)

where c = 1=
p

µε is the speed of light. If the medium is not uniformly homogeneous because of layered
dielectric materials present for example between PCB layers, the solution can be modified using the appro-
priate Green functions. Using the constitutive relation for the electric field E =σJ, where σ is the conductors’
conductivity, and substituting equation (3.13) into the electric field equation (3.7), we obtain the electric field
integral equation (3.14).
In a homogeneous medium the solution of the Helmholtz equation for the scalar potential φ(r) is given
by (3.15). If the medium is not uniformly homogeneous because of some layered dielectrics, once again the
expression can be modified using the appropriate Green functions.
In summary, as described also in [121, 67], the following set of integral equations can be used for the solution
of the conductor current distribution, J, and of the conductor surface charge, ρ,

J(r)
σ

+ jω
µ

4π

Z
V

J(r0)
e j ω

c jr�r0j

jr� r0j dr0 =�∇φ(r); (3.14)

1
4πε

Z
S

ρ(r0)
e j ω

c jr�r0j

jr� r0j dr0 = φ(r); (3.15)

∇ �J(r) = 0; (3.16)

n̂ �J(r) = jωρ(r); (3.17)

where V and S are the union of the conductor volumes and surfaces, φ is the scalar potential on the conductor
surfaces. Equations (3.16) and (3.17) are added to the system to ensure current conservation in the interior of
the conductors and charge conservation on the surface of the conductors respectively.

As boundary conditions, given a collection of interconnect, i.e. conductors, in a SI or EMI analysis
one would often identify some “ports”, i.e. conductor contact areas, where some voltage excitation source
is applied and the resulting current is calculated solving the MPIE. In this way one can calculate the port
impedance matrix. Other desirable outputs of the simulation are, as illustrated in Section 3.7, for a given
excitation, the current distributions in all the conductors or the field intensity on a sphere at 3 or 10 meters
from the circuit.
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Figure 3.1: In the Mixed Potential Integral Equation formulation (MPIE) one solves Maxwell Equations once
expressed in terms of conductor current distribution, J, and of the conductor surface charge, ρ
.

3.3 Discretization

To compute accurate conductor current and charge distributions, or terminal input and coupling impedances,
it is necessary to solve the system of integro-differential equations given by (3.14)-(3.17). The main un-
knowns of such equations are the current density J in the interior of the conductors and the charge density
ρ on the surface of the conductors as illustrated in Fig. 3.1. One standard numerical procedure for solv-
ing (3.14)-(3.17) begins with approximating the volume currents and surface charges by a weighted sum of a
finite set of basis functions w j 2C3 and v j 2C1 as in

J(r) � ∑
j

w j(r)I j (3.18)

ρ(rs) � ∑
m

vm(rs)qm; (3.19)

where I j and qm are the basis function weights.

A Galerkin procedure [54] can be used to generate a system of equations for the weights. The procedure
is to substitute the representations (3.18) and (3.19) for J and ρ, into (3.14) and (3.15), and then insist that
the equation residuals are orthogonal to the basis functions. That is,*

∑ j w j(r)I j

σ
+

jωµ
4π

Z
V
∑

j
w j(r0)I j

e j ω
c jr�r0j

jr� r0j dr0+∇φ ; wi

+
= 0*

1
4πε

Z
S
∑
m

vm(r0s)qm
e j ω

c jrs�r0sj

jrs� r0sj
dr0s�φ(rs) ; vl

+
= 0;

where the inner products are defined as

hf(r) ; wi(r)i =

Z
V

wi
�(r) � f(r)dr (3.20)

hg(rs) ; vl(rs)i =

Z
S

v�l (rs)g(rs)drs: (3.21)

The result, as in [67], is a matrix equation of the form�
R+ jωL 0

0 P

��
I
q

�
=

�
Vφ
φ

�
(3.22)

where I and q are vectors of current and charge basis function weights, respectively, and φ and V φ are the
vectors generated by inner products of the surface potential or the volume potential gradient with the basis
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functions. The matrices R, L and P are derived directly from the Galerkin condition and are given by

Ri j =
1
σ

Z
V

w�
i (r) �w j(r)dr (3.23)

Li j =
µ

4π

Z
V

Z
V

w�
i (r) �w j(r0)

e j w
c jr�r0j

jr� r0j dr0dr (3.24)

Plm =
1

4πε

Z
S

Z
S

v�l (rs)vm(r0s)
e j w

c jrs�r0sj

jrs� r0sj
dr0sdrs: (3.25)

3.3.1 Piecewise Constant Basis Functions

Several basis function sets are present in literature (piecewise constant, piecewise linear, RWG [6]). In
the remainder of this section we will develop the mathematical details of a particularly simple yet powerful
choice of basis functions: piecewise constant. These basis functions are the classical standard choice because
of their great flexibility in representing any shape of solution. However it is possible to tune the discretization
to a given class of problems by selecting basis functions which accurately represent expected charge densities
and current flows. In this way solution times and memory requirements can be greatly decreased. As a matter
of fact, in two of the main contributions of this work presented in Chapters 4 and 5 we develop two different
choices of basis functions tuned to the particular class of interconnect problems reducing solution time and
memory by a factor of 400.

Piecewise constant basis functions for the conductor surfaces

We now show the mathematical details of the discretization. We begin here with the discretization of the
conductors surfaces referring to eq. (3.15). Let S be the union of all conductor surfaces. Subdivide S into
small panels of area Sm, as shown in Fig. 3.2, such that we can associate them with a constant charge

qm =

Z
Sm

ρ(r)dr (3.26)

We can express the charge density on all surfaces as a collection of such panels charges

ρ(r) = ∑
m

vm(r)qm (3.27)

where vm(r) are the surface discretizing basis functions

vm(r) =
� 1

Sm
if r 2 Sm

0 otherwise
(3.28)

After the discretization equation (3.15) becomes

Figure 3.2: Discretization of the surface of conductors into small panels to model charge accumulation or
displacement currents.

φ(r) =
1

4πε

Z
S
∑
m

vm(r0)qm
e j ω

c jr�r0j

jr� r0j dr0 (3.29)

= ∑
m

"
1

4πε
1

Sm

Z
Sm

e j ω
c jr�r0j

jr� r0j dr0
#

qm (3.30)
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In order to generate a system of equations for the unknowns q m one choice is to enforce eq. (3.30) on each of
the discretization panels Sl . The most simple way, is to enforce the equation in a point r l in the center of each
panel Sl. Such scheme is called collocation:

φl = φ(rl) (3.31)

= ∑
m

"
1

4πε
1

Sm

Z
Sm

e j ω
c jrl�r0j

jrl� r0j dr0
#

qm (3.32)

= ∑
m

plmqm (3.33)

plm are called coefficients of potential, and can be calculated directly from the geometry. Their interpretation
is in equation (3.33): assuming we are given the n charges q m on the n panels Sm, the coefficients of potentials
give a way to calculate the n potentials φl on the same n panels.

For better accuracy, a Galerkin scheme could be used to calculate the coefficient of potential. In collo-
cation, the n potentials are evaluated only at one single point on the panel, typically the center point r l . In a
Galerkin scheme, instead, we enforce eq. (3.30) loosely speaking as an average over the entire surface of the
panel. In more precise terms, we apply the following inner product (3.21) to both sides of eq. (3.30) obtaining

1
Sl

Z
Sl

φ(r)dr = ∑
m

"
1

4πε
1

SlSm

Z
Sl

Z
Sm

e j ω
c jr�r0j

jr� r0j dr0dr

#
qm (3.34)

φl = ∑
m

plmqm (3.35)

Finally, we introduce a convenient matrix notation for the rest of the chapter. The coefficient of potentials
plm, calculated with collocation or with Galerkin, can be collected into a matrix P. Equation (3.33) or (3.35)
can be expressed with:

Pq = φ (3.36)

where q is the vector with the n charges on the n panels, and φ is the vector of the n potentials on the same
panels. Note that the coefficient of potentials in matrix P are frequency dependent due to our “full-wave”
type of analysis.

Piecewise Constant Basis Functions for conductor volumes

When discretizing relatively long and thin conductors, piecewise-constant basis functions are typically
used [121, 143, 68]. The functions are generated by first chopping the long wires into a large number of
sections (Fig. 3.3) that are short compared to the wavelength of the highest frequency of interest. Conduction
currents inside conductors, are affected by skin effects and proximity effects. For this reason we discretize
the interior of the conductors into small and short filaments of current as in Fig. 3.3. Let V be the union of

Figure 3.3: Discretization of the conductor volume into piecewise constant basis functions (i.e. short thin
filaments) to model the internal current distribution (skin effects, proximity effects).

all conductor volumes. Subdivide V into small filaments of volume V j and cross section A j, such that we can
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associate them with a constant current along each filament

I j =
1
l j

Z
l j

Z
A j

J(r)dA jdl j (3.37)

We can express the current density on all filaments as a collection of such filaments currents

J(r) = ∑
j

w j(r)I j (3.38)

where w j(r) are the volume discretizing basis functions

w j(r) =

(
bdl
A j

if r 2Vj

0 otherwise
(3.39)

where bdl is simply a unit vector indicating the orientation of the filament. After the discretization, equa-
tion (3.14) becomes

∑ j w j(r)I j

σ
+ jω

µ
4π

Z
V
∑

j
w j(r0)I j

e j ω
c jr�r0j

jr� r0j dr0 =�∇φ(r) (3.40)

In order to generate a system of equations we can enforce eq. (3.40) on each of the discretization filaments
Vi. The collocation scheme would just enforce it on a single point r i in the center of each filament

�
li

σAi

�
Ii +∑

j
jω

"
µ

4π
1
A j

Z
Vj

e j ω
c jri�r0j

jri� r0j dr0
#

I j = φA(ri)�φB(ri) (3.41)

RiIi +∑
j

jωLi jI j = φA(ri)�φB(ri) (3.42)

where Ri is the resistance of filament i and Li j are the partial inductances between filament i and any other
filament j. Both Ri and Li j can be calculated directly from the geometry. No numerical solution is needed.
Potentials φA and φB are the potentials at the extremes of the filament.
For better accuracy, one can use a Galerkin scheme. Instead of enforcing equation (3.40) only in the center
points of each filament, loosely speaking we enforce it on average over the entire length of each filament. In
more precise terms we apply the inner product (3.20) to both sides of eq. (3.40) an we obtain

�
li

σAi

�
Ii +∑

j
jω

"
µ

4π
1

AiA j

Z
Vi

Z
Vj

dli �dlj
e j ω

c jr�r0j

jr� r0j dr0dr

#
I j = φA�φB

RiIi +∑
j

jωLi jI j = φA�φB (3.43)

Finally, we introduce a convenient matrix notation for the rest of the chapter. The resistances R i are collected
into a diagonal matrix R. The partial inductances Li j, calculated with a Galerkin scheme, are collected into a
matrix L. Equation (3.43) can then be expressed with:

[R+ jωL]I =Vφ (3.44)

where I is the vector of the n currents on the n filaments, and Vφ is the vector of the n voltages across the same
filaments. Note that the partial inductances in matrix L are frequency dependent due to our “full-wave” type
of analysis.
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Figure 3.4: Surface panels are centered at the filaments partition points.

Interpretation as an equivalent circuit

We have shown so far how piecewise constant basis functions can be used to discretize both the interior of
the conductors into filaments and the surface of conductors into panels. The panels discretization corresponds
to filaments discretization as shown in Fig. 3.4.
We can see in Figure 3.4 how panels are centered at the filaments partition points. In the PEEC method
given in [121], it is described how how this type of discretization can be interpreted with a circuit equivalent.
Equation (3.43) can be viewed as a branch equation for filament i. Basically, it states that we can model
filament i with a resistance Ri in series with many coupled inductors driven by the currents I j of all the other
filaments. A wire is divided in pieces along its length which will appear in series in the equivalent circuit.
The wire is also divided into filaments across its cross section. In our equivalent circuit, all such filaments
will appear in parallel. The resulting model is shown in Fig. 3.5. Equation (3.35) corresponds to coupled

Figure 3.5: Equivalent circuit model of a wire after the interior has been discretize into filaments. Each
filament is modeled by a resistance and many partial inductors in series. Each of the filament of a wire cross-
section are connected in parallel in the circuit model. Finally, many such groups of filaments are connected
in series to model the entire length of the wire.

capacitors inserted at the break points between filaments. For conductors much thinner than a wavelength it
is safe to assume that all filament cross-sections at a break point have the same potential as the panels on the
surface near such break point. This can be modeled as in the final circuit equivalent in Fig. 3.6.

3.4 Problem set up as a linear system of equations

The discretized equations (3.44) and (3.36) can be collected into a more compact block matrix form�
R+ jωL 0

0 P

��
I
q

�
=

�
Vφ
φ

�
(3.45)

If we introduce the currents I p = jωq to represent the displacement current from panels we can rewrite
equation (3.45) as �

R+ jωL 0
0 P

jω

��
I
Ip

�
=

�
Vφ
φ

�
(3.46)
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Figure 3.6: Equivalent circuit model from the PEEC-type discretization. Inductances and capacitances are
frequency dependent in a full-wave analysis. The panels are centered at the filament break points such that
we can insert capacitors modeling such panels between groups of parallel filaments.

where vector

Ib =

�
I
Ip

�
(3.47)

is now containing all branch currents of the equivalent circuit network in Fig. 3.6. Vector

Vb =

�
Vφ
φ

�
(3.48)

contains all the branch voltages of the network. Defining as Z EM the branch equation impedance matrix of
the equivalent circuit network in eq. (3.46) we can rewrite (3.46) as

ZEMIb =Vb (3.49)

3.4.1 The classical approach: Nodal analysis

So far we have seen how the first two equations (3.14) and (3.15) in the MPIE formulation can produce,
once discretized, a set of algebraic and linear branch equations. The remaining two equations (3.16) and 3.17)
in the MPIE can then be used to set up an algebraic linear system. Specifically, imposing such current and
charge conservation on the MPIE corresponds in the equivalent circuit interpretation to imposing Kirchoff
Currents Laws (KCL) to each node of the circuit. The PEEC method in [121] and almost all circuit simula-
tors such as SPICE, solve circuit networks using such nodal analysis method [56]. Substituting the branch
equations (3.49) into such KCL’s, we obtain a linear system where the unknowns are the nodal potentials.

3.4.2 An alternative approach: Mesh analysis

An alternative way to impose current and charge conservations in both the MPIE or in its equivalent
circuit is to use a mesh analysis formulation as in [68] and in [67]. In fact, using loop currents as main
unknowns directly guarantees current conservation. This also guarantees directly charge conservation when
charge accumulation on the surface of the conductors are modeled as displacement current and mesh current
loops include both conductor currents and displacement currents. Fig. 3.7 shows such mesh loop currents. As
shown in [68, 67, 65], mesh analysis is to be preferred to nodal analysis since it produces better conditioned
systems and hence it gives better convergence behavior in the iterative methods we present later in this chapter.
A mixed mesh-nodal approach has also been presented in [86].

We describe here the details of a pure mesh analysis approach. Practically speaking using mesh analysis
means writing as many Kirchoff Voltage Laws (KVL) as independent meshes in the network as shown in
Fig. 3.7. In matrix form we have

MVb =Vms (3.50)
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Figure 3.7: Current and charge conservation can be imposed using as unknowns a set of independent mesh
or loop currents. Such currents may include displacement currents modeling charge accumulation on the
surface of the conductors.

where Vb is the vector of branch voltages, Vms is the vector of mesh voltages sources, mostly zero. M is the
very sparse mesh matrix. Each row represents one KVL. Substituting the branch equations (3.49) we obtain

MZEMIb =Vms (3.51)

Finally we observe from circuit network theory [77] that the mesh currents I m are related to the branch
currents Ib by

Ib = MT Im (3.52)

Substituting we get
[MZEMMT ]Im =Vms (3.53)

which is a linear system of equations in the unknowns mesh currents, I m. Solving the system we get Im and
from those we can get any other quantity in the circuit

Ib = MT Im (3.54)

Vb = ZEMIb (3.55)

To summarize, we have so far showed how to convert a linear system of partial differential-integral equa-
tions (3.14) and (3.15) into a linear system of equations (3.53). We observe that the system matrix MZ EMMT

is very dense. The matrix dimension is the number of meshes in the equivalent circuit network, hence on the
order of the number of filaments and number of panels in the discretization.

3.5 Solution of a large and dense linear system

Almost all the computation time of the simulator is spent in solving the large and dense system of equa-
tions (3.53). For this reason it is crucial to select the proper solution technique and to try and improve its
simulation time and memory requirements.

3.5.1 Classical approach: LU decomposition or Gaussian elimination

Assume we are suppose to solve the linear system

Ax = b (3.56)

where A is a known nonsingular matrix, b is a known vector and x is the vector of unknowns. The most
common way to solve such system is a fancy implementation of the trivial Gaussian elimination algorithm:
LU decomposition. In LU decomposition the system matrix A is first factored into a lower triangular matrix
L and an upper triangular matrix U such that

A = LU (3.57)
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The system is then solved by solving two easier subsystems using forward elimination and back substitution
respectively

Ly = b (3.58)

Ux = y (3.59)

The advantage of first decomposing A is evident when the system needs to be solved for many different right-
hand-sides b. This method is the method of choice when solving large and sparse systems for which the
computational complexity with respect to the dimension n of the matrix can be as low as O(n 1:2). However it
is not practical for solving large and dense linear systems for which the computational complexity is O(n 3)
and it is dominated by the factorization step. Such high order of complexity implies an explosion in the
computation times when a large matrix is to be solved.

3.5.2 Krylov subspace iterative methods

When solving large and dense linear systems it is more convenient to employ Krylov subspace iterative
methods. The main structure of this family of algorithms is as follows:

1. Pick and initial guess for the solution vector x0

2. REPEAT

(a) calculate the residue ri = Axi� b representing the distance between xi and the exact solution of
the problem x̂.

(b) Choose the next vector xi+1 that minimizes the next residue ri+1 searching in the Krylov subspace
generated from the history of the previous iterations
Ki(A;r0) = x0 + span(r0;Ar0;A2r0; :::;Ai�1r0):

3. UNTIL the desired accuracy (measured by ri) is achieved.

Many implementation variants are available of this Krylov subspace iterative strategy. GMRES for in-
stance is a common choice is described for example in [41]. Krylov subspace iterative methods perform much
better than LU decomposition in terms of speed for two main reasons:

� EMI measurements are usually not extremely precise (on the order of few percent), while LU decompo-
sition calculates the solution with as many digits as the precision available from the computer hardware
(typically 15 digits with the IEEE standard). This means in most cases a large waste of computation
power that we can instead save using an iterative method. In fact, an iterative method can stop the
computation immediately when the desired accuracy is achieved, (for example after 4-5 digits).

� The computational complexity of the Krylov subspace iterative method is dominated by the matrix
vector product Axi, that must be evaluated at each iteration to calculate the residue and to update the
Krylov subspace. Such matrix-vector product has a complexity of order O(n 2). Many implementations
(for example GMRES that we use) are guaranteed to converge to the desired accuracy in no more than
n iterations. At a first glance this would imply an overall complexity of order O(n 3). Fortunately, it is
possible to obtain a convergence in an almost constant and very small number of iterations if a good
pre-conditioner is used. For example we observed a convergence in about 20 iterations to 3-4 digits
precision also for systems as big as n = 100;000 unknowns. The final complexity of the algorithm is
therefore only O(n2) much smaller compared to the LU decomposition O(n 3).
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3.5.3 Preconditioning

In the previous section, we mentioned that in order to guarantee the convergence of the iterative methods,
we need to use a good preconditioner. Preconditioning the systems means manipulating the system Ax = b
with a matrix N in order to obtain a new system, for instance

NAx = Nb (3.60)

that shows a faster convergence in the iterative method. An example of a good preconditioner is any easy to
calculate approximation of A�1. The perfect preconditioner in terms of convergence rate would be of course
the inverse itself: N = A�1. In fact, in that case, NA = I is just the identity and the convergence is immediate.
However, if we need to invert A, we would have already solved the system without any need for iterative
methods! A good preconditioner is therefore a matrix that is as close as we can get to the inverse without
doing much calculations! Note that, if N is a good approximation for A�1, and NA� I. Hence, we have also
just found a good initial guess for the iterations

x0 = Nb (3.61)

Looking for approximations of A that are easy to invert, a practical choice for many systems is for example
the diagonal of A. The preconditioner is then

N = [diag(A)]�1 (3.62)

This is called Jacoby preconditioner and works very well especially when the matrix is diagonally dominant.
The matrix in our system is A = MZEMMT . We can observe that while ZEM might have some reasonable
diagonal dominance, it is very unlikely that MZEMMT preserves such property. Therefore the preconditioner
will not perform well in this case. A better preconditioner for this case is instead:

N = [Mdiag(ZEM)MT ]�1 (3.63)

Inverting Mdiag(ZEM)MT is not expensive because M is extremely sparse and so is diag(ZEM). Also, note that
Mdiag(ZEM)MT is a good approximation of MZEMMT . This preconditioner shows very good performance in
terms of convergence rate of Krylov subspace iterative methods as shown in Fig. 3.8. In such Figure, we com-
pare the convergence rate of GMRES without preconditioner, GMRES with the diagonal-of-A preconditioner
and GMRES with diagonal-of-ZEM preconditioner.

Even though the diagonal-of-ZEM preconditioner is already very good, more improvement is possible. For
example, reconsider the matrix ZEM . We are approximating it with its diagonal. This implies that we neglect
all the mutual coupling terms. This is probably not a good idea for example for the tightly coupled filaments
in parallel on the same wire section. Looking at the structure of the partial inductance matrix L inside Z EM ,
we can recognize blocks of tightly coupled filaments and include them with the diagonal elements in the
preconditioner [65]. This of course increases the computation required to invert the matrix Mdiag(Z EM)MT ,
which is anyway still quite sparse. The preconditioner will have better performance in terms of GMRES
convergence rate, but it gives more overhead. One can continue in this search for better preconditioners (for
further details see for instance [65]) until the overhead imposed by their inversion becomes larger than the
speed up they provide in the GMRES convergence rate.

3.6 Matrix-vector product acceleration: precorrected-FFT

While describing the Krylov subspace iterative methods, we have seen how the dominant factor in the
computational complexity is the matrix-vector product Ax i which is of order O(n2) in the size of the matrix.
In our case A=MZEMMT and xi = Imi . However, exploiting the physical structure of the problem it is possible
to calculate this matrix-vector product in just order O(nlog(n)). The method is called precorrected-FFT. The
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Figure 3.8: Convergence rate of GMRES with and without preconditioners. The size of the system is 162.
Without preconditioner, GMRES is as slow as Gaussian elimination. The Jacoby preconditioner is simply the
diagonal of the system matrix [MZEMMT ]�1 and it gives a poor performance. A much better preconditioner
is instead [Mdiag(ZEM)MT ]�1, which brings GMRES to convergence in 20 to 30 iterations even for systems
of hundreds of thousands of unknowns.

theoretical principles of the method have been originally developed by Joel Phillips in [110]. Precorrected-
FFT has been already applied to the acceleration of other field solvers such as [152], and it can be applied in
particular to our EMI simulation problem.

Consider our matrix-vector product [MZEMMT ]Imi . First the product Ib =MT Imi can be calculated directly.
MT is extremely sparse and contains only +1 and �1 elements. Hence, this product is not expensive at all.
The next product is instead quite expensive ZEMIb. Subdivide it in its components:

ZEMIb =

�
R+ jωL 0

0 P
jω

��
I
Ip

�
=

�
RI+ jωLI

Pq

�
(3.64)

, where q = Ip= jω. Note that R is a diagonal matrix. Hence the product RI takes no time. The expensive
matrix-vector products are LI and Pq. In order to evaluate them as fast as possible let us exploit what we
know about the physics of the problem. From the section on the conductor surface discretization we know
that the product Pq simply corresponds to calculating the n potentials φ on the n surface panels due to the
n charges in vector q on the same panels. An approximation to this physical problem can be used instead
of simply treating it as an algebraic problem of O(n2). In the same way, from the section on the conductor
volume discretization into filaments, we know that the product LI simply corresponds to calculating the m
magnetic potentials A on the m filaments due to the m currents in vector I on the same filaments. Again, the
algebraic problem is O(m2), however precorrected-FFT offers a good and less expensive approximation to
the physics problem.

Consider for example the first physics problem: calculate n potentials on n panels due to n charges on the
same panels. The main idea of the precorrect-FFT algorithm is depicted in Fig. 3.9 and is summarized here:

1. First superimpose an imaginary three-dimensional grid to the entire volume. Fig. 3.9 only shows a
two-dimensional grid. Project the panel charges onto the nearby grid points. The projection is done
such that the potential produced by the new charges on the other further away grid points is the same
as the potential originally produced by the old charges on the panels.
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Figure 3.9: Precorrected-FFT: an algorithm for the fast evaluation of the matrix-vector product in order
O(n log(n)). Phase 1. Projection of the panel charges to the grid points. Phase 2. Calculation of the
potentials on the grid points due to the charges on the grid points. Phase 3. Interpolation of the potentials
from the grid points to the panels. (Picture by Joel Phillips, Cadence Berkeley Labs)

2. Now, let us calculate the potentials on all the grid points due to the charges on the same grid points.
Given the regular structure of the operation, it basically turns out to be a convolution operation in the
space domain The convolution in the space domain can be easily calculated in the “spatial frequency
domain” using a Fast-Fourier-Transform (FFT).

3. As a final step, after we have the potentials on the grid points, we can easily interpolate the potentials
on the panels.

Note that this algorithm does not work if two or more panels are very close to each other. The projection
step is valid only at far enough distance. Therefore we need to calculate the contributions of nearby panels
directly. The other contributions can be calculated with the algorithm above. A precorrection step will take
care of making sure that contributions of closely interacting panels are not included twice.

The computational complexity of the entire algorithm is dominated by the FFT which takes O(N log(N))
in the number of grid points N. In most practical applications the number of grid points N is about the same
as the number of panels (N � n). This is a significant improvement with respect to the classical algebraic
approach that gives O(n2).

In the same way we can evaluate the magnetic vector potentials due to the currents on the filaments.

1. Instead of projecting charges we project currents to the grid points.

2. We then evaluate with an FFT the magnetic vector potentials on the grid points due to the currents on
the grid points.

3. Finally, we interpolate the magnetic vector potentials from the grid points to the filaments.

The contributions from close filaments are calculated directly and a precorrection step avoids we count them
twice in the algorithm.

3.6.1 Comparing solution methods for large and dense linear systems

As a summary of this section we compare in Table 3.1 several methods for the solution of large and dense
linear systems with respect to solution time and memory requirements. The combination of Krylov subspace
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iterative methods with a the Precorrected-FFT fast matrix vector product gives in most cases an almost linear
complexity both in the time and in the memory requirements.

Table 3.1: Comparing solution methods for large and dense linear systems.

3.7 Examples of types of field solver analysis

3.7.1 Return current path analysis at any frequency

We have implemented the techniques described so far in this Chapter in a field solver prototype which we
then used for developing our contributions presented in the next Chapters 4 and 5. Typical analysis outputs
of an EMI fields solvers are for instance the capability for current distribution display.

Consider for instance a very small but intuitive example presented in Fig. 3.10. In such figure we show
three conductors. A simple small resistive load is driven through the shown conductors by an ideal voltage
generator. The two conductors on the left are shorted together on both sides and provide the ground return
for the conductor on the right carrying the main signal.

Figure 3.10: Simple example to describe high frequency effects such as skin and proximity effects. Conductors
are 6 mm long, 1mm wide and 1mm far apart from each other. The two conductors on top are two possible
return paths for the current on the conductor on the bottom.

We can verify in Fig. 3.11 the expected behavior of such system:

� perfect path sharing at very small frequencies in Fig. 3.11.a;

� increased current density on the closer conductor with smaller loop are when, at larger frequencies,
inductance becomes the dominant factor in the impedance of the return path (Fig. 3.11.b);

� skin effect and proximity effect at even larger frequencies in Fig. 3.11.c;
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� finally current propagation in waves, with standing waves phenomena, when the conductors length
becomes comparable to the wavelength in Fig. 3.11.d.
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Figure 3.11: Example of current distribution analysis of the very simple geometry in Fig. 3.10. Dark grays
mean small current density, lighter grays mean larger current density. a) At this small, 2 KHz, the current
is shared equally by the two returns. b) As frequency increases (20 KHz), inductance becomes the dominant
factor in the impedance of the return paths. More and more current chooses the closer return with smaller
loop area and therefore smaller inductance. c) At 20MHz current flows only near the surface of the conductors
(skin effect), in particular it flows on the side facing other nearby conductors (proximity effect). d) Finally
at very high frequencies (25GHz) the conductor length becomes comparable to the wavelength. Current
propagates in waves and is reflected by unmatched loads. We can observe here standing waves maxima and
minima along the conductors.

3.7.2 Radiation and susceptibility patterns at any frequency

From the current distribution we can generate for example emission and susceptibility patters at any
specified frequency adding the contributions from each of the conductor discretization filaments as sketched
in Fig. 3.12

As an example we show in Fig. 3.13 the radiation patterns of the simple example in Fig. 3.10 when excited
at its quarter wavelength and at its half wavelength resonance frequencies.
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Figure 3.12: Radiated fields can be easily calculated by a post-processing step once current distribution are
available on all discretization filaments. Note that interference between filaments has already been taken
when solving for the current distributions.

a) b)

c) d)

Figure 3.13: Current distributions and radiation patterns for the simple circuit in Fig. 3.10 are shown in a)
and c) for its quarter wavelength resonance and in b) and d) for its half wavelength resonance.
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Chapter 4

Conduction modes basis functions

This chapter describes the first contribution presented in this thesis. The work in this chapter has been
done in collaboration also with Prof. Jacob White, Massachusetts Institute of Technology, and it has first
appeared in [35, 37, 39].

The new generation of fast electromagnetic analysis programs, based on accelerated integral equation
methods described in the previous Chapter 3, has reduced from days to minutes the time required to analyze
thousands of simultaneously interacting conductors [94, 68, 110, 136, 71]. As good as these fast solvers are,
they are either inappropriate for, or are very inefficient at, analyzing interconnect exhibiting high frequency
effects. With processor clock speeds now exceeding two gigahertz and harmonics exceeding twenty gigahertz,
it is no longer possible to ignore these high frequency effects.

The high frequency effects that are most troublesome for fast solvers are skin and proximity effects.
Nevertheless such phenomena can significantly affect interconnect performance and should not be neglected,
in particular when either wire width or thickness are equal to, or larger than two “skindepths.” 1 In order
to describe such phenomena let us consider the very simple example already introduced in Section 3.7 and
shown in Fig. 3.10. At low frequencies, those for which both wire with and thickness are much smaller than
two skindepths, the cross-sectional current density can be considered with a good approximation constant
as shown in Fig. 4.1. When either wire width or thickness are equal to, or larger than two “skindepths” the

Figure 4.1: Current distributions at low frequencies.

current begins to crowd toward edges and corners of the wire cross-section (skindepth effect). Furthermore,

1The skin depth for a signal at a certain frequency f is defined as δ= 1=
p

π f µσ, where µ is the permeability and σ is the conductivity
of the conductor.
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opposite currents in adjacent conductors tend to be as close as possible (proximity effect). Both such effects
are visible in Fig. 4.2 obtained with our simulation tool.

Figure 4.2: Cross-sectional current distributions at high frequency. Skin and proximity effects are visible.

Interconnect performance on Printed Circuit Boards (PCB) and on IC Packages have been suffering
for many years from such effects. Even some Integrated Circuit are now beginning to be affected at the
global interconnect level (power and ground distribution network or clock distribution network). For instance
skindepth in Aluminum interconnect at the tenth harmonic of a two gigahertz clock is around a half micron.

Skin and proximity effects are troublesome for present fast solvers because they generate an exponen-
tially varying current distribution inside each conductor. Trying to represent that current variation using the
piecewise constant basis functions described in Section 3.3.1 and in [121, 143] commonly available in fast
solvers [68] requires a large number of unknowns. Since the computation time for fast solvers is supposed
to increase only linearly (more precisely O(nlog(n))) with the total number n of basis functions used in the
problem, it may seem that the increase in unknowns to represent current variation is not that problematic.
However, when many basis functions are used to represent the current variation in a cross-section of a con-
ductor, those basis functions densely interact in a way that can not be reduced by the algorithms used in most
fast solvers. For this reason, the computation time for modeling high frequency effects increases with the
square of the number of unknowns required to model the current variation within conductors even for fast
solvers.

Some research efforts have been previously concentrated on solving this issue by avoiding representing
currents in conductor interiors

� 2 1
2 -D approximations using surface impedances has been used for instance in [141, 139, 140],

� alternatively it has been recognized that the many conductor interiors can be decoupled into separate
Helmholtz problems, which can then be combined with a global exterior Helmholtz problem [138,
30, 142, 151]. The many Helmholtz equations can then be solved either by integral or by differential
methods.

� Finally Silvester proposed to expand the current in a flat conductor into a series or orthogonal eigen-
modes [133].

Two contributions of this specific Ph.D. work concentrate on addressing the same issue by generating
specialized basis functions which more easily capture the exponential variation of the conductor current:

1. We will develop in this same Chapter the “conduction modes basis functions” In such method we take
a different approach from the previous [133, 140, 138, 30, 142, 151] and use the interior Helmholtz
equation to generate basis functions for use in the standard Galerkin technique [54] for solving the
Mixed Potential Integral Equation (MPIE).



4.1. USING CONDUCTION MODES AS BASIS FUNCTIONS FOR THE CONDUCTOR CURRENTS41

2. We will be present in the following Chapter 5.1. the “proximity templates basis functions” approach [38].
In such method we demonstrate that it is also possible to generate numerically a set of basis functions
which efficiently represent conductor current variation. Similar performance is achieved as with the
conduction modes basis functions, but unlike the conduction mode approach, the template approach is
easily extended to general shape cross-sections (e.g. trapezoidal).

The remainder of this Chapter is organized as follows: in 4.1, we derive the “conduction modes” from the
solution of the electric field Helmholtz equation for the interior of the conductors. Based on such modes, we
define cross-section basis functions and we show how to use our new basis functions for the discretization of
the Mixed Potential Integral Equations (MPIE) presented in Section 3.2. Several examples are finally shown
in 4.2 to verify the capabilities of our method and its computational attractiveness. In particular, we show
how our new approach can successfully and efficiently capture skin effects, proximity effects, multiple return
current paths distributions, and transmission line resonances.

4.1 Using conduction modes as basis functions for the conductor cur-
rents

4.1.1 Conduction modes

Combining the two Maxwell differential equations,

∇�E = � jωµH (4.1)

∇�H = ( jωε+σ)E; (4.2)

and using the “good conductor hypothesis”, σ� jωε, we obtain the governing Helmholtz diffusion equation
for the region inside each conductor:

∇�∇�E+ jωµσE= 0: (4.3)

In terms of the current density, J = σE, and the skin depth, δ =
p

2=(ωµσ), (4.3) can be rewritten as

∇�∇�J+
�

1+ j
δ

�2

J = 0: (4.4)

Assuming the current in each conductor section flows primarily lengthwise (as shown in Fig. 4.3), J can be
approximated by J = Jzâz, where âz points along the conductor length. The scalar Jz then satisfies

∂2Jz

∂x2 +
∂2Jz

∂y2 �
�

1+ j
δ

�2

Jz = 0: (4.5)

Figure 4.3: We assume the current flows primarily along the length of the conductors: the z axis in this
picture.
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The general solution of (4.5) is the infinite series:

Jz(x;y) = ∑
ν

Cνe�ψνxe�ηνy; (4.6)

where Cν are free coefficients and ψν and ην satisfy [40]

ψ2
ν +η2

ν =

�
1+ j

δ

�2

: (4.7)

Each term in the previous series is referred to as a “conduction mode”. As an illustrative example of a very
simple conduction mode, let

ψν =
1+ j

δ
(4.8)

ην = 0: (4.9)

This mode can account for cross-sectional current distributions decaying exponentially, with spatial con-
stant δ, from one edge of the conductor cross-section. The picture on the left in Fig. 4.4 shows a graphical
representation of such a current distribution.
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Figure 4.4: Current density for an “edge mode” (on the left) associated with the shaded rectangular cross-
section (on the right). In the figure on the left, axes x and y correspond to the width and length of the wire
cross-section. Hence axis z is parallel to the direction of current flow, and shows the current density for
each point of the cross-section. The conduction mode shown here is named “edge mode” since it represents
current crowding at one of the four edges of the wire cross-section.

For current distributions generated by interconnect problems, J z can be accurately represented using only
a few conduction modes. For example, a combination of four simple edge modes, one for each edge, can
account for most of the high frequency cross-sectional conductor current distribution. At very high frequency,
a few other modes might be needed to account for corner effects. The simplest example of corner mode is
obtained by choosing

ψν = ην =
1p
2

�
1+ j

δ

�
: (4.10)

As it is shown in the picture on the left in Fig. 4.5, this mode can easily account for a cross-sectional current
distribution decaying exponentially from the corner of the conductor cross-section.
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Figure 4.5: On the left: “corner mode” for a rectangular cross-section. On the right: example of a single
basis function obtained combining two horizontal edge modes.

4.1.2 Discretization basis functions

Now construct a set of discretization basis functions for the conductor volumes. Long conductors are
subdivided along their length into sections that are short compared to the smallest wavelength. The current
density is represented by a collection of basis functions in each section,

J(r) = ∑
j;k

I jkw jk(r); (4.11)

where j is a summation index over all the sections of all the conductors, and k is a summation index over
all the basis functions in a given section. The conduction modes in (4.6) represent a natural choice for the
section basis functions:

w jk(r) =

8><>:
âz j
A jk

∑p e�ψ jkp(x�x jkp)e�η jkp(y�y jkp) ifr 2Vj

0 otherwise

(4.12)

where Vj is the volume of section j, x and y are variables spanning the section j, and

r = r jcorner + x âx j + y ây j : (4.13)

Translation constants, x jkp and y jkp, as well as the “plus” signs in front of ψ jkp and η jkp, account for modes
decaying from the other corners or edges. We have chosen to introduce a normalization constant A jk defined
such that parameter I jk in (4.11) represents the total current in section j associated with basis function w jk.
Therefore

A jk =

Z
S j

∑
p

e�ψ jkp(x�x jkp)e�η jkp(y�y jkp)dxdy; (4.14)

where S j is the cross-section of volume V j.
To reduce the number of degrees of freedom for the discretization, it is possible to “pair-up” modes which

are likely to have the same magnitude. One example where it is helpful to combine two modes into a single
basis function occurs when modeling a PCB wire. In this case, one may wish to combine the lower horizontal
edge mode with the upper horizontal edge mode, as shown in the picture on the right in Fig. 4.5. The large
aspect ratio, and large layer separation, of the PCB cross-section wires, typically limits proximity effect
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differences between lower and upper horizontal edge modes. Edge modes on opposite lateral sides (left to
right) can not be combined as differences in left to right neighboring geometry will result in different left
to right edge mode amplitudes, due to proximity effects. For this reason, the two lateral edge modes should
instead be assigned to two separate basis functions.

4.1.3 Discretization of the MPIE

Substituting (4.11) into (3.14) and using a Galerkin method as described in Section 3.3 results in

∑
k

RihikIik +∑
j;k

jωLih jkI jk = φA�φB (4.15)

where one can recognize terms that could be interpreted as equivalent resistances and partial inductances of
the conduction mode basis functions

Rihik =
1
σ

Z
Vi

w�
ih(r) �wik(r)dr (4.16)

Lih jk =
µ

4π

Z
Vi

Z
Vj

w�
ih(r) �w jk(r)

e j w
c jr�r0j

jr� r0j dr0dr: (4.17)

The index h specifies the conduction mode basis function on the wire section i.
When using piecewise-constant, or filament basis functions for each section, the resulting resistance ma-

trix is diagonal. This is because the filament basis functions are orthogonal, which follows from the fact
that they have a non-overlapping support. The conduction modes generate non-orthogonal basis functions in
each section, but basis functions in different sections still do not overlap. These facts imply that the resis-
tance matrix generated from conduction mode basis functions will be block diagonal, where the block size
is equal to the number of conduction modes in a section. A diagonal matrix R can be obtained by first using
Gramm-Schmidt to orthogonalize the basis functions.

As in the PEEC method [121], an equivalent circuit interpretation can be given also to our method (Fig. 4.6),
although we do not use this circuit interpretation in the solution of our system. In the conventional PEEC
method, resistances and inductances refer to small cross-sectional filaments. In our case, instead, resistances
and inductances refer to our conduction mode basis functions.

Ii3

Ii1

Ii2

∑Li1 jk
∂
∂t I jk

Ri3i3

Ri2i2

Ri1i1

Li2i2

Li3i3

Li1i1

∑Li2 jk
∂
∂t I jk

∑Li3 jk
∂
∂t I jk

∑Ri1ikIik

∑Ri3ikIik

∑Ri2ikIik
φBφA

Figure 4.6: An equivalent circuit interpretation can be given to this new cross-section basis function method
as in the PEEC method. Every piece of conductor is modeled by the circuit shown here. Resistances and
inductances refer to the conduction mode basis functions, rather than to small cross-sectional conductor
filaments. In this particular model, we are showing 3 cross-section basis functions per piece of conductor.

4.1.4 Numerical implementation considerations

The integral in (4.17) can be evaluated numerically using, for instance, a Gaussian quadrature algorithm.
At first glance, one can observe that for the complete matrix setup, such integrals must be calculated O(n 2Nf )



4.2. IMPLEMENTATION EXAMPLES 45

times, where n is the number of basis functions and N f the number of frequency points. However, all this
computation can be performed off-line before solving the resulting linear system.

Furthermore the amount of computation can be reduced by observing that for the purpose of evaluating the
integral in (4.17), one can introduce a piecewise constant thin filaments discretization of each cross-section
and approximate (4.17),

Lih jk �
Ni

∑
ni=1

Nj

∑
n j=1

w�
ih(rni) �w jk(rnj) e

j w
c jrni�r0nj

j
L̂nin j ; (4.18)

where ni, n j, and rn j , rn j indicate the indexes and the centers of the integration thin filaments in conductor i
and j respectively. L̂nin j is the well known quasi-static partial inductance Galerkin integral between two thin
filaments Vni and Vn j :

L̂nin j =
µ

4π

Z
Vni

Z
Vn j

dr0dr
jr� r0j : (4.19)

When the two conductors are parallel, there are formulas for (4.19) such as in [121]. Furthermore, the integral
L̂nin j is not frequency dependent, and therefore can be evaluated only once and re-used at all frequency points.
The order of computation for the complete system setup is now O(Nth) where Nth is the total number of thin
filaments. Therefore in terms of setup time, the conduction modes method is no worse than the classical thin
filament piece-wise constant method [121, 143, 68].

However, the most important contribution to the overall computation time and memory requirements is
due to the subsequent linear system solution step, which is typically O(n 2) even when using fast methods
if skin effects and proximity effects need to be accounted for accurately. In Section 4.2 examples will be
presented showing that for the same final accuracy the conduction mode basis functions method requires
1=20th the number of basis functions used by the classical piece-wise constant method, and therefore reduces
solution times and memory requirements by a factor of 400.

4.2 Implementation examples

Below are several example results from our implementation of the conduction modes approach. These
examples verify that the method can successfully and efficiently capture skin effects, proximity effects, re-
turn current paths distributions, and transmission line resonances. These examples also verify that, for the
same final accuracy, the method is much more efficient than the classical piece-wise constant thin filament
method [121, 143, 68].

4.2.1 Capturing skin effects on two widely separated copper strips

Table 4.1: Skin effect in copper strips (1.26cm x 0.1575cm x 32m) widely separated (60cm).
Temperat. Frequency RDC [Ω] RAC=RDC RAC=RDC Error RAC=RDC Error
deg. cent. [Hz] measured measured 3 cond. modes % 48 thin filam. %

+6.8 225 0.0563 1.004 1.003 0.1 1.003 0.1
-2.0 708 0.0539 1.038 1.029 0.9 1.030 0.8
-1.8 1188 0.0541 1.085 1.067 1.6 1.074 1.1
+6.0 1900 0.0554 1.161 1.131 2.6 1.145 1.4
-1.5 2980 0.0541 1.261 1.228 2.6 1.241 1.6
-5.0 3690 0.0534 1.326 1.289 2.8 1.296 2.2
-1.3 5169 0.0543 1.426 1.409 1.2 1.398 2.0

In this first example we reproduced in our field solver the experimental setup described in [72]. This
example will show that the conduction modes method can capture skin effects, matching actual experimental
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measurements. Two copper strips are placed parallel to each other at a distance of 60 cm, they are shorted at
one end and the resistance is measured at the other end at different frequencies. As observed in [72] in this
experiment a 60 cm separation is large enough that proximity effects are not significant on the two strips. The
copper strips are 1.26 cm wide and 0.1575 cm thick. In [72] no explicit information is given on both their
actual length and conductivity, although such information can be partially recovered using the data given on
the measured DC resistance. In our computer model we chose strips of length 32 m which is consistent with
a typical copper conductivity around σ = 5:8x10 7(Ω�m)�1. More precisely we fine tuned conductivities
such that the DC resistance of the simulated strip matched the measured DC resistances in Table 4.1 at the
different temperatures in each experiment.
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Figure 4.7: RAC=RDC vs. frequency for two widely separated copper strips. The black crosses are measured
data from a physical experiment. The continuous blue lines are obtained from a classical thin filaments
discretization approach using 48 thin filaments per cross-section. Red circles indicate results from our new
method using, in this particular example, only 3 cross-sectional basis functions.

In this example, we have used a classical surface discretization with 32 small panels per wire to account
for surface charge. We have used our conduction-mode cross-section basis functions to account for cross-
sectional current density inside the conductors. In particular, we have used the following three basis functions:

� one for the left side edge-mode (on the left in Fig. 4.4);

� one for a similar right edge-mode;

� and one for the combined upper and lower conduction modes shown on the right in Fig. 4.5.

Using such basis functions we computed the terminal impedance, Z, versus frequency and considered its real
part RAC = RefZg for comparison with the experimentally measured data from [72] as shown in Table 4.1
and Fig. 4.7.

In Table 4.1 and Fig. 4.7, we also compare our conduction mode method with one that uses the same
discretization for the conductor surfaces, and a classical piece-wise constant thin filaments discretization.
From Table 4.1, our method shows a worst case 2.8% error compared to measured data. In order to achieve
a similar accuracy, the classical filament discretization method requires 12x4 = 48 thin filaments per cross-
section, even when adopting the filaments to be thinner close to edges and corners. In particular, as we get



4.2. IMPLEMENTATION EXAMPLES 47

closer to edges and corners we kept decreasing the filament thickness by a factor of 1.5. For this example,
maintaining comparable accuracies, our method produced a system with 1=16 th the number of unknowns,
leading to a speed improvement factor of 256, when using iterative linear system solvers.

4.2.2 Capturing skin effects on a PCB wire example

A simple PCB wire example was used to test the ability of the conduction modes method to capture
frequency variations of resistance and inductance due to skin effects. We computed the terminal impedance,
Z, versus frequency for a a typical PCB wire (250µm wide, 35µm thick, and 5mm long). Fig. 4.9 and 4.10
shows the real part of the impedance (RefZg), and the imaginary part divided by ω (L = ImfZg=ω), as a
function of frequency.

Figure 4.8: PCB wire setup
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Figure 4.9: RefZg vs. frequency for a typical PCB wire. The continuous curves are obtained from a classical
very accurate 18x14 filaments discretization approach. Circles indicate results from our new method using,
in this particular example, only 3 cross-section basis functions.

In this example, we have used a classical surface discretization into small panels to account for surface
charge, while we have used our conduction-mode cross-section basis functions to account for cross-sectional
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Figure 4.10: L = ImfZg=ω vs. frequency for a typical PCB wire. The continuous curves are obtained from
a classical very accurate 18x14 filaments discretization approach. Circles indicate results from our new
method using, in this particular example, only 3 cross-section basis functions.

current density. In particular, we have used the following three basis functions:

� one for the left side edge-mode (on the left in Fig. 4.4);

� one for a similar right edge-mode;

� and one for the combined upper and lower conduction modes shown on the right in Fig. 4.5.

In Fig. 4.9 and 4.10 we compare our method with one that uses the same discretization for the conductor
surfaces, and a very accurate classical piece-wise constant cross-sectional discretization using 18x14 small
filaments. In the filament approach, we have used thinner filaments close to edges and corners as shown in
Fig. 4.11. In particular, as we get closer to edges and corners we keep decreasing the filament thickness by a
factor of 1.5.

Figure 4.11: The optimal way to implement the filament approach is to use a non-uniform discretization with
thinner filaments close to edges and corners where the current density profile changes more rapidly.

Compared to the accurate filaments solution, our method shows (in the worst case):

� a 5% error for the resistive part of the impedance RefZg,

� and a (very small) 0.2% error for the inductive part of the impedance, L = ImfZg=ω.
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In a second experiment on the same example, we tested the convergence rate of the classical filaments
discretization approach. In this experiment we have observed that, in order to achieve the same accuracy of
our conduction modes method, the classical filament discretization method requires 10x7 small filaments per
cross-section, with filaments thickness decreasing at a ratio of 5 at each step as we get closer to edges and
corners. Hence in this example, for the same final accuracy, our method produced a system with 1/23 of the
number of unknowns, leading to a linear system solve 500 times faster when using iterative methods.

4.2.3 Capturing proximity effects on an IC bus example

In this second example, we test the ability of our method to model proximity effects combined with skin
effects on the IC bus example shown in Fig. 4.12. Six long interconnect wires are routed very close to each
other (2µm). Each wire is 2µm wide and 2.5µm thick, and therefore has a very different cross-sectional
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Figure 4.12: IC bus: 4 signal wires between two ground return wires. In our simulation, the second wire from
the right is shorted on one side of the bus to the lateral ground wires. The other side is driven by an ideal
voltage source. All wires are 2µm wide, 2.5µm thick and 2µm far apart. The three legs of the bus are 100µm,
200µm and 50µm long respectively.

aspect ratio from the previous example. The six wires are routed in a dog-leg bus configuration, where the
three sections are 100µm, 200µm and 50µm long respectively. The four wires in the center of Fig. 4.12 are
signal wires. The first and last wire are ground return wires. In our experiment, we grounded one side of the
second wire from the right in Fig. 4.12, and we drove the other side with an ideal voltage source.

Fig. 4.13 shows the resistive part (above) of the impedance as a function of frequency, as well as L =
ImfZg=ω, the “inductive” part of the impedance (below). The continuous lines are obtained using a very fine
piece-wise constant thin filament discretization with 90 filaments per wire cross-section. These 90 filaments
are sufficient to consider the continuous lines in Fig. 4.13 as the “exact” solution. Circles show the results
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obtained using only three conduction modes. In the worst case, our three conduction modes give an error of
1.5% in the resistive part of the impedance, and 0.9% in the inductive part of the impedance. In Fig. 4.13,
one can notice three frequency regimes:

� a low-frequency regime, with very small resistance since the current returns from both available ground
wires.

� a mid-frequency regime, where the closer ground begins to be preferred to the farther away ground on
the other side of the bus. The inductance begins to decrease since less current is now flowing on the
largest loop. The resistance begins to increase.

� a high-frequency regime, where inductance keeps decreasing and resistance starts increasing exponen-
tially. In this regime most of the current has crowded on only one side of the wire due to the proximity
effect. The cross-sectional current distributions on the bus are shown in Fig. 4.15 for an excitation at
30 GHz. In Fig. 4.14, we compare the cross-sectional current density on the driven wire. On the left
we show the result from the very fine thin filament discretization, and on the right we show the result
obtained using only 3 conduction modes per cross-section. Comparing the figures makes it clear that
our method captures accurately both skin effects and proximity effects.

We also observed that for the same final 1.5% accuracy, the classical method would require at least 49 thin
filaments per cross-section even when adopting the filaments to be smaller near edges and corners. Therefore,
in this example, we conclude that our approach requires 16 times fewer parameters than the classical method
for the same final accuracy, leading to system solves 256 faster when using iterative methods.
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Figure 4.13: RefZg and L = ImfZg=ω vs. frequency for bus in Fig 4.12. The continuous lines are obtained
using a very fine thin filament discretization with 90 filaments per wire cross-section. Circles show the results
obtained using only three conduction modes.
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Figure 4.14: Comparison for the cross-sectional current density on the driven second wire from the right of
Fig 4.15. In the picture presented here on the left we show the result from a very fine thin filament discretiza-
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Figure 4.15: Cross-sectional current distributions on the IC bus in Fig 4.12. The second wire from the right
is driven by and ideal voltage source at 30 GHz. The first wire from the left and the first wire from the right
are DC ground returns.
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4.2.4 Capturing resonances on a PCB transmission line example

In a third example, we test the ability of our method to capture wavelength related resonance phenomena.
Characterization of resonance’s positions and amplitudes is very important in applications such as signal
integrity and electromagnetic interference. Unfortunately, such resonances are typically difficult to simulate
with accuracy since their amplitude is very much influenced by the conductor’s AC resistances due to internal
current distributions. Although we present here a simple and intuitive geometry, our method can characterize
such wavelength related resonances for any general 3D geometry even when a transmission line structure is
not so well defined as in the following case.

We model here two coplanar PCB wires, 30cm long, very close together in a coplanar transmission line
configuration shown in Fig. 4.16. Wires are 250µm wide, 35µm thick and 150µ far apart.

Figure 4.16: Shorted coplanar T-line. Wires are 250µm wide, 35µm thick, 30cm long and 150µm far apart.

Worst case high-Q resonances are obtained when the two wires are shorted at one end, and are excited on
the other end at the resonance frequencies with an ideal voltage source. For instance, when the frequency is
such that the transmission line length is close to a quarter of a wavelength or to half a wavelength, one can
observe in Fig. 4.17 and 4.18 resonance peaks. Continuous lines in Fig. 4.17 and 4.18 are obtained using a
classical piece-wise constant very fine cross-sectional discretization of 252 thin filaments per cross-section.
This kind of discretization is sufficient to consider once again those continuous lines the “exact” solution.
Circles are obtained instead using only three conduction modes per wire cross-section. Both in the thin
filaments method and in our conduction modes method, we subdivided each wire along its length into pieces
short compared to a wavelength. In Fig. 4.18, we measure that our three conduction modes method gives a
worst case 1.3% error in the position of the second half-wavelength admittance resonance. A higher worst
case error (9.6%) is measured on the amplitude of the same resonance. Fig. 4.19 compares at such resonance
frequency the current distributions on the cross-section of one of the wires. On the left we show the result
from the very fine 252 thin filaments discretization. On the right we show our three conduction modes
solution. One can observe that the two current distributions are very much alike, except for the corners. At
this frequency, currents begin to crowd more significantly on the corners of the cross-section, requiring the
inclusion of a few “corner modes” in the set of the discretization basis functions, if higher accuracies are
needed.
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Figure 4.17: Admittance amplitude vs. frequency for a shorted coplanar T-line. Wires are 250µm wide,
35µm thick, 30cm long and 150µm far apart. The continuous line is obtained using a very fine 252 thin
filaments per cross-section discretization. The circles are the results obtained using only 3 conduction modes
per cross-section. In both cases conductors lengths are subdivided into 10 pieces per wavelength along their
length.

4.3 Conclusions on the conduction modes basis functions

In this Chapter we have presented a new method for modeling internal conductor current distributions
in a quasi-static or full-wave electromagnetic simulator. We have shown how to derive conduction modes
for use in the discretization of the Mixed Potential Integral Equation. We have demonstrated the method
on three examples, from both IC and PCB applications. We showed that skin effects, proximity effects and
transmission line resonances can all be successfully and efficiently captured for different wire configurations
and cross-sectional aspect ratios. In our examples, for the same final accuracies, using our conduction modes
method, linear systems of equations are obtained on average 16 to 20 times smaller than when using the
classical thin filament discretization methods. Hence solutions on average 256 to 400 times faster are possible
when using iterative methods.
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Figure 4.18: Admittance phase vs. frequency for the same coplanar T-line as in Fig. 4.17.

Figure 4.19: Cross sectional current distributions at the half-wavelength resonance. On the left: result from
a very fine cross-sectional discretization. On the right: result from the 3 “edge” conduction modes per
cross-section method. Inclusion of corners modes can farther improve the fit if higher accuracies are needed.
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Chapter 5

Proximity template basis functions

In this Chapter we demonstrate that it is possible to generate numerically a set of basis functions which
efficiently represent conductor current variation. The work in this Chapter has first appeared in [38]. Our
method is based on solving a sequence of simple “template” problems for the typical geometries associated
with a given interconnect technology. These template problem solutions are then used as replacement for the
piece-wise constant basis functions in an integral equation method based on the Galerkin discretization of
the Mixed-Potential Integral Equation (MPIE) presented in Section 3.3. As our results will demonstrate, the
numerically computed basis functions require 7 to 20 times fewer unknowns than piece-wise constant basis
functions. It should be noted that similar performance was achieved by generating basis functions using 2-D
conduction modes [35, 37] in Chapter 4, but unlike the conduction mode approach, the template approach is
easily extended to general shape cross-sections (e.g. trapezoidal).

In Section 5.1 we describe the steps for the pre-computation of our template basis functions. In Section 5.2
we show how to use the templates in the Galerkin integral equation method underlining some numerical
implementation issues. Finally in Section 5.3 we present several example results on typical IC, package and
PCB simple interconnect structures.

5.1 Pre-computation of the proximity template basis functions

In this section, we describe our procedure to construct a set of template basis functions for the discretiza-
tion of the conductor volumes within the context of an integral equation electromagnetic field solver. As
in the classical piece-wise constant approach [121, 143, 68] described in Section 3.3.1, or as in the con-
duction modes approach [35, 37], in Chapter 4, we assume that the current flows only along the length of
the conductors, and that long conductors are subdivided into sections short compared to the smallest wave-
length of interest. We then categorize and label each conductor section according to its cross-section “type”.
Each “type” is uniquely identified by its cross-section dimensions and shape. For instance, for wires with a
trapezoidal cross-section: width, thickness and etching slope could be used as identifying parameters.

Often when performing an electromagnetic analysis, one is interested in the current (or fields) distribution
at a particular excitation frequency, or in the impedance at some terminals for several excitation frequencies.
For each frequency of interest and for each wire cross-section “type”, we pre-compute off-line a set of prox-
imity template basis functions. Each basis function is constructed by solving a small simulation experiment:

1. Given a cross-section type, for the construction of the first template basis function we consider one
wire not interacting with any other wire, and excited with a unity current source at the frequency of
interest. For the solution of this simple problem we use a very fine piece-wise constant thin filament
discretization method [121, 143, 68]. We then choose as basis function the current density profile
derived on the entire cross-section by this analysis. We show on the left of Fig. 5.1 the thin filament
discretization of the wire cross-section and to its right the resulting cross-section current density that
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we use as first basis function. In Fig. 5.1 the wire cross-section is rectangular, but general cross-section
shapes can be handled in the same way by our procedure. From an intuitive point of view, the template
basis function described here is used to capture skin effect phenomena.
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Figure 5.1: Example of the first proximity template basis function. On the left, we show a cross-section of
the simulation experiment setup used to pre-compute the basis function. The basis function is defined as the
current density (shown on the right) resulting on the cross-section of the wire.

2. Other basis functions are then constructed to capture proximity effect phenomena. In order to capture
proximity effect phenomena due to wires on the side, we construct a second template basis function
solving a second simple experiment. In this second experiment we consider two wires not interacting
with any other wire. The cross-section of the “main” wire is chosen equal to the cross-section shape
and dimensions for the “type” under consideration. A second auxiliary wire is located on one of the
two sides of the main wire, as close to the “main” wire as the technology fabrication process would
allow. The auxiliary wire is chosen with the minimum width and thickness allowed by the technology
fabrication process. Fig. 5.2 shows on the left the cross-section configuration of the two wires. For the
analysis of this problem we use a classical and very fine piece-wise constant discretization for both such
wires. We short them together on one side, apply a unity current source at the remaining two terminals,
and solve for the current density within the conductors. We finally define as second proximity template
basis function the current density profile observed on the main wire. On the right in Fig. 5.2 we show
the cross-sectional current density of the second basis function.

3. We proceed constructing additional proximity template basis functions using the procedure described
in point 2 above, but every time moving the auxiliary wire in a different location around the main wire,
always as close to the main wire as the technology fabrication process allows. Fig. 5.3 shows other
two examples of template basis functions with their corresponding experiment setups for the same
cross-section as in Fig. 5.1 and 5.2.

5.1.1 Choosing the number of template basis functions per wire cross-section

More specifically, the total number of template basic functions precomputed for each cross-section type
can be decided according to the following considerations.

In some cases, one only needs to use a total of three proximity templates for each cross-section type: a
“skin effect template” constructed as in Fig. 5.1, and two “side proximity templates”, one for the right side
as in Fig. 5.2 and one for the left side (typically symmetric to the one in Fig. 5.2). This choice is typically
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Figure 5.2: Example of the second proximity template basis function. On the left, a cross-section of the
simulation experiment setup used to pre-compute the basis function. On the right the basis function itself: i.e.
the current density resulting on the main wire cross-section.

appropriate for wires on most Printed Circuit Board (PCB) applications, where the separation between differ-
ent layers is particularly large, and proximity effects are only observed in correspondence of “side by side”
wires, and not in correspondence of wires on different layers.

When separation between metalization layers is small as in packages and in integrated circuits, one needs
to be able to account for proximity effects due not only to wires “side by side” but also due to wires on upper
and lower layers. In this case, for thin wires we use a total of nine templates: a “skin effect template”, four
proximity templates constructed using an auxiliary wire moved to each of the four sides of the main wire,
and four proximity templates with the auxiliary wire moved to each of the corners around the main wire.
Fig. 5.1, 5.2, and 5.3, show four out of nine of such templates. One can notice that in case of symmetric
cross-sections the other five templates do not need to be computed.

Finally, in the case of considerably wide wires, in addition to the nine templates previously described,
one needs to use a few more proximity templates to capture appropriately proximity effects due to thin wires
in any location above or below such wide wire. In our implementation we precompute templates using an
auxiliary wire that for each template is moved in different locations around the main wire. We remind the
reader that the auxiliary wire width an thickness are chosen as the minimum allowed by the technology
process, and that the auxiliary wire is located at the minimum distance from the main wire allowed by the
technology process. For each template we then move the auxiliary wire to locations each separated by 4 times
the auxiliary wire width.

5.1.2 Accuracy and basis function richness

The accuracy of the final solution is related to the ability of the chosen basis functions to “explain” most
of the cross-sectional current density capturing current crowing in different parts of each cross-section due to
the specific locations of nearby wires. More precisely, in linear algebra terms: when considering the cross-
sectional current density as a vector, the accuracy of the final solution is related to the ability of the chosen
basis functions to “span” most of the subspace generated by all practical current density vectors. In general
the accuracy of the final solution can be arbitrarily improved if the set of all basis functions that one can
choose from is sufficiently reach to span the entire subspace of all practical solutions. In our case, in theory
the basis function set is quite reach since one could increase the accuracy of the final solution by simply
adding more and more basis functions, one for each possible practical location of nearby wires. However we
have observed experimentally (see Examples 5.3.2 and Example 5.3.1) that the procedure in 5.1 and 5.1.1
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Figure 5.3: Example of other two proximity template basis function. On the left, a cross-section of the simula-
tion experiment setups used to pre-compute the basis functions. On the right the basis functions themselves:
i.e. the current densities resulting on the main wire cross-sections.

constructs a much smaller set of basis functions at the same time still allowing of a good final solution
accuracy.

5.1.3 Advantages and disadvantages of the proximity template basis functions

From the construction procedure described above in 5.1 and 5.1.1 one can notice several advantages and
disadvantages of our template basis functions in particular when compared to other higher order basis function
choices such as the “conduction modes” described in [35, 37]. Among the advantages it can be noticed that:

� our template basis functions can handle any wire cross-section shape, i.e. the common trapezoidal
cross-sections due to chemical etching slopes. In the conduction modes basis function approach [35,
37], instead, only cross-section shapes for which analytic solutions of the diffusion equation are avail-
able can be handled, i.e. mainly rectangular and cylindrical cross-sections.

� our template basis functions can capture proximity effects due to thin wires above very wide wires (as
shown later in Example 5.3.2 and Fig. 5.5) that are not captured by the “conduction mode” approach.

Among the disadvantages of our template basis functions, we remind the reader that:
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� a complete set of template basis functions need to be pre-computed for each wire cross-section “type”
(i.e. shape and dimensions). Fortunately, one can further observe that often the actual number of wire
cross-section types on a typical PCB, package or IC is quite limited. For instance the etching slope can
be assumed constant for all cross-sections for a given process. The variability of the wire thickness
is limited to the number of metalization layers in the design. Also the variability of the wire width
parameter in practical designs is often limited to a finite and small set of admissible values by design
rules or CAD tools. It is also worth noticing that once the template basis functions are computed they
can be stored in a file and re-used for subsequent designs based on the same process technology.

� Another disadvantage of our proximity templates compared to the conduction modes is that a complete
set of template basis functions need to be pre-computed for each frequency of interest. Typically one
is not interested in a large number of frequencies. For instance in digital interconnect one is typically
only interested in the clock frequency and its first 10 to 15 harmonics. Once again, one can further
notice that once the template functions are calculated for a particular frequency, they can be stored and
re-used in subsequent designs for analysis at that same frequency. However admittedly a significant
advantage of the conduction mode basis functions over our proximity templates is the availability of the
conduction modes in analytical form which can be exploited when performing model order reduction.

5.1.4 Representation of basis functions

As just observed in the previous section, we represent our basis functions with a piecewise constant values
of the current density on each small cross-sectional filament. In this way for each basis function we only need
to store some information on the discretization scheme from which one can easily derive filament geometries
(e.g. width of corner filament and incremental ratio between nearby filaments), and a vector with the values
of current density on each filament.

One could think of using more efficient representations in terms of some interpolation functions in order
to save some storage memory and some computation time in the Galerkin integral computations. We expect
however to obtain the most advantage by fitting our templates basis functions to interpolation function not
only to represent their shape along the wire cross-section but also and above all to capture their dependency
from frequency. In fact, this could allow us to perform model order reduction with our template basis func-
tions as efficiently as with the conduction modes. However, we have not verified yet the practical feasibility
of such procedure.

5.2 Parasitic extraction for a large collection of interconnect

Given a large collection of wires, for a given frequency of interest, each wire is associated with the
set of pre-computed proximity template basis functions corresponding to its cross-section type. The basis
functions chosen in this way, together with a standard Galerkin procedure [54], are used to discretize the
Mixed Potential Integral Equation (MPIE) and calculate the overall resistance R and the partial inductance
L matrices in eq. (3.23) and (3.24) as shown in Section 3.3. Accumulation of charge on the surfaces of the
conductors can still be handled for example using the classical piece-wise constant discretization of such
surface into small panels as described in Section 3.3.1. A mesh analysis technique [67] is then finally used
to set up a linear system of equations that can be solved to find the weights w j and vm associated with each
single basis function.

From a numerical implementation prospective one can observe that the proximity template basis functions
as constructed in Section 5.1 are not orthogonal. The resistance matrix for instance is block diagonal. In
general, when the basis functions are almost linearly dependent, their associated coefficients representing the
final solution may result very large, similar in magnitude, and possibly of opposite phases partially canceling
each others, which may produce errors when using a finite precision representation. One can avoid this
problem and achieve better numerical stability by ortho-normalizing the basis functions before using them
with for instance a “Modified Gramm-Schmidt” procedure [41]. Another advantage of orthonormalizing the
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basis functions is that a completely diagonal resistance matrix is produced, which is convenient for instance
when performing a subsequent model order reduction step that may require an inversion of such matrix.
The orthogonalization procedure is quite fast and most importantly it is part of the “precomputation” phase,
hence it does not affect the speed and memory performance during the analysis of a very large collection of
interconnect.

As a final remark, it can be noticed that our proximity templates basis functions can be used in combina-
tion with fast matrix solvers [94, 68, 110, 136, 71].

5.3 Examples

5.3.1 Capturing proximity effect between two wires at arbitrary distance

In this section, we intend to show with an example that although our proximity templates are constructed
using an auxiliary wire very close to the main wire, such template basis functions can successfully capture
proximity effects due to wires at any arbitrary distance. Consider for instance a typical PCB wire 250µm
wide, and 35µm thick. In this example we used a set of three template basis functions per cross-section. One
template was constructed using one wire alone with a 250µm x 35µm cross-section. A second template was
constructed using one main wire (cross-section: 250µm x 35µm) in the center and one auxiliary wire (250µm
x 35µm) on one side at a separation distance of 100µm. A third template was constructed by moving the
auxiliary wire to the other side at the same separation distance. For the construction of the basis functions,
we discretized each wire into 24x14=344 thin filaments. After the three template basis functions have been
constructed, we used them in the integral equation Galerkin procedure described in Section 3.3 to calculate
the frequency response of two wires with the same cross-section at different separation distances: 100µm,
190µm, 305µm, 448µm, and 629µm. We compare in Fig. 5.4 the result obtained using our three proximity
template basis functions per cross-section with the result obtained using 344 thin filaments basis functions
per cross section. Of course one can expect a negligible error when the wires’ separation is exactly equal
to the separation used for the construction of the basis functions (100µm). However, we also observed an
equally very small error (worst case 0.7% error for the real part of the impedance, and a 0.01% error for
the imaginary part divided by ω) for the case in which the separation between the two wires increased to an
arbitrary distance and did not coincide anymore with the separation used during the construction of the basis
functions.
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Figure 5.4: Frequency response of two shorted PCB wires: real part of the impedance on the top, and
imaginary part divided by ω on the bottom. The different curves represent different distances between the two
wires: 100µm, 190µm, 305µm, 448µm, and 629µm (from top to bottom on the left and from bottom to top on
the right). The continuous lines are the results obtained using the classical thin filament method. The small
crosses are the results obtained using three template basis functions pre-computed for a minimum separation
distance 100µm.
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Figure 5.5: Package wire cross sectional current density “reconstructed” from a set of nine pre-computed
proximity template basis functions (picture on the left), compared to the current density (picture on the right)
from using a set of 16x9 = 144 thin filaments basis functions. A larger current distribution can be noticed on
one edge and on one corner of the cross-section due to the proximity of the small wire. Note that the location
of the small wire is off center, hence it does not coincide with any of the locations used to pre-compute the
nine template basis functions. One can notice that the current density is still captured accurately.

5.3.2 Capturing proximity effect between a thin wire in an arbitrary location above
a wide wire

From the previous example we have seen that the proximity templates is an approach at least as efficient
as the conduction modes approach [35] in terms of used number of unknowns. In addition, we show in
this example that the proximity templates can successfully capture one particular case not captured by the
conduction modes approach: proximity effects between a thin wire above and close to a very wide wire.
Consider for instance a package wire 40µm wide and 10µm thick. Pre-compute a set of nine proximity
effects basis functions for this wire. Fig. 5.1, 5.2, and 5.3 show four of such nine basis functions for the
cross-section type described in this example. The auxiliary wire is 10µm wide and is moved into several
locations all around the main wire all at a distance of 10µm. After the computation of the basis functions, we
have setup the experiment on top of Fig. 5.5. The small wire is 10µm x 10µm, the wider wire right below it
is 40µm x 10µm at a 10µm separation. We can also notice that the small wire is off center by 4µm so that
its location does not coincide with one of the locations used for the basis function construction (compare
the cross-section in Fig. 5.3 with the cross-section of the geometry in Fig. 5.5). The two remaining pictures
in Fig. 5.5 compare the cross sectional current density resulting from using our set of nine pre-computed
proximity template basis functions (left), with the result (on the right) obtained using a set of 16x9 = 144
thin filaments basis functions. We conclude that the proximity templates provide accurate results not only for
wires at an arbitrary distance as shown in Example 5.3.1, but also for wires located “in between” the original
locations used for the basis functions construction.
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Figure 5.6: A simplified representation of a power and ground grid of a package or of an integrated circuit.
Gray shading on the the grid indicate current distributions calculated by our solver when a current source
excites the grid node x = 4mm and y = 0mm. In this example we used three proximity template basis functions
for each wire cross-section.

5.3.3 A package power and ground distribution example

Finally we show here a package power and ground distribution grid Example (Fig. 5.7). Wires are 10µm
wide and 5µm thick. Vertical separation between layers is 5µm. Side separation between Gnd and Vdd
lines is 1mm. The total package size is 12mm x 12mm. We assumed bond wires connections shorting Gnd
and Vdd wires to an underneath PCB on all 4 corners of the package. We can notice that only one type of
cross-section is present in this design. For that cross-section type, we have pre-computed a set of three basis
functions as in Example 5.3.1. We have then used our three basis functions per segment to discretize the
entire geometry and find the frequency response at one particular node of the grid: the node at x = 4mm and
y = 0 mm (see Fig. 5.7). In our simulations we have also included the effects of charge accumulation on the
surface of the conductors using a piece-wise constant discretization into small panels. In Fig. 5.7 we compare
the frequency response of the grid at the node indicated above according to our three proximity templates per
wire versus the frequency response obtained using a thin filament discretization with 5x4 = 20 thin filaments
per each wire segment of the grid. Our approach required a total of 48x3=144 unknowns for the conductor
currents, while to get a similar accuracy with the thin filament approach we had to use a total of 48x20=960
unknowns. In particular, for our proximity templates approach we observed from the admittance phase vs.
frequency curve in Fig. 5.7 a worst case error of 0.5% in the position of the resonances. We observed from
the admittance amplitude vs. frequency curve a worst case 7% error in amplitude at the resonances, where
the impedance is mainly determined by skin effects and proximity effects.

5.4 Conclusions on the proximity templates basis functions

In this Chapter we have described a procedure to construct a set of template basis functions for the
discretization of conductor volumes in an integral equation method. The template basis functions are pre-
computed off-line using small simulation experiments. The templates can capture successfully both skin
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effect and proximity effects. Our examples show that compared to the thin filament methods they provide
the same 7 to 20 improvement factors in terms of number of unknowns reported by the conduction modes
approach presented in the previous Chapter 4. In addition the proximity templates can be employed in ap-
plications with wire cross-sections of arbitrary shape, and with proximity effects on wide wires due to above
and close thin wires.
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Figure 5.7: On top we show the admittance amplitude, on the bottom the admittance phase vs. frequency
observed at that same grid node in x = 4mm and y = 0mm of Fig. 5.6. In this example we used three proximity
template basis functions for each wire cross-section.
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Chapter 6

Future work in analysis

6.1 Adjoint method for fast transfer functions calculation

Figure 6.1: Typical radiation problem: obtaining all the transfer functions from the sources (e.g. 600 IC pins
on a PCB) to some observation points (e.g. 60 points) on a sphere the board at a 3 meters or 10 meters as
specified by EMI standards.

In order to quickly isolate the sources of EMI related problems a transfer function analysis capability
could be used. For example, during a PCB analysis, one would specify as possible sources of EMI all the
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pins of the chips mounted on the board. One would like also to measure the emitted fields all around the
board at a 3 meters or 10 meters standard distance for semi-anechoic measurements. We have calculated that
60 observation points all around the board can give a good characterization of the radiation pattern for the
frequencies of interest to EMI.

By transfer function analysis we mean providing the transfer functions from all the source pins (e.g. 600
pins) to all the observation points (e.g. 60) as illustrated in Fig. 6.1. Pins mostly responsible for emissions
can in this way be easily isolated and design for EMC can be driven to the wires connecting those pins.

In the classical and natural transfer function calculation method, one would apply test sources one at the
time to each of the pins and would then simulate the board to measure the emitted fields at all the observation
points. This requires one system solve for each pin.

We observed, anyway, there can be thousands or more pins even on a simple PCB with a few IC’s.
This would lead to thousands of systems solve using the classical direct method. A better way is using an
adjoint method. The main idea is that instead of obtaining from each system solve the transfer functions
from one pin to all the observation points, we set up the system such that for each system solve we obtain
the contributions from all pins to one single observation point. In this way we only perform as many system
solves as observation points, i.e. only 60.

In mathematical terms, let ER be the vector of fields measures at the 60 observation points. Let I p be the
vector of currents at the pins (or input terminals). Our objective is to calculate the transfer functions from all
pins to all the observation points, that is, we want to calculate all the elements of the matrix Y .

ER = Y Ip (6.1)

Of course Y is frequency dependent so we need to calculate Y at all frequencies of interest (typically the clock
frequency and its first few harmonics for digital circuits).

The direct method would calculate one column at the time of the thousands of columns of Y . We calculate
instead one row at the time of the 60 rows of Y . Let Y T

j be the jth column of Y corresponding to the j th

observation point where we measure the field ER j

ER j = Y T
j Ip (6.2)

In order to calculate Y T
j let us first show how to calculate the field ER j .

Figure 6.2: Assuming the exact current distributions Ib in all filaments are known, in one system solve we can
calculate and add up their contributions to field E R j in location R j.

Assuming the exact current distributions Ib in all filaments are known, one can simply add up their contribu-
tions in terms of field ER j (Fig. 6.2)

ER j = cT Ib (6.3)

where cT are coefficients for the field produced by a short filament antenna. Basically they are simple trans-
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lations and rotations of the formula for a short antenna along the â z axis from [118]
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where li is the length of filament i, ri is the distance from the filament to the observation point, k = 2π=λ is
the wave number.
Using some of the notation of the previous Chapter 3 on the equivalent circuit network set up we have

ER j = cT Ib (6.5)

= cT MT Im (6.6)

= cT MT (MZEMMT )�1Vms (6.7)

= cT MT (MZEMMT )�1ZthIp (6.8)

(6.9)

where Zth is a Thevenin impedance matrix converting the terminal current sources I p into mesh voltage
sources Vms. The column of transfer functions we are interested in is therefore

Y T
j = cT MT (MZEMMT )�1Zth (6.10)

or
Yj = ZT

th

�
(MZEMMT )T ��1

Mc (6.11)

as we can see most of the computation is still used when solving for matrix (MZ EMMT )T which is simply the
transpose of the matrix we would solve in the direct method.

A physical intuitive interpretation is possible for this method. Basically instead of setting up a test current
source for each pin and measuring the fields everywhere, we set up an imaginary current source in each
observation point and then we measure the voltage induced on all the pins by such imaginary source as
shown in Fig. 6.3. This suggests also a powerful method for calculating circuit susceptibility to external EMI
as we show in the next section.

Figure 6.3: A physical intuitive interpretation of the adjoint method: instead of setting up a test current source
for each pin and measuring the fields everywhere, we set up an imaginary current source in each observation
point and then we measure the voltage induced on all the pins by such imaginary source.

6.2 Susceptibility analysis using reciprocity

The previous adjoint method suggests that emission and susceptibility analysis are intimately correlated.
The main reason for this correlation is the Reciprocity Theorem. We show here how to apply such reciprocity
theorem to obtaining susceptibility analysis results from emission analysis results.
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Theorem 1 (The reciprocity theorem.) Consider a current distribution in some region of the space J a. Let
Ea be the field radiated by such source. Now remove the first current distribution and let us consider another
current distribution Jb. Let Eb be the field radiated by this second source. The reciprocity theorem states that

Z
V

Ja �Eb dV =

Z
V

Jb �Ea dV: (6.12)

Now apply such theorem. For our purposes, we choose the first current distribution as a collection of current
sources applied at the terminals ports of our board (i.e. the pins)

Ja(r) =∑
i

Ipi(r� rpi)

Api

(6.13)

where the summation is over all terminal ports, rpi is the position of the port i and A pi is its cross sectional
area.
As our second distribution of currents let us choose a collection of small imaginary current sources placed at
the observation points all around the board mentioned in the previous section.

Jb(r) = ∑
j

Is j(r� rsj)

As j

(6.14)

Applying Theorem 1:
Z

V
Ja �Eb dV =

Z
V

Jb �Ea dV (6.15)
Z

V
(JadS) � (Ebdl) =

Z
V

Ea � (JbdS)dl (6.16)

∑
i

IpiVsi = ∑
j

ER j [Is j dl] (6.17)

IT
p Vs = ET

R [Isdl] (6.18)

where Ip is the vector of the port current sources, ER is the vector of the fields produced by such sources in the
observation points. Is is the vector of imaginary current sources of small length dl that we have placed in a
second experiment in the observation points. Finally, but most importantly V s is a vector of voltages induced
by the imaginary sources on the port terminals. Vs is exactly the answer of a susceptibility problem because it
tells us what noise is induced on the port terminals due to some external field coming from the environment
around (in this specific case some points on a sphere at 3 meters or 10 meters).

We now show how we can calculate susceptibility transfer functions from the observation points to the
port terminals using a previous emission transfer function analysis. If we have already performed an emission
transfer function analysis, we have basically calculated all the coefficients in the matrix Y

ER = Y Ip (6.19)

Substituting into (6.18) we get

IT
p Vs = IT

p Y T [Isdl] (6.20)

Vs = Y T [Isdl] (6.21)

Hence the same transfer functions we calculated for emissions are the transfer functions for susceptibility,
and eq. (6.21) shows us how to use them to calculate induced noise voltages V s on the circuit ports due to
sources of interference from the environment I s.
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Part II

MODELING
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Electromagnetic analysis of a collection of interconnect is an essential tool for the verification of modern
electronic circuits. Such analyzes are of limited value unless the results can be combined with the circuit’s
transistors to simulate circuit performance. Typically, a designer would identify a few terminals for which
a model of the interconnect “seen” at the selected terminals is to be constructed. Such a model should
reproduce frequency and time domain behavior at the terminal of the original interconnect with an accuracy
comparable to electromagnetic analysis. Then, this model would be combined with the transistors connected
to the interconnect and simulated using a circuit simulator. Quick evaluation of the model is essential for
an acceptable time domain simulation speed in the circuit simulator, but at the same time, parasitic extractor
accuracy is essential for providing confidence to the circuit designer that the actual fabricated electronic
circuit will perform as predicted by the circuit simulation.

In this chapter we will first describe a method for constructing electromagnetic models of interconnect
using the discretization techniques of the Mixed Potential Integral Equation presented in the previous Chap-
ters 3-5. Such models are based on a dynamical state space system representation. Unfortunately, the order
of the resulting dynamical state space system is as large as the number of elements in the discretization. We
will then describe techniques that can reduce the order of the dynamical linear system while preserving time
and frequency domain behavior as well as other properties. In particular, we will illustrate the importance
of producing passive reduced order models from originally passive interconnect structures. Finally, we will
describe the main contributions of this thesis in the field of model order reduction. Specifically, we will
describe our contributions consisting in model order reduction techniques that preserve passivity:

� when handling structures that include dielectrics using polarization currents and, in the context of
Krylov subspace projection methods (Chapter 11);

� when handling structures that include dielectrics or integrated circuit substrates using special frequency
dependent green functions, or when handling fullwave propagation kernels, in the contest of Krylov
subspace projection methods (Chapter 12);

� when using the truncated balance realizations method (Chapter 13).
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Chapter 7

Background: reduced order modeling of
interconnect

7.1 Modeling of interconnect

Large electronic systems can be thought as a collection of analog, digital or mixed signal circuit blocks,
connected by a collection of wires (interconnect). Such a simple representation can be observed in almost all
electronic systems: Integrated Circuits (IC), package multi-chip modules (MCM), and printed circuit boards
(PCBs). In this thesis we are interested in analyzing and modeling the interconnect. Typically, we are given
a large collection of interconnect where some ports have been identified for the connection of some circuit
blocks. It is our task to produce a model of the interconnect as “seen” from the ports identified for the
connection to the circuit blocks (Fig. 7.1). The model should capture all the time and frequency behavior and
properties of the interconnect that are relevant for the interaction with the circuit block.

Figure 7.1: Given a large collection of wires where some ports have been identified for the connection to
circuit blocks, we are interested in producing a small but accurate model of the interconnect as “seen ” from
the ports.

For simplicity, consider a single interconnect wire. The electromagnetic phenomena that describe the
behavior of such a wire can be described as shown in Chapters 3-5 in Part I using the Mixed Potential Integral
Equation formulation. The main unknowns in such formulation are the current density inside the conductors,
and the charge density on the surface of the conductors. Typically, as seen in Section 3.3.1, one represents
such unknowns using a collection of basis functions. For instance, one can represent the current inside the
conductor using a collection of short thin filaments each carrying a constant current, and one can represent
the charge on the surface of the conductors using a collection of small panels each carrying a constant charge
as shown in Fig. 3.6. As described in our contributions in the previous Chapters 4 and 5 one can choose
other basis functions for current (see for instance Fig. 4.6) and even for charges. However, regardless of the
choice adopted, it is typically possible to use the coefficients (or unknowns) associated to each of such basis
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functions as the coefficients of the state vector x describing the state of the wire in a dynamical linear system
representation. A dynamical linear system is therefore one of the most natural choices that comes to mind
when trying to produce an electromagnetic model of a wire. The state of the system is associated with the
energy storing elements of the system. Since charge accumulation on the surface of the conductors can be
thought as a capacitor, and since the electric energy storage on such capacitors is a function of the surface
charge itself (or potential), one can see how the small panel charges (or potentials) are a good candidate for
the state vector. Furthermore, since the current in the conductors is typically associated with magnetic energy
storage, which is a function of the current itself, one can also realize how the state vector should also contain
coefficients associated with discretization basis functions for the current. The Figure 7.2 gives a graphical
representation of the relation between state vector and the equivalent circuit produced by the discretization of
a wire shown in Fig. 3.6.

Figure 7.2: A dynamical linear system can be used for electromagnetic modeling of an interconnect wire.
The discretization of the Mixed Potential Integral Equation produces an equivalent circuit. The currents on
the inductors and the potentials on the capacitors can be used as state vector coefficients for the dynamical
linear system. If the input is chosen as a voltage source, and the output as the resulting current into the wire,
the model represents the input admittance of the wire.

As input u(t) for the dynamical linear system one can choose for instance the voltage applied at one terminal
of the wire. As output y(t) one can choose the resulting current. In this way the dynamical linear system
will represent the admittance of the wire seen at such terminal. Models with multiple input and multiple
outputs can be used to model multiple terminals. The equations in the dynamical linear system are exactly
the same equations (KCL/KVL sparse tableau analysis, or KCL nodal analysis, or KVL mesh analysis, or
mixed nodal-mesh analysis) that one would write when setting up a linear system for solving the system as
described in Section 3.4. Collecting terms that depend on the time derivative of the state, and terms that
depend linearly on the state one can recognize matrices L and R respectively in Fig. 7.2. Matrices B and C
relate input to the state equations and the state to the output respectively.

Although, as we will see later, it will be important to be able to work with matrices L and R separately and
with multiple input and multiple outputs, in this first introductory stage assume for simplicity of exposition
that we have only one input and one output, that matrix R is non-singular, and that the system in Fig. 7.2 is
described in time domain as

E
dx
dt

= x(t)+bu(t) y(t) = cT x(t); (7.1)

and in frequency domain,

sEx = x+bu y = cT x (7.2)

where E = R�1L and b = R�1B, and s is the Laplace frequency variable.
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7.2 Model order reduction

The order of the dynamical linear systems produced by the discretized MPIE formulation is as large as
the number of discretization elements (n = 100;000 to 500,000 for large interconnect systems). The cost of
“evaluation” of a dynamical linear system model for a particular point in time or frequency is typically of the
same complexity as solving a linear system with size as large as the order of the dynamical linear system.
Therefore the model as shown in Fig. 7.2 is in most cases of little practical use.

During the past decade much research effort has been devoted to “reducing” the order n of a given very
large dynamical linear system to a much smaller size q (typically q< 100) as illustrated in Fig. 7.3, while pre-
serving the most relevant part of the time and frequency input/output behavior and properties of the original
system.

Figure 7.3: Given a dynamical linear system with a large matrix descriptor E of size around n = 500;000,
the objective of the “model order reduction” algorithms is to produce a dynamical linear system with a much
smaller matrix Ê of size typically around q = 20, but with the same time and frequency domain behavior and
properties.

In an integrated circuits context, initial interest in model reduction techniques stemmed from efforts to
accelerate analysis of circuit interconnect [111]. More recently, model reduction has come to be viewed as a
method for generating compact models from all sorts of physical system modeling tools [69, 104, 120, 106,
105, 18, 19, 131, 119, 32].

In the remainder of this Chapter and in Chapters 8-9, we will review the main existing techniques for
model order reduction. In Chapters 11-13 we then develop our new algorithms.

7.3 Model order reduction via eigenmode analysis

When the matrix E can be diagonalized, the transfer function of the dynamical linear system can be
written in a pole-residue form. Specifically, if

E = SΛS�1 (7.3)
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where Λ is a diagonal matrix containing the eigenvalues of E, then one can write the transfer function as

H(s) = �cT (I� sE)�1b = (7.4)

= �cT (SS�1� sSΛS�1)�1b = (7.5)

= �cT S(I� sΛ)�1S�1b = (7.6)

= �c̃T (I� sΛ)�1b̃ = (7.7)

= �
n

∑
i=1

1
λi

c̃ib̃i

s� 1
λi

(7.8)

=
n

∑
i=1

ri

s� pi
(7.9)

where the residues are ri =
1
λi

c̃ib̃i and the poles are pi =
1
λi

. The correspondent impulse response therefore
decomposed into its “modes”

h(t) =
n

∑
i=1

rie
pit (7.10)

A first intuitive way to perform model order reduction consists in observing that one can:

� remove pole/zero near-cancellations (volume discretizations are well known for introducing many of
such pole/zero near-cancellations that do not have any affect on the transfer function);

� drop all other modes with small residues;

� drop also modes decaying too “fast” for the signals of interest to the user (i.e. poles with large real
parts);

� cluster poles that are very close.

Retaining in this way the dominant modes of the system is a familiar procedure to many circuit designers.
However this procedure is not practical to solve our problem. First of all it is extremely expensive, since
finding the poles has a non-practical computational complexity O(n 3). Secondly, it is relatively inefficient,
since for a given model size, many other approaches can provide better accuracy.

7.4 Model order reduction via truncated balanced realizations (TBR)

One of the approaches that can provide optimal accuracy for a given final order of the reduced model
is the Truncated Balance Realization (TBR) algorithm. In this Section, primarily to conform to literature
standards, we will assume the system to be reduced has been put in the form

sx = Ax+Bu y =Cx (7.11)

The TBR procedure as first presented in [93] is centered around information obtained from the controllability
Grammian Wc, which can be obtained from solving the Lyapunov equation

AWc +WcAT =�BBT (7.12)

for Wc, and the observability Grammian Wo, which can be obtained from the dual Lyapunov equation

ATWo +WoA =�CTC (7.13)

for Wo.
Under any similarity transformation of the state-space model,

A! T�1AT; B ! T�1B; C !CT (7.14)
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d a

c b

Algorithm 1 Truncated Balanced Realization (TBR)

1. Solve AWc +WcAT =�BBT for Wc

2. Solve ATWo +WoA =�CTC for Wo

3. Compute Cholesky factors Wc = LcLT
c , Wo = LoLT

o ,

4. Compute SVD of Cholesky product UΣV = LT
o Lc

where Σ is diagonal positive and U;V have
orthonormal columns

5. Compute the balancing transformations
T = LcVΣ�1=2; T�1 = Σ�1=2UT LT

o

6. Form the balanced realization as
Â = T�1AT; B̂ = T�1B; Ĉ =CT

7. Select reduced model order and partition Â; B̂;Ĉ
conformally

8. Truncate Â; B̂;Ĉ to form the reduced
realization Ã; B̃;C̃

the state-space model, and the transfer function, are invariant (only the internal variables are changed). The
Grammians, however, vary under the rules

Wc ! T�1WcT�T ; Wo ! T TWoT (7.15)

and so are not invariant. The TBR procedure is based on two observations about W o and Wc. First, the
eigenvalues of the product WcWo are invariant. These eigenvalues, the Hankel singular values, contain useful
information about the input-output behavior of the system. In particular, “small” eigenvalues of W cWo cor-
respond to internal sub-systems that have a weak effect on the input-output behavior of the system and are
therefore close to non-observable or non-controllable or both.

Second, since a similarity transformation on A induces a congruence transformation of the Grammians,
and since any pair of symmetric matrices can be simultaneously diagonalized by an appropriate congruence
transformation [57], it is possible to find a similarity transformation T that leaves the state-space system
dynamics unchanged, but makes the (transformed) Ŵo and Ŵc equal and diagonal1. In these coordinates, with
Ŵc = Ŵo = Σ, we may partition Σ into

Σ =

�
Σ1 0
0 Σ2

�
(7.16)

where Σ1 describes the “strong” sub-systems to be retained and Σ2 the “weak” sub-systems to be deleted.
Conformally partitioning the transformed matrices as

Â =

�
Â11 Â12

Â21 Â22

�
; B̂ =

�
B̂1

B̂2

�
; Ĉ =

�
Ĉ1 Ĉ2

�
; (7.17)

and truncating the model, retaining Ã = Â11; B̃ = B̂1; C̃ = Ĉ1 as the reduced system, therefore has the effect
of deleting the “weak” internal subsystems. A complete TBR algorithm [78] is shown in Algorithm 1. An
approach with improved numerical properties may be found in [123].

1To see this it may help to note that W�1
c and Wo transform according to the same congruence operation; but if W�1

c is diagonalized,
so is Wc.
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One of the attractive aspects of TBR methods is that computable error bounds are available. If the ith
diagonal entry of the matrix Σ in Algorithm 1 is given by σ i, and the σi ordered σ1 � σ2 � �� �σN , then the
error in the transfer function of the order-q reduced model is bounded by [51]

jjH(s)� Ĥq(s)jj∞ � 2
N

∑
k=q+1

σk: (7.18)

A similar algorithm (Hankel model order reduction [51] can provide an error bound twice as lower than TBR.
Although TBR and Hankel reduction algorithms provide one of the best compressions in terms of accuracy

for a given final order, their computational complexity, O(n 3), makes them impractical as a “first stage”
reduction operating on our huge interconnect systems. However, they are often used as a “second reduction
step” as described in Section 10.1.

7.4.1 Physical interpretation of the TBR procedure

In order to later contrast the physical significance of the passivity-preserving TBR methods developed in
Chapter 13, here we review the physical interpretation of the method in Algorithm 1.

The observability Grammian Wo is related to the L2 norm of the output produced in free evolution (u(t) =
0;8t � 0) from an initial state x0 at time 0,

xT
0 Wox0 =

Z ∞

0
y(t)T y(t)dt; x(0) = x0; u(t) = 0;8t � 0: (7.19)

The controllability Grammian Wc is related to the minimum L2 norm of the input over all possible input that
can control the system from state 0 to the state x0 at time 0.

xT
0 W�1

c x0 = inf

�Z 0

�∞
u(t)T u(t)dt; u(t) controlling to x(0) = x0

�
: (7.20)

Noting that
R ∞

0 y(t)T y(t)dt and
R 0
�∞ u(t)T u(t)dt are the L2 norms of the system output (restricted to t � 0)

and the system input (on t � 0) respectively, it is seen that small eigenvalues of the observability Grammian
Wo are associated with state eigenvectors (“normal modes” [93]) that produce small free evolution L 2 output
norms. These modes are therefore relatively unimportant for the system response. Small eigenvalues of the
controllability Grammian Wc are associated with state eigenvectors (modes) that can be controlled only em-
ploying inputs with large L2 norm (regardless of what trajectory we follow to reach them). Hence the system
is not very likely to be driven into those states and they are not likely to be important for the system response.
It can be noticed that some modes, although could produce large outputs, are difficult to be controlled by
the input. Vice-versa there can be some modes that, although are controlled with small input norm, they
produce small output norms. This is the reason for the balancing procedure that transforms to coordinates
that “balance” the importance of past inputs and future outputs, the weighting revealed by the eigenvalues of
the product of the observability and controllability Grammian. The algorithm will keep in the final reduced
model all the modes that are

� either easily controllable, meaning they do not require a large input L 2 norm to reach, and

� easily easily observable, meaning that they produce free evolution outputs with large L 2 norms.

7.5 Model order reduction via rational function fitting (point match-
ing)

The transfer function H(s) of a dynamical system of form (7.2) and of order n is a rational function with
2n coefficients

H(s) =
b0 +b1s+ :::+bn�1sn�1

1+a1s+ :::+ansn (7.21)
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The transfer function Ĥ(s) of the system after the reduction to order q << n must also be a rational function.
In this case the free coefficients are 2q.

Ĥ(s) =
b̂0 + b̂1s+ :::+ b̂q�1sq�1

1+ â1s+ :::+ âqsq (7.22)

Hence, an idea to perform model order reduction is to choose those 2q coefficients in order to match “as much
as possible” of the original transfer function. Perhaps the most intuitive way to achieve this is to match the
original transfer function in exactly 2q points as shown in Fig. 7.4

H(si) =
b̂0 + b̂1si + :::+ b̂q�1sq�1

i

1+ â1si + :::+ âqsq
i

; i = 1; :::;2q: (7.23)

Cross-multiplying the denominators of these 2q equations generates a linear system of equations

Figure 7.4: One idea for model order reduction is to “fit” a rational function Ĥ(s) with very few coefficients
(2q << 2n) by matching in exactly 2q points the original function H(s) described by 2n coefficients.

26664
�s1H(s1) : : : �sq

1H(s1) 1 s1 : : : sq�1
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2
: : : : : : : : : : : : : : : : : : : : :

�s2qH(s2q) : : : �sq
2qH(s2q) 1 s2q : : : sq�1
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2666666664

â1

: : :
âq

b̂0

b̂1

: : :

b̂q�1

3777777775
=

2664
H(s1)
H(s1)
: : :

H(s2q)

3775 (7.24)

that can be solved for the coefficients â1; ::::ân; b̂0; :::; b̂n�1.
Unfortunately this approach tends to generate a very ill-conditioned system due to the progressively higher

powers k of the test frequencies sk
i . Furthermore, the resulting transfer function is extremely sensitive to the

position of the points chosen for the matching, and large errors are typically observed in the regions between
matching points. This is of particular concern when the range of the frequency response that is required to be
matched by the given application contains sharp resonance peaks. A better approach to overcome the second
of these two issues is to use a moment matching approach instead of a point matching one.

7.6 Model order reduction via Pade’ approximations (moment match-
ing)

As an alternative to choosing the 2q coefficients so that the reduced order transfer function matches
the original transfer function in 2q points, one can instead choose to match one point and the first 2q� 1
derivatives at that point. Fig 7.5 is an attempt to represent this concept pictorially, where we are representing
derivatives with concentric circles around the matching point.
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Figure 7.5: Pictorial representation of the moment matching approach. The 2q coefficients of the reduced
transfer function Ĥ(s) are chosen in order to match one point of the original transfer function H(s) and
2q� 1 derivatives at that same point. Matching of derivatives is represented here pictorially by concentric
circles around the matching point.

This approach corresponds to expanding the transfer function in Taylor series,

H(s) = H(s)js=0 +
dH
ds

����
s=0

s+
1
2!

d2H
ds2

����
s=0

s2 +
1
3!

d3H
ds3

����
s=0

s3 + ::: (7.25)

= m0 +m1s+m2s2 +m3s3 + ::: (7.26)

and matching its first 2q coefficients mk by imposing

b̂0 + b̂1s+ :::+ b̂q�1sq�1

1+ â1s+ :::+ âqsq = m0 +m1s+m2s2 +m3s3 + :::m2q�1s2q�1 (7.27)

It can be further observed that the coefficients mk of the Taylor series expansion of the transfer function are
intimately related to the time domain moments m̃k of the impulse response,

m̃k =

Z ∞

0
tkh(t)dt: (7.28)

Specifically it can be easily be shown that

mk =
(�1)k

k!
m̃k: (7.29)

Hence, producing a reduced system which matches the first 2q Taylor series coefficients m k of the original
system, corresponds to matching its first 2q time domain moments m̃ k.

In order to produce the reduced system one can:

1. calculate the coefficients mk of the Taylor series expansion up to order 2q�1 observing that

H(s) =�cT (I� sE)�1b =
∞

∑
k=0

�
�cT Ekb

�
sk =

∞

∑
k=0

mksk (7.30)

and hence concluding that
mk =�cT Ekb; k = 0;1; :::;2q�1: (7.31)

When applied to circuits, the method in this section is referred to as AWE since the moments can be
calculated using Asymptotic Waveform Evaluations (AWE) [112];
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2. cross-multiply the denominators in equation (7.27) and matching like powers of s, in order to assemble
the following two linear systems2664

m0 m1 ::: mq�1

m1 ::: :
:

mq�1 ::: m2q�2

3775
2664

âq

âq�1

:
â1

3775 = �

2664
mq

mq+1

:
m2q�1

3775 (7.32)

2664
m0 0 ::: 0
m1 m0 0 :
: 0

mq�1 ::: m0

3775
2664

1
â1

:
âq�1

3775 =

2664
b̂0

b̂1

:
b̂q�1

3775 (7.33)

3. the first of the two systems can be solved to calculate coefficients â 1; :::; âq, subsequently the second
system can be used to calculate coefficients b̂0; :::; b̂q�1.

Since the moment matching approach illustrated above is based on calculating the (truncated) Taylor
series expansion of the original function, it could potentially capture accurately most sharp resonance peaks
relatively close to the expansion point, without having to know their exact location before the reduction
procedure. However, the linear system (7.32) still becomes quickly ill-conditioned for large values of q
(typically for q > 20). As a matter of fact the moments m k in (7.31), contain a power series which tend
to align the matrix vector product toward the dominant eigenvector of the matrix E corresponding to the
dominant eigenvalue λ as illustrated in Fig. 7.6

mk = cT (Ekb)� cT (λkb)� λkm0; for large k: (7.34)

Figure 7.6: Any vector b transformed by a large power of a matrix E k tend to “align” toward the dominant
eigenvector of the matrix.

This implies that for large values of q the last columns (and the last rows) of the matrix in (7.32) tend to
become linearly dependent and therefore the system almost singular.266664
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377775�
266664
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m0λq�1 m0λq ::: m0λ2q�3 m0λ2q�2

377775 (7.35)

Practically speaking, one would like to be able to increase the accuracy of the produce model by increasing
its order q, however, since for larger values of q the system becomes ill-conditioned, coefficients a 1; :::;aq

cannot be calculated accurately and the actual accuracy of the reduced model does not improve. This result
can be observed for instance in Fig. 7.7.
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Figure 7.7: Transfer functions calculated using AWE (Asymptotic Waveform Evaluation) or in other words
using the Pade’ approximations described in 7.6. At each iteration of the algorithm one can increase the
order q of the produced system. Results for orders q = 2;5 and 8 are compared to the original transfer
function. One can observe that because of numerical ill-conditioning of the procedure the accuracy does not
increase much when using larger values of q.[Picture by Feldmann and Freund [45]]
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Chapter 8

Background: the projection framework

In this section we will introduce a framework that can be used to develop many different model order
reduction techniques. If we compare the two systems in Fig. 7.3 we observe that the state of the original
system is a long vector of size n (with n � 500;000) “living” in an n-dimensional space. The state of the
reduced system is a short vector of size q (with q � 20) living in a reduced subspace of size q. Assume that
the large original state can be obtained from the reduced state using a linear transformation or “change of
basis” as illustrated in Fig. 8.1. The transformation matrix Uq has size n�q. Its columns are the vector basis
for the “reduced subspace”, or more specifically they contain the coefficients needed to represent the basis
for the “reduced subspace” according to the basis for the original subspace.

Figure 8.1: Assume the original state can be obtained from the reduced one using a linear transformation.
The change of basis matrix Uq is assembled using as columns the basis of the reduced subspace.

Using the change of basis transformation x =Uqx̂ in the original system

sEx = x+bu; y = cT x (8.1)

one obtains a new dynamical linear system

sEUqx̂ =Uqx̂+bu; ŷ = cTUqx̂ (8.2)

In this new system of equations we still count n equations but we have only q variables with q << n. The
system is therefore highly over-determined. One easy way to reduce the number of equations is to multiply
the whole system by an “equation test matrix” V T

q of size q�n obtaining the reduced system in Fig. 8.2. It is
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convenient to use an equation test matrix bi-orthonormal to the change of basis matrix

V T
q Uq = I (8.3)

We illustrate pictorially in Fig.8.3 how the original matrix E is squashed by the equation test matrix and by
the change of basis matrix.

Figure 8.2: According to the projection framework, the reduced system can be obtained from the original
using a “change of basis matrix” Uq and by pre-multiplying by an “equation test matrix” V T

q bi-orthonormal
to Uq, i.e. V T

q Uq = Iq.

Figure 8.3: Using the transformation in Fig.8.2 one can “squash” the dimensions of the original matrix E
from n�n to the much smaller q�q.

8.1 Choosing the change of basis matrix Uq

So far we have assumed that the “reduced subspace” where the reduced state vector lives, is known and
described in terms of a set of basis that can be used as columns of matrix Uq. However finding a good
approximation for such subspace is actually the core of any of the model order reduction algorithms based on
the projection framework.

Many choices are available to provide an approximation to such subspace. One way to think about our
problem is to try to characterize somehow a subset of the original state space where the state vector “spends
most of its evolution in a practical application of the model.

1. For instance, if available one could use as a basis for the reduced subspace a few “dominant” state
eigenmodes, that is the eigenvectors of the system matrix corresponding to the eigenvalues selected
as described before in 7.3. Reduced models of any order q could be constructed without extra effort.
Unfortunately, as mentioned before, performing an eigenmode analysis of the original huge system
requires an O(n3) diagonalization operation which is computationally not tractable.

2. An additional idea is to use dominant singular vectors of the System Grammians introduced in Sec-
tion 7.4. The dominant singular vectors of the controllability and observability Grammians are asso-
ciated to modes or state vectors of the system that are controllable by small inputs and produce large
outputs respectively. The singular vectors corresponding to modes that are both easily controllable and
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easily observable are more likely to contribute to the input/output response we want to capture, and we
can use them a basis for the reduced subspace. Computationally this approach requires calculating the
Grammians and then applying a Singular Value Decomposition for a total complexity O(n 3) regard-
less of the order of the model produced. However in [81, 80, 79] more efficient methods are shown
where the dominant eigenvectors of the controllability and observability Grammians are calculated by
iteration.

3. Another simple way to characterize the subspace where the state vector is most likely to move around
during its evolution for practical applications is to apply some practical inputs to the original system
and calculate its evolution for some short time for all such inputs. This would produce a large col-
lection of state vectors X = fxu1(t1); :::;xu1(tk); :::;xuh(t1); :::;xuh(tk)g, which could represent a decent
approximation to the subspace we are looking for. We could use such hk vectors as columns of U q

directly but that could be inefficient as many of the vectors will likely be linearly dependent. Using
linearly dependent vectors would be possible but it would produce a low accuracy for a given order
q of the reduced system. What determines the accuracy of the reduced model is the dimension of the
space spanned by the columns of Uq, and not the number of vectors in the columns of Uq [53]. A more
efficient basis of such subspace could then be obtained selecting the first q << hk dominant singular
vectors of the matrix constructed using the vectors in X as columns. One can notice that this algorithm
is particularly expensive since it requires the simulation of the original system for different inputs and
time points. Each of the hk vectors in X requires roughly the solution of a dense linear system of size
n� 500;000. Each solve requires O(n log(n)), when using iterative methods with the fast matrix vec-
tor products described in 3.6. The total computational complexity for constructing a reduced model of
order q would be O(hk n log(n)).

4. For most applications of interest in digital or mixed-signal integrated circuits the input signals are peri-
odic and typically one is interest in the frequency response only up to a certain frequency. Therefore one
could think of applying the same procedure illustrate above in the frequency domain. One could com-
pute several state vectors at several frequency points X = fxu1(s1); :::;xu1(sk); :::;xuh(s1); :::;xuh(sk)g,
assemble then a matrix using such vectors as columns, calculate the first q << hk dominant singular
vectors of such matrix and use those as columns of the change of basis matrix U q. The computational
complexity of this frequency domain variant of the previous approach is the same O(hk n log(n)).
However for those applications mentioned before one could expect slightly smaller values of k.

5. Finally, an effective approach from a computational point of view when reducing very large and dense
systems is to construct the columns of Uq using vectors in the Krylov subspace generated by the input
or output vectors b;c and the dynamic matrix E. Details of this method are described in the following
section.

8.2 Moment matching reduction via Krylov subspace projection frame-
work methods

We have already seen in 7.6 that one way to reduced the order of the system is through matching the
first Taylor series coefficients (or moments) of its transfer functions. However, although computationally
very efficient, the approach presented in 7.6 is still of little practical value because it suffers of noticeable
numerical problems. Other approaches presented in 7.3,7.4, and in 8.1 use numerically very stable algorithms
such as eigenvalue or singular value decomposition, however they are of little practical value because of their
huge computational cost. We present here a family of algorithms based on the projection framework that
exploit the computational efficiency of the moment matching approach and are at the same time numerically
robust.

In order to approach the details of the algorithm first consider for simplicity a single input single output
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dynamical linear system as in in (7.2), The transfer function from the input to the state is

x =�(I� sE)�1 bu: (8.4)

Using a Taylor series expansion around the point s = 0 we can write the state x as a linear combination of a
whole bunch of vectors E kb; k = 0;1; :::

x =�
∞

∑
k=0

sk Ekb u: (8.5)

In other words the state x lives in the space spanned by vectors

x 2 spanfb;Eb;E2b; :::g: (8.6)

If we are interested in producing a reduced model where we only care about the first q coefficients of the
Taylor series expansion of the transfer function around s = 0, then a natural choice for approximating the
reduced state subspace is to use the one spanned by the first q vectors E kb; k = 0;1; :::;q�1. A more general
version and proof of such conjecture will be proven later in this section by the Grimme’s theorem [53]. We
recall here that subspaces of this type are well known and studied in the linear algebra literature.

Definition 2 The Krylov subspace of order q of a matrix E and a vector b is defined as the subspace spanned
by the vectors

Kq(E;b) = spanfb;Eb;E 2b; :::;Eq�1bg: (8.7)

8.2.1 Grimme’s theorem [53]

The most general version of a theorem proving the foundations of the Krylov subspace projection frame-
work methods is given in [53]. We recall here the theorem and we highlight a few special cases.

Theorem 2 Given a dynamical linear system as in (7.2),
IF the projection framework illustrated in Fig. 8.2 is used and matrices Uq and Vq are constructed such as

columnspan(Uq) �
J[

j=1

K
k
(b)
j

�
(I� s jE)�1 E; (I� s jE)�1 b

�
; (8.8)

columnspan(Vq) �
J[

j=1

K
k
(c)
j

�
ET (I� s jE)�T ; (I� s jE)�T c

�
(8.9)

with ∑J
j=1

h
k(b)j + k(c)j

i
= 2q,

THEN

H(s j) = Ĥ(s j) for j = 1;2; :::;J; (8.10)

dl j H(s j)

dsl j
=

dl j Ĥ(s j)

dsl j
for j = 1;2; :::;J; l j = 1;2; :::; k(b)j + k(c)j �1 (8.11)

where H(s) is the transfer function of the original system and Ĥ(s) is the transfer function of the reduced
system.

In words, the theorems proves that if we include in the column span of U q the first k(b)j vectors from the

Krylov subspace K
k
(b)
j

�
(I� s jE)�1 E; (I� s jE)�1 b

�
, then the reduced model transfer function matches

the original for at least the first k(b)j derivatives in s j. Furthermore, if we include in the column span of Vq the
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first k(c)j vectors from the Krylov subspace K
k
(c)
j

�
ET (I� s jE)�T ; (I� s jE)�T c

�
then the reduced model

transfer function matches the original for at least the first k (b)j + k(c)j derivatives in s j . Hence we can match
as many derivatives as we want at any expansion point simply including either in the span of U q or Vq some
vectors from the appropriate Krylov subspace. Complete proof in the general case for the theorem is given
in [53]. We recall here only two special cases that have a particular practical use.

8.2.2 Special simple case #1: reduction via Arnoldi

Corollary 1 Given a dynamical linear system as in (7.2),
IF the projection framework illustrated in Fig. 8.2 is used and matrices Uq and Vq are constructed using the
Arnoldi process in Fig. 8.4 such that

columnspan(Uq) = Kq(E;b) = spanfb;Eb; :::;E q�1bg (8.12)

Vq = Uq (8.13)

UT
q Uq = I (8.14)

THEN

H(0) = Ĥ(0) (8.15)

dkH(0)
dsk =

dkĤ(0)
dsk for k = 1;2; :::; q�1 (8.16)

and the procedure is numerically robust (i.e. high orders of derivatives can be matched even in finite precision
arithmetic)

When constructing the change of basis matrix Uq one can use any basis of the reduced space subspace. Having
chosen Kq(E;b) as reduced subspace one could at a first glance consider using vectors fb;Eb;E 2b; :::;Eq�1bg
as columns of Uq. However that is not a convenient choice from a numerical point of view because, as seen
in 7.6, vectors E kb tend to become linearly dependent in finite precision for values of k larger than 20. A
numerically more robust base for the same Krylov subspace can instead be constructed using the Arnoldi
orthonormalization process [53] described in Fig. 8.4. The Arnoldi process is an iterative one. At each
iteration k for k < n, a new vector is generated which expands the Krylov subspace spanned by one order. The
power series Ekb still embedded in the algorithm is not allowed to align toward the dominant eigenvector since
at each iteration k any component in the direction of all previously generated k�1 base vectors is immediately
discarded by the orthogonalization step. Hence any convergence toward any previously generated direction
is prevented.
Note that the orthonormal condition is a consequence of the Arnoldi process which provides the numerical
robustness to the algorithm.

From a computational point of view, each iteration of the Arnoldi process requires a matrix-vector product
with a dense matrix E of size n� 500;000 which require O(n log(n) when using the fast-matrix vector prod-
ucts shown in 3.6. Hence the overall complexity to construct a reduced model of size q is simply O(q n log(n))
which is tractable and scales with the accuracy needed for the model. One can notice that the cost to pro-
duce the entire reduced order model is the same cost that would be required to calculate q time points in the
time domain response of the original system or q frequency points in the frequency response of the original
systems.

8.2.3 Special simple case #2: Pade’ Via Lanczos (PVL)

Corollary 2 Given a dynamical linear system as in (7.2),
IF the projection framework illustrated in Fig. 8.2 is used and matrices Uq and Vq are constructed using a
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Figure 8.4: Arnoldi orthonormalization process of the vectors in the Krylov subspace Kq(E;b). This process
generates a numerically robust orthonormal basis for the reduced state subspace for the construction of the
change of basis matrix Uq.

Lanczos bi-orthonormalization process [45] such as

columnspan(Uq) = Kq(E;b) = spanfb;Eb; :::;E q�1bg (8.17)

columnspan(Vq) = Kq(E
T ;c) = spanfc;ET c; :::;(ET )q�1cg (8.18)

V T
q Uq = I (8.19)

THEN

H(0) = Ĥ(0) (8.20)

dkH(0)
dsk =

dkĤ(0)
dsk for k = 1;2; :::; 2q�1 (8.21)

and the procedure is numerically robust (i.e. high orders of derivatives can be matched even in finite precision
arithmetic)

Note that the orthonormal condition is a consequence of the Lanczos look-ahead bi-orthonormalization pro-
cess which provides the numerical robustness to the algorithm. Case #2 is also known as “ PVL or Pade’ via
Lanczos” [45]. Fig. 8.5 shows the results of a PVL algorithm when applied to the same problem used for the
numerically unstable simple Pade approximation (or AWE) in Fig. 7.7.

From a computational point of view, each iteration of the Lanczos process requires a matrix-vector product
with a dense matrix E of size n � 500;000 as for the Arnoldi process, hence the overall complexity to
construct a reduced model of size q is O(q n log(n)). Comparing case #1 with case #1 one observes that both
cases produce a reduced model of same size q with the same amount of effort. However case #2 is twice as
efficient than case #1 since in case #1 only q moments are matched while in case #2, 2q moments are matched.
Intuitively case #1 was expected to be less efficient since no information from the output vector c is used in
the reduction procedure. Note that in this section we have compared case #1 and case #2 strictly from a
computational efficiency point of view. Such comparison however is not complete and we will extended it in
subsequent Chapter 9 to include preservation of important system properties such as passivity. A comparison
summary will be presented in Table 10 in Chapter 10.

8.2.4 “Multi-point” moment matching

Although the most important improvement of the Krylov subspace projection framework algorithms is
their numerically stability, they also provide the ability to combine the techniques seen before of point match-
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Figure 8.5: Transfer functions calculated using PVL (Pade’ via Lanczos described in Corollary 2. At each
iteration of the algorithm one can increase the order q of the produced system. Results for orders q= 2;8 and
28 are compared to the original transfer function. Comparing with Fig. 7.7 one can observe that arbitrary
higher accuracy for the reduced model can be obtained simply using more iterations q. For instance using
q = 28 the reduced transfer function has no appreciable error from the exact one. [Picture by Feldmann and
Freund [45]]

ing and moment matching in 7.5 and 7.6 respectively. Specifically, these algorithms allow to match an ar-
bitrary number of derivatives (or moments) around many distinct Taylor series expansion points. Fig. 8.6
illustrates pictorially such concept, where once again derivative matching is illustrated by concentric circles
around the expansion point.

Figure 8.6: The Krylov subspace projection framework methods allow to perform model reduction combining
point matching and moment matching. Specifically in this figure we show with concentric circles the ability
of matching derivatives (moments) around several distinct expansion points.

We recall that the only thing we need to do is “identify” a reduced state subspace and some numerically
robust set of vectors that span it. Some of such vectors can be generated from the first terms of a Taylor
expansion around s = 0, but other vectors can be generated by the first terms of Taylor expansions around
other points.

Lemma 1 A Taylor series expansion around a generic point s = s j produces the following Krylov subspace

x 2 Kkj

�
(I� s jE)�1 E; (I� s jE)�1 b

�
: (8.22)
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Proof. This can be derived for instance using a simple change of variables

s = s̃+ s j (8.23)

which transform the system into
(s̃+ s j)Ex = x+bu (8.24)

or
s̃(I� s jE)�1Ex = x+(I� s jE)�1bu (8.25)

Finally we can use the procedure illustrated above for a Taylor series expansion around s̃ = 0.
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Chapter 9

Background: preserving passivity

Given a large dynamical linear system that models a collection of interconnect, so far we have only
discussed how to produce a much smaller size system with a “similar” frequency response (at least in a
band of frequencies of interest). Typically this is “good enough” in the case when the model will be used
only for a fast evaluation of the frequency response, such as in “radar cross-section” (or field scattering)
application problems. However in integrated circuit design, interconnect models are very often used in many
other possible ways. Reduced order models (ROM) can be used to capture second order parasitic effects of
interconnect wires between circuit blocks as shown in Fig. 9.1 and Fig. 9.2. Models are often connected to
construct larger models of complicated structures (Fig. 9.1). In mixed-signal or in analog circuits it is often
the case that the reduced order models of interconnect are closed in a feedback loop as shown in Fig. 9.2. All
these previous systems are then typically analyzed in a time domain simulator.

All such applications require that the composition of reduced order models with other reduced order
models or with circuit blocks is numerically “well-behaved” when we use it for instance in a time domain
simulator. We observe that any collection of interconnect is a real, stable, passive, causal system. If we
simply limit ourself to produce a reduced order model with a transfer function “similar” to the original,
we might not necessarily preserve any of those crucial system properties. For instance, we might observe
numerical instability (clearly illustrated in Fig. 9.2 or in Fig. 9.3 from [97]) when using in a time domain
simulator an unstable reduced order model, or a stable but non-passive reduced order model connected in
an external feedback loop, or many stable but non-passive reduced order models connected arbitrarily. We
observe in particular that preserving passivity is far more important than preserving stability of the original
model. That is because not only does passivity imply stability, but also because the arbitrary interconnection
of many passive models as in Fig. 9.1 is also guaranteed to be passive (and hence stable), while the arbitrary
interconnection of many stable (but not passive) models is not guaranteed to be stable (nor passive).

9.1 Passivity for systems modeling immittance

Let us now take a more formal approach, and recall some definitions and some useful linear system theory
results. In this section we will be concerned with properties of an abstract system H : X ! X , transforming
vector input signals u into vector output signals y = H u within a space of signals X . In the majority of the IC
interconnect modeling problems, it is typical to assume that the system inputs, u : R+ ! Rp represent port
voltages, and that the outputs y : R+ ! Rp represent port currents, or the converse (the inputs are currents
and the outputs voltages). The Laplace-domain representation of the system H is then a matrix H(s), such
that

y(s) = H(s)u(s); (9.1)

where u(s) and y(s) are the Laplace-domain representations of inputs u(t) and outputs y(t). Hence, H(s) is
an immittance function: either an admittance matrix Y(s), or an impedance matrix Z(s). Introduce two inner
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Figure 9.1: Many interconnect reduced order models are typically connected among them and to circuit
blocks to simulate large circuits. Preserving the passivity of the reduced models is crucial. While the arbitrary
interconnection of passive models is passive (and hence also stable), the arbitrary interconnection of stable
(but not passive) models is not necessarily even stable.

products in X , the standard inner product

hu;yi=
Z ∞

�∞
y(t)T u(t)dt; (9.2)

and a product which acts on truncated signals

hu;yiτ = huτ;yi= hu;yτi=
Z τ

�∞
y(t)T u(t)dt; (9.3)

where uτ(t)� fu(t) if t � τ;0 if t > τg:
If u and y are port current/voltage pairs, y(t)T u(t) has the physical interpretation of power, hu;yiτ is the total
energy passed by the system up to time τ. We will generally work in the space of signals x 2 X = L 2 that
have finite norm jjxjj for any τ, where jjxjj2 = hx;xiτ.
A passive system is a system that cannot produce energy. For the systems of interest here we may define:

Definition 3 (Passivity) A system H : X ! X is passive if

hu;H uiτ � 0; 8 τ 2 R+; 8 u 2 X ; u : R+! Rp: (9.4)

In practice, almost all systems of interest for model reduction are non-ideal and contain some loss. That is,
they internally consume energy. If a system consumes energy, it is said to be strictly passive.

Definition 4 (Strict Passivity) A system H is strictly passive if there is a δ 2 R+ s.t.

hu;H uiτ � δjjuτjj2; 8 τ 2 R+; 8 u : R+ ! Rp: (9.5)

For many electrical systems of interest, passivity is implied by positive-realness of the transfer function
H(s).
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Figure 9.2: In mixed-signal and analog circuits interconnect models may be included in feedback loops. Only
preserving the passivity of the model we are guaranteed that the feedback loop does not cause numerical
instability in a time domain simulator.

Definition 5 (Positive Realness) Let H(s) : C ! Cn�n be a matrix-valued function of complex variable.
Then H(s) is positive-real [4] if

H(s) = H(s); (9.6)

H(s) is analytic in Re(s)> 0; (9.7)

ΠH(s)� H(s)+H(s)� � 0 in Re(s)> 0: (9.8)

where the overline bar indicates complex conjugate, while the asterix indicates complex conjugate and trans-
posed.

Definition 6 (Strict Positive Realness) A matrix valued function H(s) is strictly-positive-real [145] if there
exists an ε 2 R+ s.t. H(s� ε) is positive-real.

Intuitively, the first condition requires that the time domain impulse response is real, the second condition
requires that the system is stable, finally the third condition requires that the symmetric and real part (or
loosely speaking the resistive part) of the immittance is a matrix positive semi-definite in the entire right half
plane.

Definition 7 (Positive Semi-Definiteness) A square matrix E 2 Rn�n is positive semi-definite if

xT Ex� 0; 8x 2 Rn�1 (9.9)

Positive realness is of interest because of its relation to passivity for lumped networks:

Theorem 3 A system H with rational system transfer function H(s) is passive and stable if and only if H(s)
is positive-real [4].

In the context of model reduction, the implication for state-space systems is that if a reduction algorithm for
lumped RLC networks produces models with positive-real transfer functions H(s), then it generates guaran-
teed passive models.
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Figure 9.3: Numerical instability and simulation explosions usually manifest themselves as growing oscilla-
tions in time domain waveforms, as in this example where a stable but not passive model of a lossy trans-
mission line has been connected to a driver and a load and simulated in a time domain circuit simulator.
[Picture from [97] by A. Odabasioglu, M. Celik, L. T. Pileggi].

9.1.1 Congruence transformations

In the remainder of this Chapter we will make extensive use of the concept of congruence transformations
and their properties related to passivity. Hence we briefly recall them here.

Definition 8 (Congruence Transformation) Given a square matrix E 2Rn�n and a rectangular matrix U 2
Rn�q, with q� n, a congruence transformation is a matrix Ê 2 Rq�q defined as

Ê =UT EU: (9.10)

Lemma 2 (Congruence transformations preserve positive semi-definiteness) Given a positive semi-definite
matrix E, any congruence transformation U T EU is also positive semi-definite.

Proof. This can be derived by observing that congruence transformations preserve the field of values, i.e.

fxTUT EUx; 8x 2 Rng � fxT Ex; 8x 2 Rng: (9.11)

Lemma 3 (Congruence transformations preserve positive realness) Given a positive real matrix value func-
tion Z(s), any congruence transformation U T Z(s)U is positive real.

Proof. Conditions (9.6) and (9.7) are easily verified. Condition (9.8) can be derived from Lemma 2.

9.1.2 Tools for assessing passivity

It is generally necessary to be able to easily assess the passivity of a generated model. It is not practical
to check the conditions (9.6), (9.7), and in particular (9.8), via explicit evaluation since an infinite number of
values fs; Re(s)> 0g should be checked.

Checking positivity only on the imaginary axis

We can observe that, thanks to the analyticity of H(s) in the right half plane, the positivity condition (9.8)
simply needs to be verified on the contour of the right half plane, i.e. the imaginary axis [4]:
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Theorem 4 A rational H(s) is positive-real if and only if (9.6) and (9.7) hold, and

ΠH( jω)� H( jω)+H( jω)� � 0; 8 ω 2 R (9.12)

except for simple poles iω0 of H(s), where the residue matrix must be nonnegative definite [4]. H(s) is strictly
positive real if the inequality is strict [4, 145].

However even using this result, we would still need to check (9.12) for an infinite number of frequencies jω
on the imaginary axis, which is still not practical.

A necessary but not sufficient condition for passivity

A common misconception when checking for passivity is to simply verify that all poles and zeros are in
the left half plane. The following theorem is in part responsible for such misconception.

Theorem 5 If a rational matrix valued function H(s) is positive-real then H �1(s) is positive-real.

Based on this theorem we observe that a necessary condition for passivity is that, not only all poles of the
transfer functions are in the left half plane (stability), but also that all zeros are in the left half plane. However
we point out that this condition is not sufficient. Hence checking for location of poles and zeros can only be
used to prove that a given model is not passive when some right half plane poles or zeros are found. Nothing
instead can be concluded about passivity of the system when all poles and zeros are found in the left half
plane.

A sufficient but not necessary condition for passivity

Theorem 6 Given a dynamical linear system in the general form

sEx = Ax+Bu; y =Cx (9.13)

IF

E = ET (9.14)

E � 0; E is positive semi�definite (9.15)

�A � 0; �A is positive semi�definite (9.16)

C = BT (9.17)

THEN the system is passive.

Proof. In order to prove that the system in passive we simply need to show that its transfer function H(s) =
C(sE �A)�1B is positive real. From the first three conditions (9.14)-(9.16), we can easily conclude that the
function sE�A is positive real. From Theorem 5 Z(S) = (sE�A)�1 is positive real. Finally, if C = BT then
H(s) = BT Z(s) B is a congruence transformation which preserves positive semi-definiteness from lemma 3.
This theorem gives a nice way to prove that a system is passive when observing that matrices E and �A are
positive semi-definite and C = BT . We care to correct here a second common misconception: such properties
are not necessary for passiveness. In other words, there are plenty of passive systems with indefinite matrices.
As a matter of fact, it usually requires a particular care to describe a passive system, such as a collection of
interconnect, with positive semi-definite matrices. That can be achieved for instance when only RLC elements
are modeled, and Modified Nodal Analysis (MNA) is used as in [97]. However, if sign conventions in the
KCLs are not used consistently across all circuit nodes indefinite matrices can easily be produced.

Example 1 Let’s assume for example that a transmission line has been described using a dynamical linear
system as in Fig. 7.2 constructed using Modified Nodal Analysis (MNA). If things are done properly it is
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possible in this particular case to obtain system matrices that verify the sufficient conditions for passivity in
Theorem 6, in particular L = E and R =�A are both positive semi-definite, and C = B T . For this particular
example we can further observe that matrix E is diagonal and all entries are positive. Now change the sign
of one of the equations in the dynamical linear system. Algebraically this corresponds to pre-multiplying by
matrix

Q =

2666666664

1 0
0 ::: 0

0 1 0
0 �1 0

0 1 0
0 ::: 0

0 1

3777777775
(9.18)

We obtain the system
sQEx = QAx+QBu; y = BT x: (9.19)

We can observe that for instance matrix QE is still diagonal, with all entries positive except for one negative
entry. QE is therefore indefinite. Although the conditions in Theorem 6 are not satisfied, the transfer function
is exactly the same

HQ(s) = BT (sQE�QA)�1QB = (9.20)

= BT (sE�A)�1Q�1QB = (9.21)

= H(s); (9.22)

hence still positive real or in other words the system is still passive.

Example 2 Another particularly interesting example is the following. Consider again the same passive
system described by positive semi-definite matrices E and �A with C = BT as in Theorem 6. Consider the
transformation assumed in all the projection framework algorithms presented in Chapter 8,

sA�1Ex = x+A�1Bu; y = BT x (9.23)

Such new system has the same positive real transfer function of the original system, hence it is still passive,
however once again the matrix A�1E may not be in general positive semi-definite.

9.1.3 A necessary and sufficient condition for passivity

All the passive conditions presented so far are only sufficient or only necessary or not practical. Fortu-
nately another mean is available [4] to certify the passivity of a system with a practical efficient algorithm.

Lemma 4 (Positive-Real Lemma, Version 1) Let H(s) = D+C(sI�A)�1B be a matrix-valued function,
(A;B;C;D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they are
simple. H(s) is positive-real if and only if there exist matrices Xc = XT

c ;Jc;Kc such that the Lur’e equations:

AXc +XcAT =�KcKT
c (9.24)

XcC
T �B =�KcJT

c ; (9.25)

JcJT
c = D+DT (9.26)

are satisfied, and Xc � 0 (Xc is positive semi-definite).

Xc is analogous to the controllability Grammian. In fact, it is the controllability Grammian for a system
with the input-to-state mapping given by the matrix Kc. It should not be surprising that there are a dual set
of Lur’e equations for Xo = XT

o > 0;Jo;Ko that are obtained from Eqns. (9.24)-(9.26) by the substitutions
A! AT ;B !CT ;CT ! B.
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Lemma 5 (Positive-Real Lemma, Version 2) Let H(s) = D+C(sI�A)�1B be a matrix-valued function,
(A;B;C;D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they
are simple. H(s) is positive-real if and only if there exist matrices Xo = XT

o ;Jo;Ko such that the dual Lur’e
equations:

AT Xo +XoA =�KT
o Ko (9.27)

XoB�CT =�KT
o Jo; (9.28)

JT
o Jo = D+DT : (9.29)

are satisfied, and Xo � 0 (Xo is positive semi-definite).

The dual equations have a corresponding observability quantity X o � 0 for a positive-real H(s). It is easy
to verify that Xc;Xo transform under similarity transformation just as Wc;Wo (Eqn. 7.15 in Section 7.4), that
their eigenvalues are invariant, and in fact in most respects they behave as the Grammians W c;Wo. Lemmas 4
or 5 can be used to check the passivity of the produced systems in form:

sx = Ax+Bu; y =Cx+Du: (9.30)

Computational procedures may be found in [5]. Also, [9] gives a computational procedure that involves only
standard matrix computation, such as computing the eigenvalues of a matrix or a matrix pencil. Extensions of
the positive-real lemma are available for transfer functions in the descriptor form H(s) = D+C(sE�A)�1B.
Such extensions can be used to check the passivity of the systems in form:

sEx = Ax+Bu; y =Cx+Du; (9.31)

where E is singular such that the transfer function cannot be put into the above form [61]. Computational
procedures can be found in [109].

9.2 Passivity for systems modeling scattering parameters

In some PCB, some package, and some microwave applications we may encounter interconnect models
where the system inputs, u, represent incoming waves of voltage (or current, or electromagnetic field), and
that the outputs y represent outgoing waves of voltage (or current, or electromagnetic field). In this case
the Laplace-domain representation of the system transfer function H is then a “scattering parameter” matrix
function H(s). In this case we can define the two following inner products in X ,

hu;yi=
Z ∞

�∞
u(t)T u(t)dt�

Z ∞

�∞
y(t)T y(t)dt; (9.32)

and a product which acts on truncated signals

hu;yiτ = huτ;yi= hu;yτi=
Z τ

�∞
u(t)T u(t)dt�

Z τ

�∞
y(t)T y(t)dt (9.33)

where

uτ(t)�
�

u(t) if t � τ;
0 if t > τ: (9.34)

u(t)T u(t) and y(t)T y(t) have the physical interpretation of energy of the incoming and outgoing waves re-
spectively. hu;yiτ is the difference between the two, hence it is the total energy passed by the system up to
time τ. To represent a passive system in this case it is necessary that H(s) be bounded-real [4].

Definition 9 (Bounded Realness) A matrix valued function H(s) is bounded-real if

H(s) = H(s); (9.35)

H(s) is analytic in Re(s)> 0; (9.36)

I�H(s)�H(s)� 0 in Re(s)> 0: (9.37)
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The term “bounded” arises as Eqn. (9.37) is equivalent to stating that jjH(s)jj 2 � 1 in the open right-half
plane. Intuitively this corresponds to roughly requiring that the amplitude of all reflection coefficients is less
than one.

9.2.1 Bounded-Real conditions

In order to check if the transfer function of a system is bounded real one can use the following necessary
and sufficient conditions.

Lemma 6 (Bounded-Real Lemma, Version 1) Let H(s) = D+C(sI�A)�1B be a matrix-valued function,
(A;B;C;D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they are
simple. H(s) is bounded-real if and only if there exist matrices Yc = Y T

c ;Jc;Kc such that the Lur’e equations:

AYc +YcAT =�BBT �KcKT
c (9.38)

YcC
T +BD =�KT

c Jc (9.39)

JcJT
c = I�DT D (9.40)

are satisfied, and Yc � 0 (Yc is positive semi-definite).

A dual condition can also be given.

Lemma 7 (Bounded-Real Lemma, Version 2) Let H(s) = D+C(sI�A)�1B be a matrix-valued function,
(A;B;C;D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they are
simple. H(s) is bounded-real if and only if there exist matrices Yo =Y T

o ;Jo;Ko such that the Lur’e equations:

ATYo +YoA =�CTC�KT
o Ko (9.41)

YoB+CT D =�KoJT
o ; (9.42)

JT
o Jo = I�DT D (9.43)

are satisfied, and Yo � 0 (Yo is positive semi-definite).

9.3 Causality

A causal system is a system whose output depends only on past inputs, not future inputs.

Definition 10 (Causality) A system H is causal if and only if H u(τ) = H uτ(τ); 8 τ 2 R+; 8 u : R+! Rp.

All physical systems are causal. Hence, causality is a necessary property of all models intended to be used in
any simulator that has a concept of time. However, it is often neglected, specially when modeling distributed
systems. When constructing model reduction algorithms for distributed systems, we must keep in mind that
the condition in Equation (9.12) is not sufficient by itself to insure that the model is physical and well-behaved
when used in a time domain simulator.

There are systems that satisfy the passivity conditions without being causal. Those systems both cannot
represent any physical interconnect, and cannot be represented by dynamical models to be used in causal
time-domain simulators.

Example 3 Let’s consider from a practical point of view a one port (p = 1) network function Z skin( jω) =

R0+Rac
pjωj that is commonly used as a model for the “resistance” of interconnect in the skin-effect regime.

This function satisfies all the passivity conditions including ΠZ( jω) > 0; 8 ω 2 R. However, it is not a
representation of any passive system, because it is not a causal function. In fact, it can be shown that
any physical, passive network function that is purely real must be constant with respect to the frequency
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ω. In Section 12.4.3 we further illustrate the non-causality of this model. Practically speaking, although
the function is passive no physical collection of interconnect can have such function as a transfer function.
Furthermore no causal dynamical system model for a time-domain simulator can be constructed to represent
it.

Algorithms that generate successively better rational approximations of non-causal systems (for example,
Zskin( jω)) must in some limit fail to be passive, for example by generating unstable approximants. Therefore
we will require that all the systems representing interconnect we are supposed to reduce be not only passive
but also causal.

9.4 Existing model reduction methods preserving passivity (PRIMA)

Because of the need to obtain accurate high-order models at reasonable computational cost, the Krylov-
subspace model reduction methods [46, 73, 13, 53, 74, 99, 43, 130, 97, 128, 12, 16] have occupied the
forefront of research over the past five years. The importance of producing passive reduced models has been
realized, and several algorithms that preserve passivity of RLC circuits in specialized cases have appeared [13,
95, 74, 11, 10, 42, 100, 99, 47, 43, 97, 87, 48, 102, 14, 98, 16, 28, 27]. In Chapters 11, 12 and 13 we will
present the algorithms that we have developed to preserve passivity in cases not yet covered in literature [36,
33, 108, 109]. In this section we describe instead PRIMA [100, 99, 97], a crucial modification of the Krylov
subspace projection framework via Arnoldi presented in Section 8.2.2. Consider a dynamical linear system
in the form

sEx = Ax+Bu; y =Cx (9.44)

that not only is passive but also the much stronger sufficient conditions in Theorem 6 in Section 9.1.2 are all
satisfied.

1. As in Section 8.2.2 consider the equivalent system

sA�1Ex = x+A�1Bu; y =Cx: (9.45)

2. As in Section 8.2.2, calculate the change of basis Uq matrix using the Arnoldi process in Fig. 8.4 whose
columns span the Krylov subspace Kq(A�1E;A�1B).

3. As in Section 8.2.2 choose Vq =Uq.

4. In Section 8.2.2 the projection framework was applied to the system (9.45), obtaining the reduced
system

sUT
q A�1EUqx = x+UT

q A�1Bu; y =CUqx: (9.46)

In PRIMA instead the projection framework is applied to the original system (9.44), obtaining the
reduced system

sUT
q EUqx =UT

q AUqx+UT
q Bu; y = BTUqx: (9.47)

Theorem 7 The reduced system produced by PRIMA is passive.

Proof. This can be seen observing that the projection framework, when choosing V q = Uq as in this case,
results in congruence transformations for matrices E and A. From Lemma 2, since the original matrices
were positive and negative semi-definite respectively, also the reduced matrices are positive and negative
semi-definite respectively. We farther observe that the projection framework in this special case preserves the
input/output symmetry condition, i.e. if C = BT then CUq = UT

q B. In conclusion, when the original system
is passive and satisfies all the strong sufficient conditions in Theorem 6 then the reduced by PRIMA also
satisfies to the same conditions and hence is guaranteed passive.

Examining example 2 one can instead realize that the the same result cannot be achieved by the simple
reduction via Arnoldi in Section 8.2.2. In that case although the original system is passive, matrix A �1E
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is not necessarily positive semi-definite and therefore the reduction via congruence transformation does not
produce necessarily positive semi-definite matrices.

Finally, besides preserving passivity, PRIMA has the same matching properties and numerical robustness
of the reduction via Arnoldi in Section 8.2.2

Theorem 8 The transfer function Ĥ(s) of the reduced system produced by PRIMA matches the first q deriva-
tives (or moments, or Taylor series coefficients) of the transfer function H(s) of the original system

H(0) = Ĥ(0) (9.48)

dkH
dsk (0) =

dkĤ
dsk (0) for k = 1;2; :::; q�1 (9.49)

and the procedure is numerically robust (i.e. high orders of derivatives can be matched even in finite precision
arithmetic)

Proof. The numerical robustness derives as usual from the Arnoldi orthonormalization process. In order
to show the moment matching properties we can expand in Taylor series the original model and the reduced
model

H(s) =
∞

∑
k=0

mksk =
∞

∑
k=0

h
BT (A�1E)kA�1B

i
sk (9.50)

Ĥ(s) =
∞

∑
k=0

m̂ksk =
∞

∑
k=0

h
(UT

q B)T ((UT
q AUq)

�1(UT
q EUq))

k(UT
q AUq)

�1(UT
q B)

i
sk (9.51)

(9.52)

For each of the first q moments we can show that

m̂k = BTUq(U
T
q AUq)

�1UT
q EUq:::(U

T
q AUq)

�1UT
q EUq(U

T
q AUq)

�1UT
q B (9.53)

= BTUq(U
T
q AUq)

�1UT
q EUq:::(U

T
q AUq)

�1UT
q EUqUT

q A�1B (9.54)

= BTUq(U
T
q AUq)

�1UT
q EUq:::(U

T
q AUq)

�1UT
q EA�1B (9.55)

= BTUq(U
T
q AUq)

�1UT
q EUq:::U

T
q A�1EA�1B (9.56)

= BT (A�1E):::(A�1E)A�1B (9.57)

= BT (A�1E)kA�1B (9.58)

= mk (9.59)

Note that U T
q Uq = I because of the Arnoldi orthonormalization process used to construct U q. In general

instead UqUT
q is not the identity matrix. However, in the previous derivation we have used Lemma 8 and 9.

Note that such Lemmas can be applied only to the first q moments since the columns of U q span the Krylov
subspace Kq(A�1E;A�1B) of order q.

Lemma 8 If Uq is an orthonormal matrix Uq 2 Cn�q, UT
q Uq = I 2 Rq�q, and v is any vector in the column

span of the matrix Uq, v 2 columnspan(Uq)
then UqUT

q v = v.

Proof. If v 2 columnspan(Uq) then there exists a vector g such that v = Uqg. Substituting UqUT
q v =

UqUT
q Uqg =Uqg = b.

Lemma 9 If Uq is an orthonormal matrix Uq 2 Cn�q, UT
q Uq = I 2 Rq�q, and v is any vector such that

A�1v 2 columnspan(Uq),
then (UT

q AUq)
�1UT

q v =UT
q A�1v.



9.4. EXISTING MODEL REDUCTION METHODS PRESERVING PASSIVITY (PRIMA) 105

Proof. If A�1v 2 columnspan(Uq) then there exists a vector g such that A�1v =Uqg. Substituting

(UT
q AUq)

�1UT
q v = (UT

q AUq)
�1UT

q AA�1v (9.60)

= (UT
q AUq)

�1(UT
q AUq)g (9.61)

= g (9.62)

= UT
q Uqg (9.63)

= UT
q A�1b (9.64)

Finally we observe that PRIMA can be formulated to include the same type of multi-point moment match-
ing capabilities following the procedure illustrated in Section 8.2.4.
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Chapter 10

Background: comparing existing model
order reduction methods

As seen in the previous in this introductory chapters, there exist many model order reduction procedures.
When selecting a procedure for a particular application one should consider four main characteristics:

� the computational cost required to build a model of a given accuracy (or order) from an originally
huge and dense dynamical linear system. This characteristic is crucial when producing the reduced
order model. Typically one can afford only a complexity linear in the size of the original model.

� the accuracy achieved by the reduced order model for a given order. This characteristic is important
when using the reduced order model. Smaller models for a given accuracy can result in faster runtimes
when using the model in a circuit simulator.

� the numerical robustness of the reduction procedure. This is important when trying to increase the
size of the reduced model to increase the accuracy. Reduction procedures that are not numerically
robust can only produce models of small accuracy regardless of the size of the produced model.

� the ability to preserve passivity of the original model. This is an essential property when using the
reduced model in a time domain simulator. Failing to preserve passivity can easily result in numerical
instability in the simulator.

We summarize in Table 10 the properties of the most important model order reduction algorithms pre-
sented in this Chapter.

Table 10.1: Comparison of some Model Order Reduction methods.
Cost for reducing Accuracy for Numerical Preserving
from order n to q given order q robustness passivity

Eigenmodes (7.3) O(n3) poor yes no
TBR (7.4) O(n3) almost optimal yes no
Point match (7.5) O(q n log(n)) match q points no no
Pade-AWE (7.6) O(q n log(n)) match 2q moments no no
Arnoldi (8.2.2) O(q n log(n)) match q moments yes no
PVL (8.2.3) O(q n log(n)) match 2q moments yes no
PRIMA (9.4) O(q n log(n)) match q moments yes yes
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10.1 The “two steps procedure”

We can observe from table 10 that the only algorithms that can be used to handle the large and dense
dynamical linear systems produced by typical interconnect structures on modern electronic circuits are the
Krylov subspace projection framework methods: the reduction via Arnoldi in Section 8.2.2, PRIMA in Sec-
tion 9.4 and PVL in Section 8.2.3. The Truncated Balance Realization (TBR) method presented in Section 7.4
would be quite more effective in terms of accuracy for a given order of the produced model. However its cubic
complexity makes it useful only for original models with order not larger than few hundreds.

A common approach in practical applications is then to use a “two steps procedure”.

1. Typically one would apply a first reduction using a Krylov subspace method (e.g. PRIMA) and reduce
the original system of size around 500,000 to an intermediate system of size as large as a TBR can
handle.

2. The one would complete the reduction with TBR which is more efficient in terms of final size for a
given order.

An alternative approach is to directly solve the large Lyapunov equations via a Krylov subspace method [81,
115, 63, 64, 116] in order to reduce the TBR cubic complexity.

10.2 The main contributions of this thesis in model order reduction

The most important observation when looking at Table 10 is that preservation of passivity is still an critical
issue in the field of model order reduction. The problem has been partially address by the algorithm PRIMA.
However PRIMA requires the passive system to be a very specific form in order to preserve passivity. It has
been shown how to setup the original system in such special form only for problems including conductors. In
Chapter 11 we will develop a method to produce dynamical systems that satisfy the passivity conditions for
model order reduction using PRIMA for structures including dielectrics [36, 34].

Furthermore, PRIMA is only applicable to dynamical linear systems with constant descriptor matrices E
and A. In many modern applications we need to be able to handle “distributed” systems, that are described by
frequency dependent matrices E(s) and A(s). No reduction technique is available for such systems capable
of preserving passivity. In Chapter 12 we will develop such a needed reduction procedure [33].

Finally, “the second step” of the previously mentioned “two steps procedure” involves using an algorithm
that although accurate, in general may not preserve passivity. This problem is currently addressed in practice
by checking if the model generated by TBR is passive and if it is not passive a model of higher order is
generated until a passive model is “hopefully” generated. In Chapter 13 we develop instead a technique
similar to TBR that preserves passivity [108, 109]. Our new technique has the same optimal properties of
TBR in terms of accuracy for a given order, Furthermore, differently from PRIMA, our algorithm does not
require the the original passive system to be in any special form.
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Chapter 11

Preserving passivity when including
dielectrics

The work in this chapter has been done in collaboration with Prof. Jacob White, Massachusetts Institute
of Technology, and it has first appeared in [36, 34].

Dielectric materials are present in almost all modern electronic circuits: from Printed Circuit Boards
(PCBs), to packages, Multi-Chips Modules (MCMs), and Integrated Circuits. Dielectrics can significantly
affect both the performance and the functionality of electronic circuits. For instance, they can change inter-
connect delays, as well as the positions of frequency response resonances. Ignoring dielectrics can therefore
potentially lead to very inaccurate results both in timing analysis tools and in signal integrity tools.

Integral equation methods have proved to be very effective tools for analyzing on-chip and off-chip in-
terconnect structures, and there are several approaches for including dielectric interfaces in integral formu-
lations. For problems which can be viewed as flat interfaces of infinite extent, such as multilayer printed
circuit boards, the dielectric interface conditions can be satisfied by an appropriate choice of Green’s func-
tion [26, 3, 90, 150, 15]. For general shape or finite-size dielectric bodies, it is possible to “replace” the
dielectrics with equivalent fictitious electric and/or magnetic surface currents [50, 135]. General dielectric
shapes can also be handled by a Volume Integral Equation (VIE) approach, in which case the polarization cur-
rents are introduced in the volume of the dielectrics, and charges are introduced on their surfaces [122, 125].
Several comparisons of the Volume Integral Equation method against the Surface Integral Equation (SIE)
method [126, 124], against the Finite Difference Time Domain (FDTD) method [29], and against the Finite
Element Method (FEM) [76] have proven extensively its accuracy and viability. Common conclusions of
these comparisons is that in general the Integral Equation Methods (Green Functions, VIE and SIE) are pre-
ferred to FDTD and FEM, for systems not located inside metal shielding enclosures. For such systems, the
Green Function and the SIE method introduce a smaller number of unknowns than the VIE method. In this
chapter, however, we show how, combining a VIE approach with a full mesh analysis formulation, both for
the conductors and for the dielectrics, one can obtain a well conditioned system. Therefore, fast iterative
solver convergence rates are possible. Furthermore, dielectrics in PCBs, packages and MCMs systems ap-
pear typically in the form of one or more thin parallelepiped layers. When performing Signal Integrity (SI)
or Electromagnetic Interference (EMI) analysis on such applications, the VIE approach might be a viable
approach, since one could use an FFT based “fast method”, such as Conjugate Gradient FFT (CGFFT) [124]
or Precorrected-FFT [110]. The Precorrected-FFT grid can be chosen to coincide with a regular volume
discretization grid used in the dielectric parallelepiped layer. In this way, one can avoid significant extra
precorrection computations.

As the last decade has made clear, detailed electromagnetic analysis is a vastly more effective tool if it
can be used to automatically generate small and accurate circuit-level models of the interconnect via Model
Order Reduction (MOR) techniques [46, 73, 13, 53, 74, 99, 43, 130, 97, 128, 12, 16]. For instance, the power
and ground distribution system of a package or of an integrated circuit can be pre-analyzed using a MOR
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technique independently from the rest of the non-linear circuitry. The reduced order model resulting from the
analysis, can then be re-coupled with the rest of the circuitry in a non-linear time domain circuit simulator.
However, numerical stability problems can arise in the time domain simulator when non-passive models are
generated from originally passive interconnect structures.

Some MOR algorithms have been recently developed to address such critical issue [13, 53, 74, 99, 43, 97,
16] under some conditions on the original large linear system. Such conditions are easily verified by many
existing formulations used to analyze “conductors-only” interconnect structures. However, when dielectrics
are included such as in [94], matrices are generated that do not satisfy to the passivity conditions. To our
knowledge, no formulation is yet available to guarantee passivity for interconnect structures that include
dielectrics. In this chapter we show that a VIE method combined with a full mesh-based formulation both
for conductors and dielectrics leads to, at least in the low frequency regime, a linear dynamical system with
positive semi-definite matrices [36]. This positive-definite result is important because it makes possible the
straight-forward application of the Krylov-subspace based guaranteed passive model-order (MOR) [97].

11.1 Handling dielectrics with a Volume Integral Equation method

One way to include dielectrics with a Volume Mixed Potential Integral Equation is to write Maxwell
equations as

Jc(rc)

σc
+ jω

µ
4π

�Z
Vc

K(rc;rc
0)Jc(rc

0)drc
0 +

Z
Vd

K(rc;rd
0)Jd(rd

0)drd
0
�

=�∇φc (11.1)

Jd(rd)

jω(ε� ε0)
+ jω

µ
4π

�Z
Vc

K(rd;rc
0)Jc(rc

0)drc
0 +

Z
Vd

K(rd;rd
0)Jd(rd

0)drd
0
�

=�∇φd (11.2)

1
4πε0

�Z
Sc

K(rcs;r0cs)ρc(r0cs)dr0cs +

Z
Sd

K(rcs;r0ds)ρd(r0ds)dr0ds

�
= φc(rcs) (11.3)

1
4πε0

�Z
Sc

K(rds;r0cs)ρc(r0cs)dr0cs +
Z

Sd

K(rds;r0ds)ρd(r0ds)dr0ds

�
= φd(rds) (11.4)

where Vc and Vd are the union of the conductor and dielectric volumes respectively, r c and rd are vectors
indicating points in Vc and Vd respectively. µ is the magnetic permeability, ε0 is the permittivity, εr is the
dielectric relative permittivity, σc is the conductivity of the metal, and ω is the angular frequency of the
conductor excitation. Jc is the current density in the conductors. Jd = jω(ε� ε0)E is the polarization current
density in the interior of the dielectrics (as shown in Fig. 11.1), and E is the electric field.

Figure 11.1: Volume Mixed Potential Integral Equation where dielectrics are accounted for using polarization
currents Jd.

The kernel K(�; �) for a full-wave formulation is a frequency dependent function

K(r1;r2) =
e jωpε0µ jr1�r2j

jr1� r2j : (11.5)
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When the relevant length scales are much smaller than a wavelength, the above kernel can be approximated
with the frequency independent function

K(r1;r2) =
1

jr1� r2j : (11.6)

The scalar potentials φc and φd , can be related to the surface charge ρc and ρd , on both the conductor and
dielectric surfaces as shown in (11.3)-(11.4), where S c is the union of the conductor surfaces, Sd is the union
of the dielectric surfaces, rcs is a vector indicating a point in Sc, and rcs is a vector indicating a point in Sd .
Within each conductor, and within each homogeneous block of dielectric,

∇ �Jc(rc) = 0 (11.7)

∇ �Jd(rd) = 0 (11.8)

for all points rc and rd in the interior of Vc and Vd respectively. In addition, the current normal to the
conductor and dielectric surfaces is responsible for the accumulation of surface charge,

n̂ �Jc(rcs) = jωρc(rcs) (11.9)

n̂ �Jd(rds) = jωρd(rds) (11.10)

where n̂ is the unit normal to Sc and Sd at the points rcs and rcs respectively.
The main unknowns, Jc, Jd, ρc, and ρd can be approximated by a weighted sum of a finite set of basis

functions. One classical choice for the basis functions is to cover the surface of each conductor and of each
dielectric with panels, each of which hold a constant charge density. To model current flow, the interiors of all
conductors and dielectrics are divided into a 3-D grid of filaments. Fig. 11.6 shows an example of 3D volume
discretization of a dielectric parallelepiped. Each filament carries a constant current. Other basis functions
choices [35, 37, 39, 38] are possible for the interior of the conductors as shown in Chapters 4 and 5.

A Galerkin method [54] can be used to transform the Mixed Potentials Integral Equations (11.1)-(11.4)
into an algebraic form

2
664

R+ sL+ 1
s

�
0 0
0 Pol

� �
0 0
0 0

�
�

0 0
0 0

�
P

3
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2
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Ic
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qd

3
775=

2
664

Vc

Vd
φc

φd

3
775 (11.11)

where Ic, Id , qc and qd are vectors of basis function weights for the conductor currents, dielectric polarization
currents, conductor charges and dielectric charges respectively. Vc, Vd , φC and φd are the vectors generated by
inner products of the basis functions with the potential gradient and with the potential itself. The resistance
matrix R, the inductance matrix L and the coefficients of potential matrix P are all derived directly from the
Galerkin condition [54], and their physical interpretation is illustrated in Fig. 11.2,

R =

�
Rc 0
0 0

�
; (11.12)

L =

�
Lcc Lcd

Ldc Ldd

�
; (11.13)

P =

�
Pcc Pcd

Pdc Pdd

�
: (11.14)

L and P are frequency dependent when using a full-wave kernel as in (11.5), and frequency independent when
using a quasi-static kernel as in (11.6). Matrix Pol in (11.11) is a diagonal matrix carrying the polarization
coefficients

Poli;i =
li

Ai(ε� ε0)
(11.15)

where li and Ai are the length and the cross-sectional area of dielectric filament i respectively.
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Figure 11.2: Physical meaning of the discretization matrices in the Volume Mixed Potential Integral Equation
method.

11.2 Comparing an enforced-potentials with a mesh formulation

When considering equations (11.1)-(11.10), several alternative approaches are possible to treat intercon-
nect structures including dielectrics. As noted in [66] and elsewhere, boundary artifacts make it impossible
to simultaneously satisfy equations (11.1)-(11.4), ∇ 2φ = 0 and ∇ �J = 0. Typical formulations either enforce
(11.1)-(11.4) together with ∇2φ = 0, or they enforce (11.1)-(11.4) and ∇ �J = 0. In this chapter, we will refer
to first formulation as “enforced-potentials formulation”. Imposing the latter formulation on surface and on
interior of both conductors and dielectrics (11.7)-(11.10), makes it possible to use a mesh analysis approach,
hence in this chapter we will refer to the latter formulation as “current-conservation mesh formulation”.

As a summary, a complete mesh formulation for structures including both conductors and dielectrics,
after the Galerkin transformation can be written simply as:

M Zcd MT Im =Vms (11.16)

where Im are the unknown mesh currents, Vms is the vector of known mesh voltage sources, non zero only on
the rows associated with the external circuit terminals. Zcd is the Galerkin impedance matrix

Zcd =

24 R+ sL+ 1
s

�
0 0
0 Pol

�
0

0 1
s P

35 (11.17)

M is a very sparse mesh analysis matrix,

M = [Mf cMf dMpcMpd ]; (11.18)

where submatrices M f c and Mpc are the KVL’s mesh matrices for the conductors filaments and panels as
described in [66]. In a very similar way to [66], we can construct also M f d and Mpd , the KVL’s mesh
matrices for the dielectric filaments and panels. In fact, as for the conductors, dielectric panel charges can
be treated as displacement currents flowing on circuit branches to the node at infinity. A set of independent
meshes for the three dimensional discretization of the block of dielectric can be found using a minimum
spanning tree. Fig. 11.3 shows some of of the conductor and dielectric KVL meshes.

11.2.1 Comparing condition numbers

We compare here the enforced potentials and the current conservation mesh formulations on a simple
example. Two wires are considered in a typical PCB transmission line configuration as shown in Fig. 11.6.
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Figure 11.3: In this picture we show a two conductors transmission line with a dielectric layer between the
conductors. Both conductor and dielectric volumes are discretize. For visualization purposes the dielectric
filaments are shown with cross-sections thinner than their actual values. Red circles indicate some of the
KVL meshes uses to set up the linear system of equations shown above. Matrix M is a sparse matrix. Each
raws represents one of such meshes.

The two wires are shorted at one end, and driven at the other end. A dielectric layer with relative permittivity
εr = 4 is present between the two wires, as shown in Fig. 11.6.

In Fig. 11.4 we show the frequency response of the line, with and without the dielectric layer. Incidently,
in this picture one can immediately observe the importance of including dielectrics for correct resonance
positions. For the case with the dielectric layer, we compare in the same Fig. 11.4 the solutions obtained by
an enforced-potentials implementation and by a current-conservation mesh implementation. Similar results
can be observed from the two approaches. The small difference can be mostly explained by calculating the
condition numbers of the two implementations.

Fig 11.5 shows the condition number for the two implementations. The enforced-potentials implemen-
tation is poorly conditioned, and it appears very difficult to be preconditioned. A simple and very effective
preconditioner, [M diag(Zcd)MT ]�1, can instead be given [66] for the current-conservation mesh formulation.
The mesh approach is therefore more accurate, and presents faster convergence rates when used in an iterative
solution algorithm.

11.3 Passive model order reduction for structures including dielectrics

In this Section, we will limit ourself to the usage of the quasi-static kernel in (11.6) which produces
frequency independent L and P matrices in (11.13) and (11.14). The technique to handle dielectrics in [94]
uses a similar quasi-static assumption, and seems more advantageous requiring fewer unknowns. However,
not only magnetic coupling between conductive and polarization currents are neglected by that formulation,
but also the matrices used in that formulation are not in the form required for Krylov-subspace based passive
model-reduction schemes [97]. In this Section, we show instead an easy way to cast our mesh analysis



114 CHAPTER 11. PRESERVING PASSIVITY WHEN INCLUDING DIELECTRICS

0 1 2 3 4 5 6

x 10
8

10
−4

10
−3

10
−2

10
−1

10
0

frequency [Hz]

Shorted T−Line with dielectric in between. epsr=4. lenght=30cm.

A
dm

itt
an

ce
 [1

/O
hm

]

with dielectric, current conservation mesh analysis
with dielectric, enforced potentials               
without dielectric                                 

Figure 11.4: Frequency response for the transmission line in Fig. 11.6. The enforced-potentials and the
current-conservation mesh-analysis approaches give similar results even if not identical. The enforced-
potentials method is less accurate because of its large condition number. Incidently, this figure also shows
how the presence of dielectrics can significantly change resonances’ positions.

approach into the form in Theorem 6 in Section 9.1.2 suitable for passive reduced order modeling using
algorithm PRIMA in Section 9.4.

Choose as state vector for a linear system representation:

x =

2664
Im

Qcs

Qds

Qdv

3775 (11.20)

In view of this choice, we can rewrite (11.16) as shown in (11.19), where24 Qcs

Qds

Qdv

35=

24 MT
pc

MT
pd

MT
f d

35 Im

s
: (11.21)

Or finally in linear system terms:

L̂
dx
dt

= �R̂x(t)+Bu(t) (11.22)

y(t) = Cx(t) (11.23)

where matrices L̂ and R̂ are defined as

L̂ =

2
4 [M f c M f d ]L [M f c M f d ]

T 0 0
0 PT 0
0 0 [Pol]T

3
5 (11.24)

R̂ =

2
4 [M f cM f d ]R [M f c M f d ]

T [MpcMpd ]P M f d [Pol]
�PT [Mpc Mpd ]

T 0 0
�[Pol]T MT

f d 0 0

3
5 (11.25)
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[Mf c Mf d ] [R+ sL] [Mf c Mf d ]
T Im + [Mpc Mpd ] P

�
Qcs

Qds

�
+ Mf d [Pol] Qdv =Vms (11.19)

Vector u(t) contains the excitation voltage sources, Bu(t) = Vms. Vector y(t) contains the observed output
currents, derived through matrix C from the mesh currents I m in the state vector x(t). Note that for instance
the second equation the system (11.22) can be easily derived from eq. (11.21) pre-multiplying it by matrix
PT .

Definition 11 A matrix A is positive semi-definite if for any vector x,

x�Ax� 0: (11.26)

Theorem 9 Matrices L̂+ L̂� and R̂+ R̂� in (11.24) and (11.25) are positive semi-definite.

Proof. The polarization matrix [Pol] is diagonal with positive coefficients, hence it is positive semi-definite.
When using a Galerkin technique [54], the coefficient of potential matrix P in (11.14) and the inductance
matrix L in (11.13), are both positive semi-definite. The matrix [M f c Mf d ]L [Mf c Mf d ]

T is then also positive
semi-definite. Since all the three blocks of the block-diagonal matrix L̂ in (11.24) are positive semi-definite,
L̂ is positive semi-definite and so is L̂+ L̂�. This concludes the first part of the proof.

To prove that R̂+ R̂� in (11.25) is positive semi-definite calculate:

R̂+ R̂T =

24 2 [M f c Mf d ]R [M f c Mf d ]
T 0 0

0 0 0
0 0 0

35 (11.27)

The resistance matrix R is positive semi-definite, hence the submatrix 2 [M f c Mf d ]R[M f c Mf d ]
T is positive

semi-definite and so is R̂+ R̂�.
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Observation 1 When modeling the input impedances and the transfer functions of a 3D structure, we apply
input voltages at some ports, and we measure the resulting currents on the same set of ports, hence we are
choosing C = BT in eq (11.22) and (11.23).

Observation 2 The matrix L̂ is symmetric since L and P are symmetric when using a Galerkin discretization
scheme (Section 3.3, Pol is diagonal.

Observation 3 From Theorem 9 and from Observations 1-2, one can conclude that the formulation in (11.22)-
(11.25) satisfies to the conditions in Theorem 6 Section 9.1.2 for guaranteed passive Krylov subspace based
model reduction PRIMA in Section 9.4

11.4 Numerical implementation considerations

The most expensive operation in the model reduction algorithm with multipoint expansions is the com-
putation of the quantity [R̂ + s0L̂]�1L̂ v, where v is some known vector, and s0 is any of the chosen fre-
quency expansion points. A first observation is that one does not need to form explicitly matrices L̂, or R̂,
nor it is necessary to explicitly invert matrix [R̂+ s0L̂]. In fact, one can evaluate the matrix-vector product
w = L̂v using “fast-algorithms” for the subproducts within L̂v that involve the coefficients of potentials sub-
matrix P [94, 110] and the inductance submatrix L [68]. Then, one can solve the system [ R̂+ s0L̂]z = w using
Krylov subspace iterative methods, combined once again with fast-algorithms for the subproducts involving
matrices P and L. A preconditioner for the matrix [ R̂+ s0L̂] can be found observing that

[R̂+ s0L̂] = P̂T �R̂k + s0L̂
�

P̂ (11.28)

where

P̂ =

24 I 0 0
0 P 0
0 0 [Pol]

35 (11.29)

and

R̂k =

2664
[Mf cMf d ]R [M f c Mf d ]

T Mpc Mpd Mf d

�MT
pc 0 0 0

�MT
pd 0 0 0

�MT
f d 0 0 0

3775 (11.30)

Hence, for instance, one could use the following preconditioner where matrices R̂k, M f c, and M f d are all
extremely sparse

[diag(P̂T )]�1

0
@R̂k + s0

2
4 [M f c M f d ]diag(L) [M f c M f d ]

T 0 0
0 diag(PT ) 0
0 0 diag([Pol]T )

3
5
1
A

�1

[diag(P̂)]�1 (11.31)

As a second observation, one notices that a non-singular R̂ would be necessary in order to be able to
include also the point s0 = 0 among the other expansion points. The matrix R̂ in (11.25) can be written as

R̂ = P̂T R̂k P̂ (11.32)

It can been shown [65] that R̂k is non-singular (and therefore also R̂ is non-singular) under the condition that
there are no cut-sets of only capacitors. Unfortunately, each node in our dielectric discretization is such a
cut-set when dielectric losses are negligible. Therefore, the point s 0 = 0 cannot be included in the multipoint
expansion algorithm, and a non-zero low frequency expansion point is used instead. In the next section, we
show that for the examples considered, this expansion point restriction is not interfering with accuracy.
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11.5 Summary of our procedure

We summarize here briefly for the convenience of the reader the entire simulation procedure in its final
form:

1. First, we discretize both the volumes and the surfaces of the conductors and dielectrics. An example is
shown in Fig. 11.13.

2. We use a standard Galerkin technique [54] to construct matrices R;L;P;Pol in eq.(11.12) to (11.15).

3. A mesh analysis approach is used to construct the sparse KVL’s matrices M f c;Mf d ;Mpc; and Mpd

in (11.18). More details on how to handle conductors are in [66]. For the dielectrics, we use a minimum
spanning tree to find a set of independent meshes.

4. A Krylov subspace based model reduction algorithm such as [97] is then used to produce reduced order
linear system models. At each step of the algorithm the quantity [ R̂+ s0L̂]�1L̂ v, could be computed
using fast matrix vector products and Krylov subspace iterative methods.

5. The reduced order model is then used to obtain a plot of the frequency response, or to produce an
equivalent SPICE circuit for a time domain simulation including the non-linear circuitry.

The overall complexity of this procedure is O(Nm nlog(n)), where Nm is the total number of moments matched
by the model reduction algorithm at all frequency expansion points. n is the size of the original full linear
system model in (11.22)-(11.23), or about the number of basis functions used in the volume and surface
discretization.
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11.6 Examples

11.6.1 A transmission line example

Two PCB wires are considered in this example in a transmission line configuration. Wires are located on
opposite sides of a dielectric substrate, and shorted at one end.

Figure 11.6: Two PCB wires (250µm x 35µm x 30cm). A 100µm thick dielectric layer (ε r = 4) is present
between the two wires. This figure also shows the dielectric volume discretization. The intensity of the
shadings is associated with current densities near the first quarter wavelength resonance.

Fig 11.7 shows the frequency response of such transmission line structure. In Fig 11.7 we also show the
response of the calculated reduced order model. When building the reduced order model, we used multi-
point expansions matching four moments around each of the following frequencies: s 1 = j2π5KHz, s2 =
j2π250MHz, and s3 = j2π500MHz. The low frequency expansion point s 1 = j2π5KHz captures correctly
the DC behavior as shown in the “zoomed” picture at very low frequencies in Fig. 11.8.

At the frequencies where the frequency independent kernel in (11.6) yields accurate results, it may also be
reasonable to neglect magnetic coupling between conductors and dielectric polarization currents. However
there are cases where even with a non-fullwave kernel one might observe some effects of the magnetic cou-
pling between dielectric polarization currents and conductors. One of such cases is illustrated in Fig. 11.10.
A via is located in proximity of the shorted PCB transmission line.

The line is then excited at a frequency close to the first quarter-wavelength resonance. In this situation
most of the current closes its path through the dielectric layer in the form of polarization currents. If a nearby
via corresponds to a quiet victim line, some coupling can be observed between the vertical polarization
currents and the via.
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Figure 11.7: Reduce order modeling of a shorted PCB transmission line. Wires’ dimensions are 250µm x
35µm x 30cm. A 100µm thick dielectric layer (εr = 4) is present between the two wires. The continuous line
is the admittance vs. frequency of the calculated reduced model. The circles are the response of the original
system.
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Figure 11.8: “Zoom” on the DC frequency response in Fig. 11.7 to verify that the reduced model (continuous
line) captures correctly the DC behavior of the original system (circles).
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Figure 11.9: A via is located in proximity of the shorted PCB transmission line.

Figure 11.10: Via located near a PCB transmission line. In this picture we do not show the dielectric layer
which is located between the two dark PCB transmission line wires. Shadings correspond to current density
amplitudes. On the left we show the current densities corresponding to the case where magnetic coupling
between polarization currents and conductors is accounted for. On the right we show the same example
but setting Ldc = 0 and Ldd = 0 in (11.13) which corresponds to neglecting magnetic coupling between
polarization currents and conductors.
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Figure 11.11: Two wire coplanar transmission line. Wires are 250µm wide, 35µm thick, and 30cm long. The
two wires are shorted at one end. A dielectric layer with relative permittivity εr = 4 is present below the two
wires. Some of the dielectric volume discretization is also shown. A complete 3D grid is used with filaments
in all directions, but in this picture we only show the dielectric filaments parallel to the conductor wires.

11.6.2 A second example: coplanar transmission line

In a second example we analyze another typical scenario in todays electronic circuits. A two-conductors
coplanar transmission line is shown in Fig 11.11. Wires have the same dimensions as in the previous example.
Their separation is 150µm. The same dielectric layer of the previous example is this time underneath the two
wires. Fig 11.12 shows the frequency response of the reduced order model compared to the response of the
original system.

11.6.3 MCM interconnect example

In a third example, we have applied our technique to analyzing two wires of an interconnect bus on an
Multi-Chip Module (MCM), as shown in Fig. 11.13.

A dielectric layer (εr = 4) is present underneath the wires and the chips. In Fig. 11.14 we show the
frequency response of the two interconnects when shorted on one side and driven on the other. We show
the frequency response with and without the dielectric substrate. A significant difference in the resonance
position can be observed. Fig. 11.13 shows the polarization volume currents at the first resonance f = 3GHz.
In Fig. 11.14 we compare the reduced order model to the full model for the case when the dielectric substrate
is present. The reduced order model has been built matching four moments around each of the following
expansion points: s1 = j2π100KHz, s2 = j2π3GHz, and s3 = j2π6GHz. In order to include also the point
s0 = 0 among the other expansion points a non-singular R̂ in (11.25) would be necessary. The matrix R̂
in (11.25) can be written as

R̂ = P̂T R̂k P̂ (11.33)

It can been shown [65] that a matrix of the form such as in (11.25) is non-singular under the condition that
there are no cut-sets of only capacitors. Unfortunately, each node in our dielectric discretization is such a cut-
set when dielectric losses are negligible. Therefore, for lossless dielectrics the point s 0 = 0 cannot be included
in the multipoint expansion algorithm, and a non-zero low frequency expansion point is used instead. From
our experiments, we have observed that this expansion point restriction is not interfering with accuracy. For
instance in this particular example, the zero frequency behavior of the structure has been accurately captured
as shown in Fig. 11.15, which is a magnified view of the low frequency part of the plot in Fig. 11.14,
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Figure 11.12: Frequency response of the coplanar transmission line over a dielectric layer shown in
Fig. 11.11. The continuous line is the response of the reduced model which compares quite nicely with
the response of the original system shown by the small dots.

11.7 Conclusions on passive model order reduction including dielectrics

In this Chapter we described applying the mesh analysis approach to solving for the discretized currents
and charges in a VIE formulation for structures including dielectrics. We showed that the approach leads
to a system with provably positive semi-definite matrices, making for easy application of Krylov-subspace
based model-reduction PRIMA (Section 9.4) to generate accurate guaranteed passive reduced-order models.
Several printed circuit board examples demonstrated the effectiveness of the strategy.

Arguably, it is tempting to assume that the VIE approach is a step backward, as it involves discretizing
volumes instead of surfaces. However, volume integral equation methods are used for magnetic analysis of
conductor problems, because conductors occupy a vanishingly small region of the problem domain. The
same vanishingly small occupancy argument can be made for dielectrics as well. In addition, since polar-
ization currents are not “outputs”, it might be possible to align them with a regular grid. Such an align-
ment might improve the performance of fast solvers, such as the Conjugate Gradient FFT (CGFFT) [124]
or Precorrected-FFT [110] methods, an important consideration as such solvers are required when using any
integral formulation on models with complicated geometries.

A more efficient way to model dielectrics is to use special Green functions or to use Surface Integral
Equation (SIE) methods. Both such approaches generate dynamical linear systems with frequency dependent
matrix descriptors [E(s);A(s)] (distributed systems). In the next Chapter 12 we develop an algorithm for
guaranteed passive reduction of such systems.
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Figure 11.13: Two wires part of an MCM interconnect system (figure above). A dielectric layer ε r = 4 is
present underneath the wires and the chips. The figure below shows the volume polarization currents inside
the dielectric layer at the 3GHz resonance. For visualization purposes, the axes in this picture are not “to-
scale”. Wires are 2cm long, 4mm far apart, 250µm wide and 40µm thick.
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Figure 11.14: Admittance vs. frequency for the two wires in Fig. 11.13.
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Figure 11.15: Magnified view of the low frequency part of the plot in Fig. 11.14, to verify that the reduced
model (continuous line) captures correctly the DC behavior of the original system (circles).
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Chapter 12

Preserving passivity when reducing
distributed systems

The work in this Chapter has been done in collaboration with Dr. Joel Phillips during an internship at
Cadence Berkeley Labs, Berkeley, CA and it has first appeared in [33].

“Lumped” RLC circuits, can be typically represented by matrices that are independent of frequency.
For such lumped systems, positive-realness preserving procedures such as those based on congruence trans-
forms [97] and presented in Section 9.4 are sufficient to guarantee that the reduced models of passive full
systems are passive as well. However, when accounting for high frequency effects, “distributed” systems
represented by frequency dependent matrices are typically encountered. For example, frequency dependent
matrices are generated by integral-equation based field solvers that employ full-wave kernels, special Green
functions for lossy dielectrics/substrates, or frequency dependent basis functions [37].

There are several approaches to distributed model reduction that essentially convert the model reduction
problem to an interpolation or data-fitting problem [25, 28] (and Section 7.5), where it is irrelevant whether
the original systems is distributed or lumped. In our experience all of the data-fitting like approaches are
limited in some aspect, and to the best of our knowledge, there is no approach that can simultaneously
guarantee good model accuracy, numerically stable and computationally practical generation of models of
arbitrary order, generation of models that are “well-behaved” when embedded into a simulation tool with
models of other physical elements. Krylov-based model reduction schemes for lumped systems [97] (and in
Section 9.4), on the other hand, routinely satisfy all these conditions, so we desire to extend their capabilities
to distributed systems.

As input, our algorithm takes a time-invariant state-space-like frequency-domain model whose matrix
descriptors may be a function of frequency. As output, it produces a time-invariant state-space model with
frequency independent matrix descriptors and whose transfer function is a rational approximant of the origi-
nal (infinite-order, possibly irrational) transfer function. The algorithm requires only matrix-implicit opera-
tions such as matrix-vector products, hence it is suitable for incorporation into modern fast integral equation
solvers.

12.1 Distributed systems in descriptor form

Assume the original distributed system (e.g. an interconnect network) has been described, for instance
by the discretization step of an integral equation method, in terms of a frequency dependent matrix Z(s).
Z(s) describes the couplings between all the discretization basis functions and may be very large in the
applications of interest. Many integral equation methods, when applied to distributed systems, produce Z(s)
as a linear combination of matrices. One example is Z(s) = R(s) + sL(s), where R(s) and L(s) can still
be in general frequency dependent. Incidentally this particular form for Z(s) may be advantageous for our
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approach, although in general not necessary. We assume input and output information is of interest at some
“ports” of the network for which the model is to be generated. The frequency-domain description of the
system can be written as

[R(s)+ sL(s)]im(s) = Bvp(s); ip(s) = BT im(s); (12.1)

where vp(s) 2 Cp and ip(s) 2 Cp are Laplace-domain representations of voltages and currents at the p de-
fined ports of interest, im(s) 2 Cn are the internal currents, and B 2 Rn�p is a matrix relating ports to internal
currents. In this case u = vp represents the system inputs (voltages), y = i p the system outputs (currents),
and x = im the internal states (also in this case currents). The transfer function from inputs to outputs is
H(s) = BT [R(s)+ sL(s)]�1B; ip(s) = H(s)vp(s); and one view of model reduction is that it seeks an ap-
proximation to the transfer function H(s). For instance, they could represent the resistance and partial induc-
tance matrices of a set of piece-wise constant basis functions (see Section 3.3.1 used to discretize conductor
volumes in a Mixed Potential Integral Equation approach (MPIE) with a frequency dependent kernel. Such
a case is found for instance using the full-wave kernel in the Partial Element Equivalent Circuits (PEEC)
approach [121]. They could represent the matrices generated in method-of-moments integral equation codes
when using Green function approaches to handle dielectrics or lossy substrates [24], in either a full-wave
or quasi-static setting. The matrices R(s) and L(s) could also represent the resistance and partial induc-
tance matrices of frequency dependent NON-piecewise constant basis functions used to discretize the MPIE
formulation. The conduction modes basis functions presented in Chapter 4 are such an example.

In the form of Equation (7.2) the analogies to lumped systems are obvious : lumped systems can always
be put into the form (7.2) in a way such that R(s) and L(s) are constant independent of s.

12.2 The optimal global interpolation approach

To illustrate some of the problems encountered in model reduction for distributed systems, consider the
algorithm presented in [107]. The central approach of the algorithm is a Taylor expansion of the system
matrix descriptor Z(s) � ∑N

k=0 Zksk, using polynomials as interpolants. A standard Krylov method is then
applied to a system constructed from the Taylor expansion. This approach does not generate well-behaved
models because the Taylor approximation is not globally well-behaved. In fact, all polynomials diverge in
the s ! ∞ limit. Hence, although good accuracy can be achieve in a given frequency band of interest, global
properties such as positive-realness cannot be guaranteed. Empirically, the resulting reduced models are often
found to have unstable poles, the models are not passive, and thus the algorithm is of little practical value.

In our approach, we will seek to combine approximation of the Z(s) internal matrix descriptors with a
Krylov method as in [107]. However, our method differs in the following fundamental aspect.

12.2.1 The key idea

Almost all systems for which one would wish to extract reduced models are non-ideal (non-ideality is
why they must be modeled in detail) and so contain a small amount of loss. These systems are strictly passive
and can typically be described by strictly positive real system matrices.
The key idea of our algorithm is based on the observation that if a system descriptor is strictly positive-
real to begin with, a globally and uniformly convergent interpolant will eventually (for a large enough
order of the interpolant) be positive-real as well. (This will be seen in the proof of Theorem 10.) Fur-
thermore, a well-chosen global interpolant will be positive-real for low enough orders to be practical. Local
approximations based on Taylor and Padé typically do not have these properties.

There is one more point, subtle yet of great importance, that we wish to underline before proceeding with
the main algorithm. In our algorithm, as in others [97], we require that, not only the transfer function H(s)
of the given large system be strictly positive-real, but also that its internal system matrix descriptor Z(s) be
strictly positive real (i.e. that the state-space description be internally positive-real). However, as discussed
in Section 9.3 in a physical system, H(s) must also be causal. Hence, as for the the positive realness property,
we shall require that not only the transfer function H(s) of the given large system be strictly positive-real and
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causal but also that its internal system matrix descriptor Z(s) be strictly positive real and causal (i.e. that
the state-space description be internally positive-real and causal). In this case we can restrict our search for
approximations of Z(s) to the set of stable, positive-real interpolants. For non-causal Z(s), either accuracy or
stability/passivity would have to be eventually sacrificed.

Figure 12.1: Assumptions.

12.2.2 Proposed algorithm

We propose an eight step procedure, which we term Global Rational Interpolation, Passive (GRIP):

1. Obtain/estimate/given a set of q points at which the transfer function at the network ports H(s) 2 C p�p

is to be matched,

2. Compute the basis Uq 2 Cn�q for the projection operation (see Section 8.1).

3. Project the internal system matrices R(s);L(s)2Cn�n to obtain smaller R̂(s); L̂(s)2Cq�q as in Fig. 8.2).
Note that this is a conceptual operation; the reduced matrices are still frequency-dependent, so the sys-
tem is still of potentially infinite order.

4. Perform a global and uniform interpolation of the (projected) internal system matrices R̂(s); L̂(s) (see
Section 12.3).

5. Check the passivity (see [5]), and accuracy of the matrix interpolants. If not passive, or if matrix
interpolants are not accurate, go to Step 4 and increase the order N of the global interpolant.

6. Check the accuracy of the reduced model transfer function Ĥ(s). If not accurate, go to Step 1 and add
additional matching points q.

7. Realize as state-space system.

8. Perform a second-stage guaranteed-passive optimal reduction step, if desired [108].

Steps 1,2,3, and 6 are standard in lumped-system model reduction. Various approaches are possible, and
many are described in the literature. As they are not the main focus here, they will not be discussed further.
Step 5 can be performed solving the Lur’e equation in the Positive-Real Lemma [5], for which computational
procedures are available in the literature [5]. Step 7 is dependent on how Step 4 is performed, but is always
possible if Steps 4-6 are feasible.

It can be noticed that our algorithm is posed in such a way that if it terminates, accuracy, stability, and
passivity are guaranteed. However, we have not yet shown that it is possible to construct specific instantia-
tions that will terminate. Such task is equivalent to finding for the key Step 4 a suitable interpolant that is
guaranteed to converge globally and uniformly. To this purpose, in the next Section, one possible choice will
be described.
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Figure 12.2: The “Grip”.

12.3 A Laguerre-basis implementation

12.3.1 Choosing the global uniform interpolant

Several approaches are possible to the global interpolation problem. One possibility is to use algorithms
developed for general-purpose interpolation or data-fitting [28] that guarantee passivity by construction.
These algorithms are very computationally demanding. For many applications of interest, a simpler alterna-
tive is available. First, it is advantageous (although not necessary) to find some decomposition of matrix Z(s)
into for instance some matrices R(s) and L(s) for which the individual matrix entries do not have sharply
discontinuous behavior in the frequency parameter s. Many integral-equation-based electromagnetic field
solvers for distributed systems already produce such a decomposition. In order to use our method, particular
attention will need to be dedicated to making sure that such solvers generate strictly positive-real and causal
system matrices.

Second, the frequency dependency of projected matrices R̂(s) and L̂(s) in Fig.8.2 can then be captured

for instance using the set of basis functions [149], Ek(s) =
�

λ�s
λ+s

�k
; where λ is a positive real number. In this

way we can write:

R̂(s) =
∞

∑
k=0

R̂k Ek(s); L̂(s) =
∞

∑
k=0

L̂k Ek(s): (12.2)

The basis created by the functions Ek(s), sometimes called the Laguerre basis, is a member of a larger
family [96] of basis, all of which consist of sets of stable rational functions orthonormal over the imaginary
axis s = jω. An interesting contrast with the Taylor series approach is that the E k(s) are, in a sense, band-
limited. For jωj> λ, the Ek(s) have monotonic magnitude, and for jωj< λ, they are nearly equi-ripple, much
like Chebyshev polynomials. This implies that with suitable choice of λ, the approximations to R(s);L(s)
will be well behaved outside the approximation interval, and convergence will be fast within it.

The Laguerre basis is particularly interesting because, under the bilinear transformation, s= λ(1�z)=(1+
z); the series expansion in terms of the basis functions Ek(s) is mapped to a Fourier series of complex ex-
ponentials, since Ek(s) = zk; where z = eiφ;φ 2 [0;2π). The problem of rationally approximating the matrix
functions R̂(s); L̂(s) is reduced to the problem of approximating a function on the circle via a Fourier series, or
equivalently computing a Discrete Fourier Transform (DFT), as the entries of R̂(s); L̂(s) may be approximated
term-wise.
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12.3.2 Global uniform convergence

If the entries of R̂(s); L̂(s) are smooth when mapped to the circle, then the partial sums

R̂(N)(s) =
1
N

N�1

∑
k=0

R̂k zk; L̂(N)(s) =
1
N

N�1

∑
k=0

L̂k zk: (12.3)

converge uniformly to R̂(s); L̂(s). If R̂(s); L̂(s) are not smooth, but are continuous, it is still possible to obtain
uniformly convergent approximates by summing the Fourier series in the sense of Cesaro [7]. Practically
speaking, this means replacing the summations (12.3) by

R̃(N;C)(s) =
1
N

N�1

∑
k=0

R̂k

�
1�

k
N

�
zk

; L̃(N;C)(s) =
1
N

N�1

∑
k=0

L̂k

�
1�

k
N

�
zk

: (12.4)

Equivalently, we may say that as successive approximates, we take the arithmetic means of the partial sums
R̂(N)(s); L̂(N)(s), rather than the partial sums themselves. Summation in this manner has the property of
suppressing the Gibbs effect, and also ensuring uniform convergence on a broader class of functions.

Lemma 10 If the entries of R̂(N)(s); L̂(N)(s) are continuous when mapped to the circle, R̃(N;C)(s); L̃(N;C)(s)
converge uniformly to R̂(N)(s); L̂(N)(s) as N ! ∞ [7].

Shortly we will need the following definitions:

Definition 12 (Strong-η condition) ΠẐ is Strongly-η if ΠẐ(s)�ηI � 0 for any η > 0.

where ΠẐ(s)� Ẑ(s)+ Ẑ�(s) was defined by eq. (9.8) in Section 9.1.

Definition 13 (Weak-η condition) ΠẐ is Weakly-η if for any ε� 0, there is an η> 0;η< ε s.t. ΠẐ(s)+ηI >
0.

From Lemma 10 we obtain a major result of this chapter:

Theorem 10 Given a system description Ẑ(s) = R̂(s) + sL̂(s) where matrices R̂(s) and L̂(s) are causal,

strictly positive real, and continuous on the imaginary axis, there exists an integer N and coefficients R̃(N;C)
k ; L̃(N;C)

k

for the partial sums in (12.4) such that the matrix rational function Z̃(s) = R̃(N;C)(s)+sL̃(N;C)(s) is a positive-
real rational interpolant of Ẑ(s) whose error can be bounded from above by any chosen positive constant.

Proof. Using Definition 5 in Section 9.1, property (9.6) follows by construction as the E k satisfy (9.6).
Property (9.7) also follows by construction, since by inspection the E k have poles only in the left half-plane.
Thanks to Theorem 4, in order to complete this proof it is now sufficient to show condition (9.12).
Case 1: ΠZ is Strongly-η. From Lemma 10, if R̂(s) and L̂(s) are continuous when mapped to the circle,
R̃(N;C)(s); L̃(N;C)(s) converge uniformly and so does Z̃(s) = R̃(N;C)(s) + sL̃(N;C)(s). Thus 8η > 0; 9N s.t.
jjZ̃( jω)� Ẑ( jω)jj2 < η=4; 8ω 2 R: Hence

jjΠZ̃( jω)�ΠẐ( jω)jj2 � 2jjZ̃( jω)� Ẑ( jω)jj2 � η=2; 8ω 2 R: (12.5)

since
ΠZ̃( jω)> ΠẐ( jω)�jjΠZ̃( jω)�ΠẐ( jω)jj2 > η�η=2; (12.6)

then1 ΠZ̃ > η=2 and ΠZ̃ is Strongly-η, which implies (9.12) (see [145]). Thus Z̃ is strictly positive-real.
Case 2: ΠẐ is [strictly] positive-real but not Strongly-η. Choose any η > 0 and Map Ẑ ! Ẑ +ηI. Ẑ is now
Strongly-η. Go to Case 1. 2

1In this we needed to use the result that perturbations of a Hermitian matrix (ΠẐ ) result in perturbations of the eigen-
values bounded by the 2-norm of the perturbation.

2The upshot of all this is that the Strongly-η condition is slightly stronger than strict positive-realness and may not be
satisfied for all strictly passive systems. However, by introducing an additional error of O(η) (i.e., roughly doubling the
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Theorem 10 proves that an order of interpolation N large enough does exist and therefore that the al-
gorithm in Section (12.2.2) terminates. A practical algorithm would require a small N. The order of the
interpolant is related to the smoothness of the function being approximated. Hence, although we could use
this algorithm to approximate H(s) or Z(s) directly, that would require evaluation of an awful lot of matching
points around resonances, and most likely a very large order of the interpolant. A small N is instead needed
when the algorithm is used on some internal decomposed matrices R(s) and L(s) which are almost always
continuous within a given band of interest. Out-of-band non-smoothness (for example, for delay functions,
which create essential singularities at ∞) can be insured by filtering operations which must be designed to
preserve passivity and causality of the original matrices.

12.3.3 Computing the DFT coefficients

The DFT coefficients in the sums (12.3) can be efficiently calculated for instance using a Fast Fourier
Transform (FFT) algorithm. Hence the steps for one possible global approximation procedure are

1. For a desired interpolation order N, choose the size M of the FFT as some power of two: M = 2 n > N:

2. Calculate the frequency points sk on the imaginary axis corresponding to the M equally spaced FFT
points
zk = exp( j2πk=M), k = 1; : : : ;M on the unit circle using the bilinear transform: s k = λ(1� zk)(1+ zk);
where λ = 2π f0 is a parameter to be chosen around the center of the frequency band of interest for the
system response.

3. Use the projection in Fig.8.2 to evaluate each individual projected matrix R̂(sk) and L̂(sk) at the selected
frequency points sk; k = 1; : : : ;M.

4. Use an FFT algorithm to calculate the M coefficients R̂k and L̂k in (12.3) from the sequences R̂(sk) and
L̂(sk), k = 1; : : : ;M.

5. Apply to each of the M FFT coefficients the Cesaro’s transformation in (12.4) and obtain the coeffi-
cients R̃k and L̃k.

Note that, since the R(s) and L(s) matrices usually satisfy conjugate symmetry relations, R(s);L(s) need
to be evaluated at only half the points on the circle. Also, once the M Cesaro’s FFT coefficients are available
one can construct at no additional cost several interpolants of increasing order N < M=2 simply truncating
the sums in (12.4) to the first N coefficients.

12.3.4 Realization

In this section we describe how to perform Step 7 in the general algorithm 12.2.2, realization as a state-
space model. Having performed the global rational approximation on the projected matrix functions R̂(s) and
L̂(s), the system (7.2) is now:"

1
M

N�1

∑
k=0

R̃k zk +λ
�

1� z
1+ z

�
1
M

N�1

∑
k=0

L̃k zk

#
îm = B̂vp (12.7)

where R̃k and L̃k contain already the Cesaro’s correction (12.4). Collecting the terms corresponding to the
same powers of z we obtain

N

∑
k=0

Fk zkim� (1+ z)B̂vp = 0; (12.8)

interpolation error bound) through the η-shifting procedure we may guarantee strict positive-realness of the final model.
An alternative is to not perform the η-shifting, in which case we may prove that Z̃ is Weakly-η, which allows Z̃ to have
an excess energy gain of O(η). Since we may drive η! 0, neither deviation is of practical consequence in systems with
loss modeled over a finite bandwidth.
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where

Fk =

8>>>><
>>>>:

1
M

�
R̃0 +λL̃0

�
k = 0

1
M

�
R̃k + R̃k�1 +λL̃k�λL̃k�1

�
1� k � N�1

1
M

�
R̃N�1�λL̃N�1

�
k = N

(12.9)

define an augment state Define an augmented state

x = [ zN�1iTm zN�2iTm ::: z2iTm ziTm iTm ]T : (12.10)

and produce a finite dimension discrete linear system, Eq. (12.8) becomes

zEdx�Adx� (1+ z)B̂vp = 0: (12.11)

where one trivial choice for Ed and Ad is

Ed =

2
66664

0 I ::: 0 0
0 0 ::: 0 0
::: ::: ::: ::: :::

0 0 ::: 0 I
FN FN�1 ::: F2 F1

3
77775

Ad = �

2
66664

�I 0 ::: 0 0
0 �I ::: 0 0
::: ::: ::: ::: :::

0 0 ::: �I 0
0 0 ::: 0 F0

3
77775

One can observe that some of the coefficients of Ld and Rd are not uniquely determined and many choices
are possible. A choice that will provide a block bi-diagonal A c matrix in the final linear system realization is

Ed =

2
66664

0 I ::: 0 0
0 0 ::: 0 0
::: ::: ::: ::: :::

0 0 ::: 0 I
FN FN +FN�1 ::: FN + :::+F2 FN + :::+F1

3
77775

Ad = �

2
66664

�I 0 ::: 0 0
0 �I ::: 0 0
::: ::: ::: 0 :::

0 0 ::: �I 0
�FN �(FN +FN�1) ::: �(FN + :::F2) F0

3
77775

Substituting z = (λ� s)=(λ+ s) we obtain the continuous and final system realization

sEcxc = Acxc +Bcvp (12.12)

ip = Ccxc
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where

Ec = Ed +Ad =

Ec =

2
66664

I I ::: 0 0
0 I ::: 0 0
::: ::: ::: ::: :::

0 0 ::: I I
2FN 2(FN +FN�1) ::: 2(FN + :::+F2) FN + :::+F1�F0

3
77775

Ac = λ(Ed �Ad) =

Ac = λ

2
66664

I �I ::: 0 0
0 I ::: 0 0
::: ::: ::: ::: :::

0 0 ::: I �I
0 0 ::: 0 �(FN + :::+F1 +F0)

3
77775 ;

Bc = �2λ
�

0 0 0 0 ::: 0 B̂
�T

;

Cc = B̂�
�

0 0 0 0 ::: 0 I
�
;

and

Fk =

8>>>><
>>>>:

1
M

�
R̃0 +λL̃0

�
k = 0;

1
M

�
R̃k + R̃k�1 +λL̃k�λL̃k�1

�
1� k � N�1;

1
M

�
R̃N�1�λL̃N�1

�
k = N:

(12.13)

The same matrices in terms of the DFT coefficients are

Ec =

2
66664

I I ::: 0
0 I ::: 0
::: ::: ::: :::

0 0 ::: I
1
M [R̃N�1�λL̃N�1]

1
M [2R̃N�1 + R̃N�2�λL̃N�2] :::

1
M [2R̃N�1 + :::+2R̃1�2λL̃0]

3
77775

Ac = �λ

2
66664

I �I ::: 0 0
0 I ::: 0 0
::: ::: ::: ::: :::

0 0 ::: I �I
0 0 ::: 0 � 2

M [R̃N�1 + :::+ R̃0]

3
77775

Bc = �2λ
�

0 0 0 0 ::: 0 B̂
�T

Cc = B̂�
�

0 0 0 0 ::: 0 I
�

The reduced models generated by the above approach may be larger than desired for final simulation. In
this case it is desirable to perform a “second-stage” model reduction step using an optimal or near-optimal re-
duction approach, such as a truncated balanced realization that guarantees passivity by construction presented
in Chapter 13 and in [108].

12.4 Examples

12.4.1 Effect of lossy substrate on line impedance

The geometry in this example consists of two wires over a lossy substrate. The two wire volumes are dis-
cretized into short and thin filaments using a set of piece-wise constant basis functions. A standard Galerkin
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Figure 12.3: 2d lines setup

technique is used to calculate the resistance and partial inductance matrices R(s) and L(s). A frequency de-
pendent Green function is used in the kernel of the Galerkin integration to account for the effects of the
lossy substrate. Hence, the resulting matrices are frequency dependent. The system, before model reduction,
appears as in (7.2). The descriptor matrices have been projected to a reduced space of size q = 4 obtained
by solving the original full system at frequencies f = 0; 0:4GHz; 1GHz; 2:4GHz. which correspond to the
points on the unit circle: z = 1, exp(� jπ=4), � j, exp(� j3π=4). As center frequency for our band of interest
we have chosen λ = 2π109. In this example we have chosen M = 64 points for the FFT size. Fig. 12.13.b
shows the real part of the DFT coefficients for the inductance matrices. Coefficients 32; : : : ;63 are very small
indicating the original system matrix is causal. We have then truncated the DFT series to N=6 coefficients,
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Figure 12.4: Real and imaginary part of the original inductance matrix (circles) evaluated on the unit circle
and compared to its DFT series (continuous lines) truncated at N=6 coefficients out of M=64 total.

producing a final model of order 28. Fig. 12.4 compares the real and imaginary part of the original inductance
with their truncated DFT series representations. Fig. 12.5 compares the frequency response of the original
full system with the frequency response of the final realized linear state space model. Fig. 12.6 shows that
all the poles of the realized model are in the half-plane Re(s) < 0, hence stable. In order to check the per-
formance of our reduction procedure in terms of passivity preservation, we show in Fig. 12.7 the minimum
eigenvalue of the internal matrix Zemr +Z�

emr
vs. frequency at different stages of the algorithm

Zemr (s) = R̃(s)+ sL̃(s) (12.14)

The truncation process introduces some positive and negative error with respect to the minimum eigenvalue
of the system. The projection process instead can only increase the minimum eigenvalue, hence preserving
the degree of passivity in the system. Using the Positive-Real Lemma [5], we confirmed that the generated
system is passive.
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Figure 12.5: Real part and imaginary part divided by ω of the frequency response for the lossy substrate
example.
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Figure 12.6: All the poles of the frequency response of the realized model are in the half-plane Re(s) < 0,
hence stable.
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Figure 12.7: Minimum eigenvalue of Zemr +Z�
emr

. The system is passive if the minimum eigenvalue is posi-
tive. The minimum eigenvalue after the projection is larger or equal to the minimum eigenvalue before the
projection, hence the projection has preserved the degree of passivity.
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12.4.2 Full-Wave PEEC kernel

In this example we consider two parallel wires 4um wide, 1um thick and 750 um long. The two wires
are separated by 3cm. The wire volumes are discretized into short and thin filaments using a set of piece-
wise constant basis functions. A Galerkin technique is used to calculate the resistance and partial inductance
matrices R(s) and L(s). Since the separation between the two wires is not small compared to the minimum
wavelength of interest, a frequency dependent full-wave Green Function needs to be employed in the kernel
of the Galerkin integration. Hence, the resistance and inductance matrices are frequency dependent. The
system, before model reduction, appears as in (7.2). The descriptor matrices have been projected to a reduced
space of size q = 4 obtained by solving the full system at frequencies f = 0, 1:3GHz, 3:3GHz, 8GHz.
which correspond to the points on the unit circle: z = 1, exp(� jπ=4), � j, exp(� j3π=4). As center
frequency we have chosen λ = 2π� 3:3GHz. Fig. 12.8 shows the DFT coefficients for both the resistance
and the inductance matrices. In this example we have chosen M = 128 points for the FFT size. We have
then truncated the DFT series to N=23 coefficients, producing a final model of order 96. Fig. 12.9, compare
the real part of the original inductance with its truncated DFT series representations. Fig. 12.10 compares
the frequency response of the original full system with the frequency response of the final realized linear
state space model. Fig. 12.11 shows that all the poles of the realized model are in the half-plane Re(s) < 0,
hence the system is stable. In order to check the performance of our reduction procedure in terms of passivity
preservation, we show in Fig. 12.12 the minimum eigenvalue of the internal matrix Z emr +Z�

emr
vs. frequency

at different stages of the algorithm. Once again Zemr (s) = R̃(s)+ sL̃(s). The truncation process introduces
some positive and negative error with respect to the minimum eigenvalue of the system. The projection
process instead can only increase the minimum eigenvalue, hence preserving the degree of passivity in the
system. Using the Positive-Real Lemma [4], we confirmed that the generated system is passive.
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Figure 12.8: DFT coefficients of the resistance and inductance matrix for the fullwave example.
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Figure 12.9: Real part of the original inductance matrix (circles) evaluated on the unit circle and compared
to its DFT series (continuous lines) truncated at N=23 coefficients out of M=128 total.
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Figure 12.10: Real part and imaginary part divided by ω of the frequency response for the full-wave example.
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Figure 12.11: All poles of the reduced fullwave model are stable.
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the projection, hence the projection has preserved the degree of passivity.
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12.4.3 A non-causal example

Since R(s) and L(s) are frequency domain representations, when we calculate their FFT interpolants we
obtain something related to their time domain impulse response (actually the impulse response of a discrete-
time system obtained by sampling the continuous-time system at rate λ). Since the FFT produces M coef-
ficients that repeat periodically, the k = M=2; : : : ;M� 1 coefficients are related to negative-time part of the
time domain impulse response of R(s) and L(s). In Fig. 12.13.a we show the FFT coefficients of a common
non-causal example mentioned in Section 9.3: Zskin(iω) = R0 +Rac

pjωj used as a model for the “resis-
tance” of interconnect in the skin-effect regime. We can easily notice in such Figure that the coefficients
k = M=2; : : : ;M�1 related to non-causal coefficients of the time domain response are non-zero. If a model
order reduction is attempted on such an originally non-causal system, one will obtain non-stable models.
Alternatively one could deliberately ignore the non-causal coefficients and set them to zero before beginning
the reduction. However in this case stable but highly inaccurate models will be produced.

In our approach we require therefore that the original system descriptor matrices R(s) and L(s) be causal.
This means checking that the non-causal k = M=2; : : : ;M�1 coefficients of the FFT be zero except for some
aliasing phenomena. Fig. 12.13.b shows the real part of the DFT coefficients for the L(s) in example 12.4.1.
One can easily verify that such original system matrix descriptor is actually a causal one.

12.5 Conclusions on passive model order reduction for distributed
systems

In this Chapter we have presented a class of algorithms for guaranteed passive model order reduction
of strictly passive and causal linear systems with frequency dependent matrices (distributed systems). Our
approach is based on the key idea that if a system is strictly positive-real to begin with, a globally and
uniformly convergent interpolant will eventually (for a large enough order of the interpolant) be positive-
real as well. Laguerre basis are a set of well-behaved uniformly convergent interpolation functions whose
coefficients can be conveniently calculated using the FFT algorithm. An implementation using a Laguerre
basis as interpolant is given and examples are presented. While the Laguerre basis reduces the infinite order
of the original distributed system to a finite order, a standard Krylov subspace congruence transformation
can still be employed to reduce the size of the matrices. The algorithm is also perfectly compatible with fast
matrix-vector product algorithms.
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Figure 12.13: a) FFT coefficients for the non-causal example Z skin(iω) = R0 +Rac
pjωj used as a model

for the skin-effect “resistance”. b) FFT coefficients of the inductance matrix for the lossy substrate example.
Note that non-causal coefficients 32�63 are in a) very large and in b) very small.
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Chapter 13

Preserving passivity in Truncated
Balance Realizations

The work in this Chapter has been done in collaboration with Dr. Joel Phillips (Cadence Berkeley Labs)
and with Prof. L. Miguel Silveira (Cadence Euro Labs and Technical University of Lisbon, Portugal) during
an internship at Cadence Berkeley Labs, Berkeley, CA and subsequent collaboration. This work has first been
published in [108, 109].

The model order reduction techniques based on the Krylov subspace projection framework and presented
in Chapter 8 are very suitable for analysis of large-scale systems, since they only require matrix-vector op-
erations, and therefore can exploit almost linear complexity fastsolvers [94, 68, 152]. For the same final
accuracy, more compact optimal norm approximants are generated by the Truncated balanced realization
algorithms (TBR) [93] (Section 7.4) and Hankel model order reduction algorithms [51]. However the com-
putations required by TBR and Hankel reduction techniques have O(n 3) complexity when performed directly
(n is the order of the system to be reduced). Therefore the TBR methods are of more interest when combined
with iterative Krylov-subspace procedures. One formulation of this method is to directly solve the large
Lyapunov equations via a Krylov subspace method [81, 115, 63, 64, 116]. The reduced models are obtained
directly from the reduced Lyapunov equation. Another strategy is to use the two steps procedure [69, 88] as
illustrated in Section 10.1. One first uses the less efficient but computationally feasible Krylov-subspace tech-
nique to reduce the system to a few hundreds and then one can employ the more computationally demanding
TBR to obtain a final very compact model.

None of the above literature however addresses the issue of preserving passivity when using TBR type
methods. A passivity-preserving initial reduction is used in [69, 132], but then a standard TBR method
follows the initial reduction. The second TBR step may destroy the passivity of the initial model.

A second issue is that passivity preserving Krylov reductions such as PRIMA ([97] Section 9.4), can
handle only systems such as RLC circuits, that can generate positive semidefinite internal descriptor matrices.
That is because such methods rely on congruence transformations to preserve positive-semi-definiteness of
such internal descriptors. However, whether or not a state-space model represents a passive system is a
property of the input-output transfer function, not a property of the internal representation. Some passive
systems may have descriptor matrices that are not non-positive semi-definite. Some examples include the
systems that come from rational approximation of tabular data[27], the magnetic charge formulation of the
inductance problem[89], and general linear circuits, in particular those with gyrators, formulated in the sparse
tableau form. This issue even appears in RLC circuits: the positive-definiteness of the matrices in the MNA
formulation depends on the choices of signs (the circuit response is of course invariant to this choice). Finally,
in many cases positive positive realness of the input output transfer function may not even be the correct
property characterizing the passivity of the system. For instance, if the state-space model represents scattering
(S) parameters of a passive system, the system is passive if the norm of the S-parameter matrix is bounded
by unity. Such systems cannot be reduced by congruence with any passivity guarantees.
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d a

c b

Algorithm 2 Positive-Real TBR (PR-TBR)

1. Solve Eqns. (9.24)-(9.26) in Section 9.1.3 for X c and Eqns. (9.27)-(9.29) for
Xo.

2. Proceed with steps 3-8 in Algorithm 1 in Section 7.4, substituting Xc for Wc

and Xo for Wo.

In the systems and control literature one can find many results (e.g. [146, 147, 4]) and reduction al-
gorithms (e.g., [52]) with properties potentially relevant to passivity preserving model reduction. Such tech-
niques so far were not well known in the circuit simulation and design automation communities. By collecting
all of those control system techniques, and by applying, and extending them in the context of large-scale in-
tegrated circuit analysis and modeling, we hope to provide a first step in their wide adoption by the circuit
and design automation community.

In this chapter we discuss TBR-like model reduction algorithms that can preserve system passivity, have
computable error bounds, and, unlike other algorithms such as PRIMA, pose no constraints on the internal
structure of the state-space model. We describe variants that preserve both positive-realness (useful for sys-
tems that represent Y or Z parameters) and bounded-realness (useful for systems that represent S parameters).
These algorithms can be applied directly to a given state-space description [129], or can be used as the second
stage of a Krylov-subspace based procedure [81, 63, 69].

13.1 Guaranteed passive balanced truncations

We will show in Section 13.5 that the TBR procedure in Algorithm 1 in Section 7.4 does not necessarily
produce passive models. In making assessments about passivity, we require a tool that can assess the positive-
realness of a state-space model in a global manner. One such tool for systems representing immittance
matrices is the positive-real lemma [4] presented in Section 9.1.3.

A passivity-preserving reduction procedure follows by noting that the Lur’e equations can be solved for
the quantities Xc;Xo which may then be used as the basis for a TBR procedure. We may find a coordinate
system in which X̂c = X̂o = Σ, with Σ again diagonal. In this coordinate system, the matrices Â; B̂;Ĉ may
be partitioned and truncated, just as for the standard TBR procedure, to give the reduced model defined
by (Ã; B̃;C̃;D). We present this as Algorithm 2 and call it PR-TBR, as it preserves positive-realness of the
transfer function. Several approaches that turn out to give essentially similar results have appeared previously
in different contexts [52, 101, 23].

Theorem 11 Algorithm 2 applied to systems with positive-real transfer functions produces reduced models
with positive-real transfer functions.

Proof. From the form of the partitioning, (7.16) and (7.17), likewise partitioning either K̂c or K̂o, it is clear
that the reduced system, in the PR-balanced coordinates, satisfies

Â11Σ1 +Σ1ÂT
11 =�K̂1K̂T

1 (13.1)

Σ1ĈT
1 � B̂1 =�K̂1ĴT

c ; (13.2)

ĴcĴT
c = D̂+ D̂T : (13.3)

Therefore the reduced system satisfies the Lur’e equations with positive semi-definite Σ 1 (Σ1 � 0 as Σ � 0).
By the positive-real lemma, the reduced system is positive-real. We emphasize that Theorem 11 holds regard-
less of the internal form of the state-space system. Again, this is not true for congruence based procedures.

To obtain equivalent TBR procedures that guarantee a final transfer function that is bounded-real, useful
when working with transfer functions representing S-parameters, we can use the bounded real equations
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d a

c b

Algorithm 3 Bounded-Real TBR (BR-TBR)

1. Solve Eqns. (9.38)-(9.40) in Section 9.2.1 for Yc and Eqns. (9.41)-(9.43) for
Yo.

2. Proceed with steps 3-8 in Algorithm 1 in Section 7.4, substituting Yc for Wc

and Yo for Wo.

d a

c b

Algorithm 4 Hybrid TBR

1. Perform Algorithm 1 in Section 7.4

2. Using the reduced model matrices Ã; B̃;C̃, solve Eqns. (9.24)-(9.26) for X̃c

(or Eqns. (9.38)-(9.40)).

3. if Eqns. (9.24)-(9.26) (or Eqns. (9.38)-(9.40)) are solvable and X c � 0, then
terminate and return Ã; B̃;C̃.
else discard TBR-reduced model and proceed with Algorithm 2 (or 3).

in Section 9.2.1. The Algorithm 3 can then be introduced to perform truncated balanced realization while
guaranteeing the boundedness of the reduced transfer function 1.

13.2 A hybrid approach

In many cases, while not guaranteed by construction, it is often the case that the TBR approximants
produced by Algorithm 1 in Section 7.4 turn out to be positive-real. Therefore we propose Algorithm 4,
which performs the TBR procedure, solves the positive-real (or bounded-real) equations on the reduced
model to check its passivity, and if it turns out not to be passive, discard it and proceeds to Algorithm 2 (or
Algorithm 3). There is an advantage in this procedure as often the TBR approximates are more accurate for a
given order than PR-TBR. Because of the cubic scaling of cost, it is relatively cheap, compared to the cost of
the TBR reduction, to check a reduced model for passivity since the reduced system is presumably of lower
order. As often the TBR models are passive, the net effect of the composite algorithm is to approximately
double the cost in the worst case, versus usually getting better models at smaller cost (PR-TBR “costs” more
than TBR) in the more-common average case.

Algorithm 4, which appropriately combines all of the previously presented algorithms, can be used as
generic flow for generating accurate guaranteed passive reduced-order models of systems with arbitrary struc-
ture.

13.3 Physical interpretation of the PR/BR-TBR procedures

In Section 7.4.1 we discussed how the TBR procedure, and eigenvalues of associated Grammians, could
be interpreted in terms of the relative importance of system modes to the system input and output norms.
It turns out that the PR/BR-TBR techniques have a similar interpretation, but one that is more closely tied
to a circuit-theoretic notion of energy. To make this connection, we draw upon concepts from the theory of
passive dynamical systems, discussion of which can be found in [101, 146, 147].

In order to provide a physical interpretation for the PR/BR-TBR algorithm let us introduce the concept
of a supply function s[u(t);y(t)]. A supply function describes the rate at which power is supplied by the
environment into the system, and typically is defined such that s[u(t);y(t)] > 0 implies a positive amount

1The bound does not have to be unity; it can be any positive constant.
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of energy input, while s[u(t);y(t)] < 0 means energy is extracted from the system back to the environment.
When the system inputs and outputs are currents or voltages, i.e. when the system transfer function represents
impedance or admittance matrices, we may use the supply function s[u(t);y(t)] = u(t) T y(t). When the system
transfer function represents scattering parameters, we may use the supply function s[u(t);y(t)] = u(t) T u(t)�
y(t)T y(t). Regardless of the particular form of supply function we can further define the following two
quantities:

Vav(x0) = sup

�
�
Z ∞

0
s[u(t);y(t)]dt; x(0) = x0

�
(13.4)

Vreq(x0) = inf

�Z 0

�∞
s[u(t);y(t)]dt; u(t) controlling to x(0) = x0

�
; (13.5)

where Vav(x0) is the available storage energy, or maximum energy that can be extracted from the system over
any possible trajectory of the state from an initial state x0 at time 0. Vreq(x0) can be interpreted as the required
supply, or the minimum amount of energy that must be provided by the environment to the system in order
to control the system to state x0 at time 0 over any possible trajectory. It can be shown ([146, 147]) that for
passive and controllable systems, Vav(x0) is always a positive number not larger than Vreq(x0)

0�Vav(x0)�Vreq(x0): (13.6)

Furthermore, it can be shown ([146, 147]) that the solutions X o and Xc to the positive real Lur’e equa-
tions (9.27)-(9.29) and their dual (9.24)-(9.26) respectively, obtained from the procedure in Section 13.4
have a physical interpretation for passive immittance systems in terms of the energy quantities V av(x0) and
Vreq(x0),

xT
0 Xo x0 = Vav(x0) (13.7)

xT
0 X�1

c x0 = Vreq(x0): (13.8)

Using a similar argument to the classical TBR interpretation, small eigenvalues of Xo are associated with
modes for which the maximum energy we can extract, Vav(x0), is small. They are therefore not likely to
be important “energy-wise” for the system response. Small eigenvalues of X c are associated with modes for
which the minimum amount of energy Vreq(x0) we have to supply in order to reach them is large. Hence it is
relatively difficult to drive the system into those states and they are not likely to be important “energy-wise”
for the system response.

As in the classical TBR, it can be noticed that some modes, although energy-wise hardly accessible, are
energy-wise important and we can extract back from them large amounts of energy. Vice-versa, there can be
some modes for which, although we cannot extract large amounts of energy, they require a small amount of
energy to reach. Thus, in a similar way as classical TBR, PR-TBR balances the importance of past energy
inputs and future energy outputs by transforming to a coordinate system in which X o and Xc are equal and
diagonal, and in which the invariant quantities that are the eigenvalues of the product of X o and Xc are easily
calculated. The algorithm will keep in the final reduced model only modes that are

� “energy-wise” easily “controllable”, that is they do not need much energy input to be reached

� and “energy-wise” easily “observable”, that is, it is possible to extract a lot of energy from them.

It is also interesting to note ([52, 101, 146]) that the solutions X o and Xc of the positive real Lur’e equa-
tions (9.27)-(9.29) and their dual (9.24)-(9.26), are related and not unique. Specifically, there exists a minimal
solution Xo;min and a maximal solution Xo;max for (9.27)-(9.29), a minimal solution Xc;min and a maximal so-
lution Xc;max for (9.24)-(9.26), such that

0� Xo;min = X�1
c;max � Xo = X�1

c � Xo;max = X�1
c;min (13.9)
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A procedure is given in [109] that produces the minimal solutions used in (13.7)-(13.8) respectively

Xo = Xo;min = X�1
c;max; (13.10)

Xc = Xc;min = X�1
o;max; (13.11)

(13.12)

The same physical interpretation presented above for positive real systems representing impedance or
admittance can be given to bounded real systems representing scattering parameters by defining as in [101]

xT
0 Yo x0 = Vav(x0) (13.13)

xT
0 Y�1

c x0 = Vreq(x0): (13.14)

where Yo and Yc are the minimal solutions of the bounded real Lur’e equations (9.41)-(9.43) and their
dual (9.38)-(9.40), respectively. A procedure is given in [109] to calculate such minimal solutions.

13.4 Computational considerations

The complexity of the algorithms presented for passivity-preserving balancing transformation is cubic
in the number of state variables, due to the use of direct, dense linear algebra for eigenvector computations
and matrix-matrix products. Thus, standard TBR and the passive-TBR variants cannot be directly applied
to extremely large systems such as large collections of interconnect because of the high cubic computational
complexity. However, this cost is acceptable if the algorithms are being applied to systems that are moderate
in size, as is usually the case with systems that result from a prior reduction step (see Section 10.1). Therefore
we wish to re-iterate that in the case of large systems, one would use the TBR algorithms as a “second step”
of a “two-step” reduction procedure. During the first step one would use the less computationally demanding
(but less efficient) Krylov subspace guaranteed passive reduction techniques such as PRIMA to reduce the
originally very large system to order around few hundred. At such point one can easily use without much
computational effort passive-TBR to reduce the system to order around 10 to 20. This “two-step” procedure
produces a much better compression (i.e. better accuracy for the same final order) than using PRIMA to
reduce in one single step the original very large system to the final order around 10 to 20.

13.5 Results

13.5.1 An RLC line

For our first example we use a 40-segment uniform RLC line that is L-dominated. The values of the
line were chosen to be R = 25, C = L = 0:39894. For the purpose of comparison we computed 25 th order
models using both TBR and PR-TBR. Figure 13.1-a) shows the low-frequency behavior of the exact line
impedance as well as that obtained using the two models. For this particular case it turns out that PR-
TBR performs much better than regular TBR in terms of the model error. More important, however is the
result shown in Figure 13.1-b) where we plot the minimal eigenvalue of the symmetric part of the transfer
function as a function of frequency. As can be seen from the plot, the minimal eigenvalue for the TBR
model can go below zero at some frequencies which implies that the model is non-passive and may produce
non-physical responses when used in time-domain simulations. In fact, on this example, almost none of the
models produced by TBR were passive. Only very high order models exhibiting an almost exact match to
the transfer function over the entire frequency axis were passive. In contrast, all the models produced by the
PR-TBR method were found to be passive, as expected.

13.5.2 A bounded-real example from rational function fitting

In the next example we consider the bounded-real variant of the TBR procedure (BR-TBR). First, a
rational fitting method was used to fit a high-order model to tabulated 2-port S-parameter data originating
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Figure 13.1: Left: Magnitude of Y12 for LC line. Right: Minimum eigenvalue of symmetric part of reduced
model transfer function. Note that the minimum eigenvalue the TBR model drops below zero for some fre-
quencies, indicating non-passivity. [Figure by Joel Phillips.

from a full-wave EM field solver. The fitting algorithm, which has provision for automatic estimation of
model order, was tuned to a conservative setting, and generated an order-42 initial model that was nearly an
exact fit to the data in the given frequency range. The resulting 42-state model was much larger than desired
for final simulation, so the BR-TBR procedure was used to reduce the model to six states. The results are
shown in Figure 13.2. The reduced model had norm bounded by unity, indicating that it represented a passive
element. Several models of orders six to eight were also generated by both TBR and congruence transform
strategies, but all had H∞ norms ranging from 1.05 to 1.9, i.e. they were not passive. Such techniques are
therefore unusable for this type of systems.

13.6 Conclusion on passive truncated balance realizations

In this Chapter we presented a family of algorithms that can be used to compute guaranteed passive,
reduced-order models of controllable accuracy for state-space systems with arbitrary internal structure.

The algorithms presented are similar to the well-known truncated balanced realization (TBR) techniques
and share some of their advantages, such as computable error bounds [109]. However, unlike standard TBR
techniques, the algorithms presented have been shown to produce provably passive reduced-order models. In
addition, unlike other techniques known to also produce passive reduction, the algorithms presented pose no
constraints on the internal structure of the state-space. They are thus equally well applicable to systems that
represent for instance Y or Z parameters as well as systems that represent S parameters. An hybrid algorithm
was also presented where a TBR model is first computed, then checked for passivity and the passive-TBR
algorithm is only used if that check fails. Our hybrid algorithm is more reliable than simply slightly changing
the order of the produced model which can often produce passive systems, although not always. In addition
we also examined a DC-accurate technique that can be used in conjunction with the algorithms presented in
order to produce models that have accurate steady-state responses.

We have experimented with our techniques in a number of settings. They can be used as stand-alone pro-
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Figure 13.2: Magnitude of rational function fit and reduced model for S-parameters tabulated by full-wave
field solver. Solid line shows initial data and order-42 rational fit (complete overlap). Dashed line shows
order-6 reduced model obtained via BR-TBR. [Figures by Luis Miguel Silveira and Joel Phillips]

cedures or as part of second step reductions for systems with a large number of unknowns, perhaps replacing
the usual TBR procedure. In our experiments with our technique all models were found to be accurate and
passive. All previously known techniques failed to produce acceptable models in some of the examples used.
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Chapter 14

Background: existing tools for
EMC-aware synthesis

Automatic layout tools accounting for crosstalk, substrate noise and parasitics have been developed for
digital IC’s and even for analog IC’s [85] and RF/Microwave IC’s [21]. Some routing tools accounting for
conducted interferences at the Printed Circuit Board level exist [137]. In this Chapter, several expert systems,
rules checkers and an auto-router are presented. A rule checker is a piece of software that reads component
data-sheets and board layout informations from automated board layout tools, looking for violations of basic
EMC design rules [58]. An expert system is an interactive computer-based tool that uses both facts and
heuristics to solve difficult decision problems based on knowledge acquired from an expert [8]. An auto-
router is a tool that routes automatically wires on a PCB based on given constraints.

HardSys. “HardSys”, one of the first expert systems, has been proposed in [83] and evaluated in [84].
HardSys treats entire systems: electronics, shielding, etc. It deals with radiation coupling to electronics.
Fields are considered scalar, as a worst case analysis. Frequency domain representation is used in the database
for the storage of field magnitude. Ambient fields, path shielding effectiveness and component susceptibility
are classified qualitatively. The underlying assumption is that certain radiation levels could potentially give
problems but no quantification is attempted.

A tool for EMC of power supplies. This tool is described in [148] and it is meant for switching power
supply design providing EMC prediction. It incorporates a layout editor, an auto-router, a component library
builder, and an EMI simulator which creates models for SPICE.

ATHENA. ATHENA is a layout assistant tool developed within the environment of MENTOR GRAPHICS
layout editor. ATHENA is presented in [92]. It has been developed in France by SEXTANT. It accounts for
transmission line effects and crosstalk, but not for radiation. It can give simulated waveforms for selected
wires.

EMIcheck. “EMIcheck” is a rule checker presented by Hubing in [59]. EMIcheck has been developed at
University of Missouri-Rolla and by Quad Design Technologies. Recently, EMIcheck assumed an expert
system structure [58]. EMIcheck evaluates a given PCB layout providing to the user a list of violated rules.
Mostly, it is a design tool for users not familiar with electro-magnetic compatibility problems. First, a clas-
sification of each net and of each pin of the components is performed. Then, informations are obtained from
data sheet files of the components and from the PCB layout file generated by other tools. The classification
is still qualitative and it considers: radiation potentials, susceptibility potentials, power bus voltage, and if a
signal is balanced and if it goes out of the board. EMC rules are checked. It incorporates a good set of rules.
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However they are are not based on calculated/simulated/measured radiation levels or on noise effects on the
circuit. Rules include: long nets (radiation and susceptibility potential), crosstalk, placement of components
over the appropriate power plane, no unbalanced signal crossing gaps in their returning plane, no planes with
thin necks. In parallel to the work of the rule checker, critical circuit geometries are individuated. Numerical
simulation tools are then used to estimate radiated fields.

HERO. HERO is a Hierarchical auto-router developed at University of Paderborn in Germany by Lengauer
and others [137]. Siemens has also collaborated to the project. This is a PCB router considering also con-
ducted EMC constraints. The tool assumes a complete placement of the components is given. It considers
only reflection (due to impedance mismatch between transmission lines and loads) and crosstalk. The rout-
ing is divided in two phases: first a “hierarchical” global routing is performed using linear programming
techniques. In this phase reflection is taken into account controlling the maximum length of the nets. Then,
a “sequential” detailed routing is performed considering also crosstalk. Blocks and nets are ordered. The
routing proceeds net by net with a modified maze-running. In [127] a new layer-assignment and net-ordering
phase is introduced after the global routing and before the detailed routing. A 50 percent performance im-
provement is achieved in this way. Completion rate is only 93 percent in the example presented. Only two
EMC rules are implemented, but they are based on previous intensive simulations and measurements. This
seems a very good approach applicable in the future also to radiation phenomena.
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Chapter 15

Geometrically parameterized model
order reduction

The work in this Chapter has been done in collaboration with Prof. Jacob White, Massachusetts Institute
of Technology, and it has first appeared in [32, 31].

Developers of routing tools for mixed signal applications could make productive use of more accurate
performance models for interconnect, but the cost of extracting even a modestly accurate model for a candi-
date route is far beyond the computational budget of the inner loop of a router. If it were possible to extract
geometrically parameterized, but inexpensive to evaluate, models for the interconnect performance, then such
models could be used for detailed interconnect synthesis in performance critical digital or analog applications.

The idea of generating parameterized reduced-order interconnect models is not new, recent approaches
have been developed that focus on statistical performance evaluation [82, 55] and clock skew minimiza-
tion [114]. However, our target application, interconnect synthesis, requires parameterized models valid over
a wide geometric range. Generating such parameterized models is made difficult by the fact that even though
the electrical behavior of interconnect can be modeled by a linear time-invariant dynamical system, that
system typically depends nonlinearly on geometric parameters.

One recently developed technique for generating geometrically parameterized models of physical systems
assumed a linear dependence on the parameter, and was applied to reducing a discretized linear partial differ-
ential equation [113]. The approach used closely paralleled the techniques used for dynamical system model
reduction, an unsurprising fact given that if the parameter dependence is linear, the generated parameter-
ized system of equations is structurally identical to a Laplace transform description of a linear time-invariant
dynamical system, though the frequency variable is in the place of the geometric parameter.

The observation that geometric parameters and frequency variables are interchangeable, at least when the
geometric variation is linear, suggests that the parameterized reduction problem could be formulated so as
to make use of extensions to the projection-subspace based moment matching methods that have proved so
effective in interconnect modeling [49, 46, 73, 53, 43, 97, 128, 12, 16]. In this Chapter we develop approaches
for generating parameterized interconnect models exploiting just such a connection. In Section 15.1 we
present a general problem formulation for an arbitrary number of parameters, and in Section 15.2 we present
an extension to the multiple parameter moment-matching model reduction work in [144]. In Sections 15.3
we demonstrate the effectiveness of the method on a wire-spacing parameterized multi-line bus example,
and consider both delay and cross-talk effects. In Section 15.4 we use the generalized multi-parameter model
reduction approach to re-examine the multi-line bus example, but now allow both wire width and wire spacing
to be parameters. Finally, conclusions are given in Section 15.6.
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15.1 A general problem formulation

When modeling long interconnect wires, the long wires are usually modeled using a distribution of re-
sistors and capacitors, and sometimes even inductors. Even if there is only one geometric parameter of
interest, such interconnect examples still generate a multiparameter reduction problem, with frequency being
the second parameter.

In order to derive an approach for the multiparameter problem, consider the following parameterized state
space system model:

E(s1; : : : ;sµ)x = Bu (15.1)

y = Cx (15.2)

where s1,...,sµ are µ parameters, x is the state of the system, E(s1; : : : ;sµ) 2 Cn�n is the system descriptor
matrix, B is a matrix relating the inputs u to the state x, and C is a matrix relating the state to the outputs y.

In general the descriptor matrix E(s1; : : : ;sµ) could have a complicated and non-linear dependency on the
parameters s1,...,sµ. As a first step of our approach we capture such dependency by means of a power series
in the parameters s1,...,sµ:

E(s1; : : : ;sµ) = E0 +∑
i

siEi +∑
h;k

shskEh;k + ∑
h;k; j

shsks jEh;k; j + : : : (15.3)

One of the easiest ways to produce such a power series representation is to truncate a µ-variables Taylor series
expansion:

E(s1; : : : ;sµ) = E(s̄1; : : : ; s̄µ)+∑
i

�
∆si

s̄i

��
s̄i

∂E
∂si

(s̄1; : : : ; s̄µ)

�
+∑

h;k

�
∆sh

s̄h

��
∆sk

s̄k

��
s̄hs̄k

∂2E
∂sh∂sk

(s̄1; : : : ; s̄µ)

�
+ : : : (15.4)

where s̄1; : : : ; s̄µ are the expansion points. In a practical implementation, one could for instance choose
the expansion points to coincide with the “nominal values” for each of the parameters. Also, in practical
implementations one could be more interested in working explicitly with variables that represent relative
variations ∆si=s̄i of the actual parameters around the expansion points, rather then working with absolute
variations ∆si. Finally, as an alternative to using a µ-variables Taylor series expansion, it is also possible to
generate the power series representation using instead polynomial interpolation to a set of data points.

Given the power series representation in (15.3), a reduced order model can then be generated by using a
congruence transformation on the power series representation"

V �E0V +∑
i

siV
�EiV +∑

h;k

shskV
�Eh;kV + ∑

h;k; j

shsks jV
�Eh;k; jV + : : :

#
x = V �Bu (15.5)

y = CVx (15.6)

where V 2 Cn�q, and the size q of the reduced order system matrices is typically much smaller than the size
n of the original system matrices.

In order to calculate the column span of the projection matrix V , it is convenient to use the power se-
ries (15.3) to re-write system (15.1) as"

I� (∑
i

si(�E�1
0 )Ei +∑

h;k

shsk(�E�1
0 )Eh;k + ∑

h;k; j

shsks j(�E�1
0 )Eh;k; j + : : :)

#
x = E�1

0 Bu (15.7)

so that

x =

"
I�
 

∑
i

si(�E�1
0 )Ei +∑

h;k

shsk(�E�1
0 )Eh;k + ∑

h;k; j

shsks j(�E�1
0 )Eh;k; j + : : :

!#�1

E�1
0 Bu

=
inf

∑
m=0

"
∑

i

si(�E�1
0 )Ei +∑

h;k

shsk(�E�1
0 )Eh;k + ∑

h;k; j

shsks j(�E�1
0 )Eh;k; j + : : :

#m

E�1
0 Bu
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15.2 P Parameter Model Order Reduction

One simple way to construct the columns of the projection matrix V for the reduced order model in (15.5)
is to identify a new set parameters s̃i and matrices Ã, Ẽi

Ã = �E0

Ẽi =

8>><>>:
Ei i = 1; : : : ;µ
Eh;k h = 1; : : : ;µ; k = 1; : : : ;µ
Eh;k; j h = 1; : : : ;µ; k = 1; : : : ;µ j = 1; : : : ;µ
: : :

s̃i =

8>><>>:
si i = 1; : : : ;µ
shsk h = 1; : : : ;µ; k = 1; : : : ;µ
shsks j h = 1; : : : ;µ; k = 1; : : : ;µ j = 1; : : : ;µ
: : :

so that one can re-write the parameterized system in (15.1) as a linearly parameterized model

[s̃1Ẽ1 + � � �+ s̃pẼp� Ã]x = Bu (15.8)

y = Cx (15.9)

In the special case where the power series is constructed using a Taylor series expansion

Ã = �E(s̄1; : : : ; s̄p) (15.10)

Ẽi =

8>><>>:
h
s̄i

∂E
∂si

(s̄1; : : : ; s̄p)
i

i = 1; : : : ;µh
s̄hs̄k

∂2E
∂sh∂sk

(s̄1; : : : ; s̄p)
i

h = 1; : : : ;µ; k = 1; : : : ;µ

: : :

(15.11)

s̃i =

8>><>>:
�

∆si
s̄i

�
i = 1; : : : ;µ�

∆sh
s̄h

��
∆sk
s̄k

�
h = 1; : : : ;µ; k = 1; : : : ;µ

: : :

(15.12)

In this simplified setting the reduced model is now

[s̃1V �Ẽ1V + � � �+ s̃pV �ẼpV �V �ÃV ]x̂ = V �Bu (15.13)

y = CVx̂ (15.14)

and once again, in order to calculate the column span of the projection matrix V it is convenient to write the
system (15.8) as

[I� (s̃1M1 + � � �+ s̃pMp)]x = BMu

y = Cx

where

Mi = Ã�1Ẽi for i = 1;2; : : : ; p

BM = �Ã�1B

and finally

x = [I� (s̃1M1 + � � �+ s̃pMp)]
�1BM u

=
∞

∑
m=0

[s̃1M1 + � � �+ s̃pMp]
mBM u

=
∞

∑
m=0

m�(k3+���+kp)

∑
k2=0

� � �
m�kp

∑
kp�1=0

m

∑
kp=0

[Fm
k2;:::;kp

(M1; : : : ;Mp)BM u] s̃
m�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p
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Lemma 11 The coefficients of the series F m
k2;:::;kp

(M1; : : : ;Mp) can be calculated using:

Fm
k2;:::;kp

(M1; : : : ;Mp) =

8<:
0 if ki 62 f0;1; : : : ;mg i = 2; : : : ; p
0 if k2 + � � �+ kp 62 f0;1; : : : ;mg
I if m = 0

(15.15)

and for all other cases

Fm
k2;:::;kp

(M1; : : : ;Mp) = M1Fm�1
k2;:::;kp

(M1; : : : ;Mp)+ (15.16)

+M2Fm�1
k2�1;:::;kp

(M1; : : : ;Mp)+ : : :

+MpFm�1
k2;:::;kp�1(M1; : : : ;Mp)

Proof. This can be shown by induction on m. For m = 0 we can easily verify that

[s̃1M1 + � � �+ s̃pMp]
0 = I: (15.17)

Now assume for m�1 that

[s̃1M1+� � �+ s̃pMp]
m�1 =

(m�1)�(k3+���+kp)

∑
k2=0

� � �

(m�1)�kp

∑
kp�1=0

m�1

∑
kp=0

[Fm�1
k2;:::;kp

(M1; : : : ;Mp)] s̃
(m�1)�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p ; (15.18)

in order to show that the property holds for m we can then simply observe that

[s̃1M1 + � � �+ s̃pMp]
m =

[s̃1M1 + � � �+ s̃pMp]
(m�1)�(k3+���+kp)

∑
k2=0

� � �

(m�1)�kp

∑
kp�1=0

m�1

∑
kp=0

[Fm�1
k2;:::;kp

(M1; : : : ;Mp)] s̃
(m�1)�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p =

Multiplying and collecting the terms with the same powers of s̃ 1; : : : s̃p

=
(m�1)�(k3+���+kp)

∑
k2=0

� � �

(m�1)�kp

∑
kp�1=0

m�1

∑
kp=0

h
s̃1M1Fm�1

k2;:::;kp
s̃
(m�1)�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p + � � �+

+ � � �+ s̃pMpFm�1
k2;:::;kp�1 s̃

(m�1)�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp�1
p

i
=

=
(m�1)�(k3+���+kp)

∑
k2=0

� � �

(m�1)�kp

∑
kp�1=0

m�1

∑
kp=0

h
M1Fm�1

k2;:::;kp
+ � � �+MpFm�1

k2;:::;kp�1

i
s̃

m�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p :

which proves that the statement holds for m.
For a single input system (BM = bM = �Ã�1b 2 Cn�1) The columns of V can be constructed to span the
Krylov subspace

colspan(V ) = spanfbM;M1bM;M2bM; : : : ;MpbM;M
2
1bM;(M1M2 +M2M1)bM; : : : ;

: : : ;(M1Mp +MpM1)bM;M
2
2bM;(M2M3 +M2M3)bM; : : :g;

or equivalently

colspan(V ) = span

8<:
mq[

m=0

m�(kp+���+k3)[
k2=0

� � �
m�kp[

kp�1=0

m[
kp=0

Fm
k2;:::;kp

(M1; : : : ;Mp)bM

9=; : (15.19)

The following lemmas are useful to proof the main moment matching theorem for parameterized model
order reduction.
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Lemma 12

F̂m
k2;:::;kp

h
(V �ÃV )�1V �Ẽ1V; : : : ;(V �ÃV )�1V �ẼpV

i
(V �ÃV )�1V �b =V �Fm

k2;:::;kp
[Ã�1Ẽ1; : : : ; Ã�1Ẽp]Ã

�1b: (15.20)

Proof. A proof is given in this Chapter by induction on the order m of the coefficient. First let us prove
the statement for m = 0. F̂0

k2;:::;kp

�
(V �ÃV )�1V �Ẽ1V; : : : ;(V �ÃV )�1V �ẼpV

�
(V �ÃV )�1V �b = I(V �ÃV )�1V �b.

Since Ã�1b 2 colspan(V ), from Lemma 9 we have

(V �ÃV )�1V �b =V �Ã�1b =V �F0
k2;:::;kp

[Ã�1Ẽ1; : : : ; Ã
�1Ẽp]Ã

�1b:

This concludes the proof for m=0. Now assume that the statement is correct for order m�1 and let us show
that this implies it is correct for order m. From the recursive definition formula (15.16),

F̂m
k2;:::;kp

�
(V �ÃV )�1V �Ẽ1V; : : : ;(V �ÃV )�1V �ẼpV

�
(V �ÃV )�1V �b =

= [ (V �ÃV )�1V �Ẽ1VF̂m�1
k2;:::;kp

((V �ÃV )�1V �Ẽ1V; : : : ;(V �ÃV )�1V �ẼpV )+ : : :

� � �+(V �ÃV )�1V �ẼpV F̂m�1
k2;:::;kp�1((V

�ÃV )�1V �Ẽ1V; : : : ;(V �ÃV )�1V �ẼpV ) ] (V �ÃV )�1V �b =

using the inductive hypothesis on order m�1 for each of the terms in the summation we have

= [(V �ÃV )�1V �Ẽ1VV �Fm�1
k2;:::;kp

(Ã�1Ẽ1; : : : ; Ã�1Ẽp)+ � � �+(V �ÃV )�1V �ẼpVV �Fm�1
k2;:::;kp�1(Ã

�1Ẽ1; : : : ; Ã�1Ẽp)] Ã�1b=

using Lemma 8 on each of the terms of the summation,

= [(V �ÃV )�1V �Ẽ1Fm�1
k2;:::;kp

(Ã�1Ẽ1; : : : ; Ã�1Ẽp)+ : : : � � �+(V �ÃV )�1V �ẼpFm�1
k2;:::;kp�1(Ã

�1Ẽ1; : : : ; Ã�1Ẽp)] Ã�1b =

= (V �ÃV )�1V �

h
Ẽ1Fm�1

k2;:::;kp
(Ã�1Ẽ1; : : : ; Ã�1Ẽp)+ : : : � � �+ ẼpFm�1

k2;:::;kp�1(Ã
�1Ẽ1; : : : ; Ã�1Ẽp)

i
Ã�1b =

since

Ã�1
h
Ẽ1Fm�1

k2;:::;kp
(Ã�1Ẽ1; : : : ; Ã�1Ẽp)+ : : : � � �+ ẼpFm�1

k2;:::;kp�1(Ã
�1Ẽ1; : : : ; Ã�1Ẽp)

i
Ã�1b =

= Fm
k2;:::;kp

[Ã�1Ẽ1; : : : ; Ã�1Ẽp]Ã
�1b 2 colspan(V )

we can use Lemma 9 and obtain

(V �ÃV )�1V �

h
Ẽ1Fm�1

k2;:::;kp
(Ã�1Ẽ1; : : : ; Ã�1Ẽp)+ : : : � � �+ ẼpFm�1

k2;:::;kp�1(Ã
�1Ẽ1; : : : ; Ã�1Ẽp)

i
Ã�1b =

=V �Fm
k2;:::;kp

[Ã�1Ẽ1; : : : ; Ã�1Ẽp]Ã
�1b:

This concludes the proof of Lemma 12.

Theorem 12 [Moment Matching Theorem] The first moments up to order mq of the transfer function for
the reduced order model (15.13) constructed using the q columns projection matrix V 2 Cn�q in (15.19)
match the first moments up to order mq of the transfer function of the original system (15.8).

Proof. The transfer function of the system in (15.8) for a single input case (B = b 2 C n�1) is given by

H = C [I� (s̃1M1 + � � �+ s̃pMp)]
�1 Ã�1b

= C
∞

∑
m=0

m�(k3+���+kp)

∑
k2=0

� � �
m�kp

∑
kp�1=0

m

∑
kp=0

[Fm
k2;:::;kp

(M1; : : : ;Mp)Ã
�1b] s̃

m�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p

Similarly the transfer function of the system in (15.13) is given by

Ĥ = CV
h
I� (s̃1(V

�ÃV )�1V �Ẽ1V + � � �+ s̃p(V
�ÃV )�1V �ẼpV )

i
�1

(�V �ÃV )V �b

= CV
∞

∑
m=0

m�(k3+���+kp)

∑
k2=0

� � �

m�kp

∑
kp�1=0

m

∑
kp=0

h
F̂m

k2;:::;kp
((V �ÃV )�1V �Ẽ1V; : : : ;

: : : ;(V �ÃV )�1V �ẼpV )(V �ÃV )�1V �b
i

s̃
m�(k2+���+kp)
1 s̃k2

2 : : : s̃
kp
p
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Figure 15.1: Sketch of the modeled 16 parallel wires interconnect bus.

Using first Lemma 12, and then Lemma 8, each moment of the reduced model transfer function is

CF̂m
k2;:::;kp

[(V �ÃV )�1V �Ẽ1V; : : : ;(V �ÃV )�1V �ẼpV ] (V �ÃV )�1V �b = CVV �Fm
k2;:::;kp

(Ã�1Ẽ1; : : : ; Ã�1Ẽp)Ã�1b

= CFm
k2;:::;kp

(Ã�1Ẽ1; : : : ; Ã�1Ẽp)Ã
�1b:

For a multi-input system the columns of V can then be constructed to span the Krylov subspaces produced
by all the columns [bM] j of BM:

colspan(V ) =

= span
n
Smq

m=0
Sm�(kp+:::k3)

k2=0 :::

Sm
kp=0 Fm

k2;:::;kp
[bM ]1; :::;

Smq

m=0
Sm�(kp+:::k3)

k2=0 :::

Sm
kp=0 Fm

k2;:::;kp
[bM ] j

o

15.3 Example: a bus model parameterized in the wires’ spacing

One design consideration for interconnect busses is the trade-off between:

� wider spacing to reduce propagation delays and crosstalk

� narrower spacing to reduce area and therefore cost.

In this example we have used a multi-parameter model order reduction approach to construct a low-order
model of an interconnect bus, parameterized by the wire spacing. The model can be efficiently constructed
“on the fly” during the design and can account for the topology of the surrounding interconnect already
present in the design. Once produced, the model can be simply evaluated for different values of the main
parameter, the wire spacing, in order to determine propagation delay, crosstalk or even detailed step responses.

Our example problem is the bus in Fig. 15.1 which consists of N = 16 parallel wires, with thickness
h = 1:2µm, and width w = 1µm. The total length of each wire is l = 1mm. Above and below our bus we
assumed a random collection of interconnect at several layout levels ranging from a distance of 1µm to 5µm.
We have subdivided each wire into 20 equal sections delimited by n = 21 nodes. Each section has been
modeled with a resistor. Each node has a “grounded capacitor” representing the interaction with upper and
lower interconnect levels. In addition, each node has two coupling capacitors to the adjacent wires on the
bus as shown in Fig. 15.2. The value of the capacitors was determined using simple parallel plate formulas.
Standard frequency domain nodal analysis leads to a system of equations of the form

s

�
Cg +

Cs

d

�
v+Gv = Bvin (15.21)

vout = Cv; (15.22)
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Figure 15.2: Discretization of the bus wires and coupling capacitors included in the model.

where s is the Laplace Transform variable, d is the spacing between wires, G is the n�n nodal conductance
matrix, The n� n matrix Cg is the diagonal nodal matrix associated with the grounded capacitors, and C s

is the sparse nodal matrix associated with the adjacent coupling capacitors. B is the n� t matrix relating t
input voltages vin to the n internal node potentials v, C is a t � n matrix relating node potentials v to the t
output voltages vout . We would like to underline that our model is limited to capturing the behavior of the
interconnect, which is linear for almost all practical applications. Our models can then be used in conjunction
with any device model, from the most simple linear device model to the most sophisticated spice device
model. It is not the purpose of this Chapter to discuss model for devices, however, just in order to “simulate”
our interconnect model, for simplicity we will drive our wires with ideal linear devices having impedance
rd = 1=gd . In general when gd is small compared to the wire conductance, all the capacitors in the different
sections of each wire appear as lumped, and the detailed model presented here is not necessary. A more
interesting case is observed when instead gd is large. In such case the wires charge up slowly from the input
side of the bus and continue to charge up along the length of the bus. In order to observe this more interesting
effect we chose gd = g where g is the conductance of each of the 20 sections in each wire. All the wires are
left open on the other side.

15.3.1 Crosstalk from one input to all outputs

When determining the crosstalk generated on all the outputs by a transition on a single input, the input
matrix becomes a vector,

B = b = [0 : : :0 gd 0 : : :0]�; (15.23)

and the output matrix is

C =

26664
: : :010 : : :

: : :010 : : :
. . .

: : :01

37775 (15.24)

The system in (15.21) has the following parameterized descriptor matrix

E

�
s;

1
d

�
= sCg + s

1
d

Cs +G; (15.25)

where we choose to work with parameter 1=d instead of parameter d. For frequency s we choose as expansion
point s̄1 = s̄ = 0. For the separation we choose s̄2 = 1=d0 = 1=1µm.

E

�
s;

1
d

�
= G+ s

�
Cg +

1
d0

Cs

�
+ s

 
∆
� 1

d

�
1
d0

!�
1
d0

Cs

�
(15.26)
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Figure 15.3: Responses at the end of wire 4 when a step is applied at the beginning of the same wire.
Continuous lines are the response of the original system (order 336). Small crosses are the response of
the reduced model, order 3 on the left, and order 6 on the right. The model was constructed using a nominal
wire spacing d0 = 1um and responses are shown here evaluating it at spacings (from the lowest curves to the
highest) d = d0 +∆d = 0:5µm;1µm;10µm.

Either by identifying terms directly on eq. (15.26) or by using the formulas in (15.10)-(15.12), one can
recognize a system as in (15.8) defining

Ã = �G

Ẽ1 = Cg +
1
d0

Cs

Ẽ2 =
1
d0

Cs

s̃1 = s

s̃2 = s

 
∆
� 1

d

�
1
d0

!

The original system for this example has order 336 (16 wires� 21 nodes each). We performed a model order
reduction procedure as described in Section 15.2 and obtained a small model capturing the transfer functions
from one input to all outputs.

[s̃1
ˆ̃E1 + s̃2

ˆ̃E2� ˆ̃A]x̂ = b̂u (15.27)

y = Ĉx̂ (15.28)
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where

ˆ̃A = V �ÃV =�V �GV

ˆ̃E1 = V �Ẽ1V =V �
�
Cg +

1
d0

Cs

�
V

ˆ̃E2 = V �Ẽ2V =V �
�

1
d0

Cs

�
V

b̂ = V �b

Ĉ = CV:

The projection matrix V can be constructed such that

colspan(V ) = spanfbM; M1bM; M2bM; M2
1bM; (M1M2 +M2M1)bM; M2

2bM; : : :g;
where

bM = �Ã�1b = G�1b

M1 = Ã�1Ẽ1 =�G�1
�
Cg +

1
d0

Cs

�
M2 = Ã�1Ẽ2 =�G�1

�
1
d0

Cs

�

The Arnoldi algorithm [53] can be used to orthonormalize the columns of V during the matrix construction.
The step response at the end of the wire excited in Fig 15.3 is shown in Fig 15.3.a comparing the step

responses of the original system (continuous lines) and a reduced model of order three (small crosses) when
the spacing distance assumes the values d = d0 +∆d = 0:5µm;1µm;10µm. The model was constructed using
a nominal spacing d0 = 1µm, hence the error is smaller near d � d0 = 1µm. Fig. 15.3.b shows the same
comparison with a reduced model of order six. One can notice that the reduced model can be easily and
accurately used to evaluate the step response and propagation delay for any value of parameter d around
d0 plugging into the reduced model (15.27). From the reduced model (15.27) we have readily available
not only step responses on the same wire, but also crosstalk step responses from one wire to all the other
wires. Fig. 15.4.a shows for instance step responses from the input of wire 4 to the output of wires 4, 5,
6 and 7. In this figure we compare again the response of the original system order 336 (continues curves)
with the response of a reduced model order 10 (small crosses) constructed at nominal spacing d 0 = 1µm, but
evaluated in this particular figure at spacing d = 0:5µm. Note that the model produced by our procedure is
parameterized in the wire spacing, hence any of such crosstalk responses can be evaluated at any spacing.
For instance we show in Fig. 15.4.b the response at the output of wire 5 when a step waveform is applied at
the input of wire 4 for different spacing values, d = d 0 +∆d = 0:5µm;1µm;10µm.

15.3.2 Exploiting the adjoint method for crosstalk from all inputs to one output

It is possible to construct with the same amount of calculation a model that provides the susceptibility of
one output to all inputs. In order to do this we can use an adjoint method and start from an original system
which swaps positions of C and B and transposes all system matrices. Note that since we are considering a
single output C 2 C1�n and CT 2 Cn�1 is a vector.�

I� (s̃1MT
1 + s̃2MT

2 )
�

v0 = CT v0in (15.29)

v0out = BT
Mv0; (15.30)

In this case the columns of the projection operator V will span the Krylov subspace

colspan(V 0) = spanf CT ; MT
1 CT ; MT

2 CT ; MT
1 MT

1 CT ;

(MT
1 MT

2 +MT
2 MT

1 )C
T ; MT

2 MT
2 CT ; : : :g



164 CHAPTER 15. GEOMETRICALLY PARAMETERIZED MODEL ORDER REDUCTION

0 0.2 0.4 0.6 0.8 1
−11

0

0.2

0.4

0.6

0.8

1

time [sec]
0 0.2 0.4 0.6 0.8 1

−11

0

0.05

0.1

0.15

0.2

time [sec]
a) b)

Figure 15.4: On the left: responses at the end of wires (from highest to lowest curve) 4, 5, 6 and 7 when a
step is applied at the beginning of wire 4. Continuous lines are the response of the original system (order
336). Small crosses are the response of the reduced model (order 10). The model was constructed using a
nominal wire spacing d0 = 1um and responses are shown here evaluating it at spacing d = 0:5µm. On the
right: crosstalk responses at the end of wire 5 when a step is applied at the beginning of wire 4, for different
values of spacing (from highest to lowest curve) d = d0 +∆d = 0:5µm;1µm;10µm.

or in general

colspan(V 0) = span

( mq[
m=0

 
m[

k=0

Fm
k (MT

1 ;M
T
2 )C

T

!)
: (15.31)

In Fig. 15.5 we show the responses at the end of wire 4 when a step is applied at the beginning of wires 4, 5,
6 and 7. The model was constructed using a nominal wire spacing d 0 = 1um. Responses in Fig. 15.5.a are
for d = 0:25µm. Responses in Fig. 15.5.b are for d = 2µm.

15.4 Example: bus model parameterized in both wire width and sep-
aration

Often when designing an interconnect bus, one would like to quickly evaluate design trade-offs originating
not only from different wire spacings, but also for different wire widths. Wider wires have lower resistances
but use more area and have higher capacitance. The higher capacitance to ground however helps improving
crosstalk immunity. We show here a procedure that produces small models that can be easily evaluated with
respect to propagation delays and crosstalk performance for different values of the two parameters: wire
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Figure 15.5: Responses at the end of wire 4 when a step is applied at the beginning of wires 4, 5, 6 and 7 (from
highest to lowest curve). Continuous lines are the response of the original system (order 336). Small crosses
are the response of the reduced model (order 10). The model was constructed using d 0 = 1um. Responses on
the left are for d = 0:25µm, and on the right for d = 2µm.

spacing d, and wire width W . As in the case of wire spacing, we constructed models for a given nominal wire
width W0, and then we parameterized in terms of perturbations ∆W . Considering the same bus example with
N parallel wires described in Section 15.3, we can write the equations for the original large parameterized
linear system

s

�
WC0

g +
Cs

d

�
v+WG0v = Bvin

vout = Cv

The system has the following parameterized descriptor matrix

E

�
s;

1
d
;W

�
= sWC0

g + s
1
d

Cs +WG0; (15.32)

where C0
g =Cg=W , G0 = G=W , and Cg and G are as described in Section 15.3. With respect to the expansion

points s̄1 = s̄0 = 0; s̄2 = 1=d0; s̄3 =W0,

E

�
s;

1
d

�
=W0G0+ s

�
W0C0

g +
1
d0
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�
+

�
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W0

�
[W0G0]+ s

�
∆W
W0

�
[W0C0

g]+ s

 
∆
� 1

d

�
1
d0

!�
1
d0

Cs

�
(15.33)



166 CHAPTER 15. GEOMETRICALLY PARAMETERIZED MODEL ORDER REDUCTION

Either by identifying terms directly on eq. (15.33) or by using the formulas in (15.10)-(15.12), one can
recognize a system as in (15.8) defining

Ã = �W0G0

Ẽ1 = W0C0
g +

1
d0

Cs

Ẽ2 = W0G0

Ẽ3 = W0C0
g

Ẽ4 =
1
d0

Cs

s̃1 = s

s̃2 =
∆W
W0

s̃2 = s

�
∆W
W0

�
s̃2 = s

 
∆
� 1

d

�
1
d0

!

Following the procedure in Section 15.2 the produced reduced order model is

[s̃1
ˆ̃E1 + s̃2

ˆ̃E2 + s̃3
ˆ̃E3 + s̃4

ˆ̃E4� ˆ̃A]x̂ = B̂u (15.34)

y = Ĉx̂ (15.35)

where

ˆ̃A = V �ÃV =�V �W0G0V

ˆ̃E1 = V �Ẽ1V =V �
�
W0C0

g +
1
d0

Cs

�
V

ˆ̃E2 = V �Ẽ2V =V � �W0G0�V
ˆ̃E3 = V �Ẽ3V =V � �W0C0

g

�
V

ˆ̃E4 = V �Ẽ4V =V �
�

1
d0

Cs

�
V

B̂ = V �B

Ĉ = CV:

The projection matrix V can be constructed for instance for a single input case (B = b 2 C n�1) as shown
in (15.19) where

bM = �Ã�1b = (W0G0)�1b

M1 = Ã�1Ẽ1 =�(W0G0)�1
�
W0C0

g +
1
d0

Cs

�
M2 = Ã�1Ẽ2 =�(W0G0)�1 �W0G0�
M3 = Ã�1Ẽ3 =�(W0G0)�1 �W0C0

g

�
M4 = Ã�1Ẽ4 =�(W0G0)�1

�
1
d0

Cs

�

The Arnoldi algorithm [53] can be used to orthonormalize the columns of V during the matrix construction.
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In Fig. 15.6 we compare the step and crosstalk responses of the original system to the reduced and pa-
rameterized model obtained using a Krylov subspace of order q = 5. This corresponds to choosing m q = 1
in (15.19), or in other words it corresponds to constructing a reduced model that matches the original model
up to one moment (or derivative) for each parameter. The model was constructed using a nominal spacing
1=d0 = 1=1µm and nominal wire width W0 = 1µm. The key point is that this parameterized model can be
rapidly evaluated for any value of spacing and wire width, for instance for a fast and accurate trade-off design
optimization procedure.
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Figure 15.6: Original system (continuous curves) versus 5 th order reduced model (small crosses) using both
spacing and width parameters. The nominal wire spacing was d0 = 1µm and the nominal wire width was
W = 1µm. Responses at the end of wire 4 due to a step at the beginning of the same wire are show in a) for
different widths (from highest to lowest curve) W = :25µm;2µm;4µm;8µm and for spacing d = :25µm. In b)
we show the same responses but for spacing d = 2µm. In c) we show the crosstalk response at the end of
wire 5 due to a step at the beginning of wire 4. Curves correspond to widths (from highest curve to lowest)
W = :25µm;2µm;4µm;8µm and spacing is d = :25µm. In d) we show the same crosstalk responses but for
spacing d = 2µm.
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15.5 Computational complexity

Lemma 13 If p is the total number of parameters and mq is the largest order of derivative that will be
matched with respect to any parameter, then the order q of the parameterized reduced system is

q = O

0@ pmq

m
mq� 1

2
q

1A (15.36)

Proof. The number fm;p of coefficients of order m, for a system with p parameters, can be obtained by
induction

fm;p =

�
1 if m = 0,
∑p

k=1 fm�1;k if m > 0
(15.37)

or equivalently,

fm;p = fp�1;m+1 =

�
m+ p�1

m

�
=

�
m+ p�1

p�1

�
=

(m+ p�1)!
m!(p�1)!

(15.38)

Using then the asymptotic approximation [2] for the Gamma Function Γ(z) = (z�1)!, one obtains

fm;p =
Γ(m+ p)

Γ(m+1)Γ(p)
� ep

2π
(m+ p)m+p� 1

2

mm+ 1
2 pp� 1

2

: (15.39)

Observing that for most practical problems m << p, we have

fm;p = O

�
pm

mm+ 1
2

�
: (15.40)

The order q of the produced parameterized reduced system is then

q =
mq

∑
m=0

fm;p = O(mq fm;q) = O

0@ pmq

m
mq� 1

2
q

1A : (15.41)

One way to improve accuracy is to increase mq. Unfortunately, with large mq the order of the produced
model might quickly become impractical. When mq = 1, the order of the produced model scales linearly
with the number of parameters and a large number of parameters can be handled. In some applications the
accuracy given by matching a single derivative per parameter can be good enough. In particular, we recall
that many of the examples presented in this Chapter are obtained using m q = 1 and show good accuracy.
Using mq = 2 improves the accuracy but generates a larger system. For example, with m q = 2 the order of
the produced parameterized model is

q = f0;p + f1;p + f2;p = 1+ p+
p(p+1)

2
=

p2 +3p+2
2

(15.42)

which implies that a 66th order model will be generated from a problem with p = 10 parameters. For larger
values of mq, impractically large models will be generated even for a small number of parameters p.

In terms of computational cost, it is important to make a distinction between the cost of ”constructing” the
model and the cost of ”evaluating” the model. The models constructed by our procedure are extremely small
compared to the original systems, therefore their evaluation cost is also small compared to the construction
cost. In particular, when constructing the model, most of the cost is in constructing each of the q columns of
matrix V . In particular, generating vectors F mbM in eq. (15.19), is the most expensive operation, given that it
involves one linear system solve and several matrix-vector multiplications. In order to make the cost of model
computation practical one can use Krylov subspace iterative methods combined with “fast-methods” [94, 68,
110, 136, 71] for the required matrix-vector products. Exploiting such well developed techniques we need
to perform O(n) operations for each column of V . Hence the total construction cost is O(qn), where q is
typically not larger than few hundreds, and n can be as large as hundreds of thousands. When evaluating the
model one needs only solve a small matrix of size q, therefore the evaluation cost is very low.
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15.6 Conclusions on parameterized model order reduction

In this Chapter we described an approach for generating geometrically - parameterized integrated-circuit
interconnect models that are efficient enough for use in interconnect synthesis. The model generation ap-
proach presented is automatic, and is based on series expansion of the parameter dependence followed by
multi-parameter model-reduction. The effectiveness of the techniques described were tested using a multi-
line bus example. Multiparameter model reduction was used to generate, from a formula based capacitance
and resistance extraction algorithm, high order models for the dependence of delay and cross-talk on line sep-
aration and conductor width. The experimental results clearly demonstrated the reduction strategies generated
models that were accurate over a wide range of geometric variation.

It should be noted, however, that there are closed-form analytical models which relate geometric param-
eters to self and coupling capacitances, and the model reduction approaches presented herein are unlikely
to be as efficient. However, the methods presented here are potentially more accurate, and certainly more
automatic and more flexible.
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Chapter 16

Future work in synthesis

16.1 Further development of parameterized model order reduction
algorithms

There are many potential issues that can lead to new contributions in the field of parameterized model
order reduction described in the previous Chapter 15. The multi-parameter method was tested using only
resistor-capacitor interconnect models, and accuracy issues may arise when inductance is included. We also
did not investigate using multi-point moment-matching, which could be a better choice given the range of
the parameters is often known a-priori. In addition, the multi-parameter reduction method can become quite
expensive when a large accuracy is required and the model has a large number of parameters, so the method
would not generate a very efficient model if each wire pair spacing in a 16 wire bus was treated individually.
Finally, there are some interesting error bounds in [113], and these results could be applied to automatically
select the reduction order.

16.2 Sizing of on-package and on-chip decoupling capacitors

We now address EMI emissions due to the switching activity of digital chips in Systems-on-PCB, or
EMI due to the switching activity of digital IP blocks in Systems-on-Chip. As described in Section 1.4, our
methodology propagates EMC constraints down along the branches of the system hierarchy until leaves are
encountered. In this case, a leaf can be represented by the insertion of one or more decoupling capacitors
around some digital switching blocks. According to our top-down synthesis with bottom-up verification
scheme, we need:

� a way to estimate the size of such capacitors for the bottom-up phase. To address this task we present
here:

– a technique to build a small but effective circuit model for the switching block,

– and a technique to build a small but effective circuit model for the global Vdd and Gnd system.

Given the two models, sizing the capacitors is just a matter of solving a few circuit equations.

� We also need a way to verify the effectiveness of the chosen capacitors for the bottom-up phase. For
this task we can simply use our simulation tool described in Part I.

16.2.1 Model of the internal switching activity of the blocks.

In order to model the switching blocks, we need
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� to estimate the current spikes produced on the global Vdd/Gnd system by the switching events.

� We also need to estimate the amount of capacitance between Vdd and Gnd already present inside the
switching block.

The final goal is a very simple model as shown in Fig. 16.1

Ctot

itot(t)
Vdd

Gnd

Figure 16.1: Simple model of a switching digital circuit block. The current source models the spikes of
currents, and it is characterized by the spectrum of such conducted emissions. The capacitors models the
amount of decoupling capacitance already present inside the block.

Estimation of the current sources

Simulating with Spice the entire chip would not be feasible because of the millions of gates on a die. In
order to get the current on the Vdd and ground pins, one could for example realize that a power estimation
tool calculating the “instant power consumption” ptot(t) of a circuit, provides the desired current waveform
result itot (t) in the assumption that the supply voltage Vdd is almost constant

itot(t) =
ptot(t)
Vdd

: (16.1)

We propose here an alternative, and probably more accurate simulation technique. We are implementing
a method which was originally designed and presented in [91, 22] to model substrate noise on integrated
circuits.

1. Spice simulations are first used to pre-characterize the current spikes on the supply system for each
type and for each size of gates present in the chip. Note that there are no more than hundreds of types
and sizes of gates on a chip. Hence this operation is reasonably fast, and it gives a table with all the
current waveforms i(t) produced by each type and size of gate.

2. The digital circuit is then simulated by an event driven simulator. Such a simulator works at the gate
level, not at the transistor level such as for example Spice. This is a common method for digital circuit
timing verification.

� Each gate is pre-characterized by its propagation delay d i.

� A queue of events is initialized at the clock signal. Each element in a queue will contain a gate
and the time when that gate is supposed to begin its switching action.

� Every time a gate j is extracted from the queue, new events corresponding to the gate fun-outs
are inserted in the queue at a new time position tnew:

tnew = tpresent +d j (16.2)

where tpresent is the present simulation time
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The output of the event driven simulator, for our purposes, is the queue itself, indicating what gate is
switching and at what exact time it switches during the clock period. The event simulation does not
need to solve any circuit equation, hence it is extremely fast. For example, even millions of gates can
be simulated for many clock cycles in no time.

3. The final current waveform on the Vdd and ground system can be calculated simply adding all the
contributions from all the switching gates, according to the information in the event queue. This is
basically a convolution operation:

itot(t) = ∑
j

i j(t� τ j) (16.3)

where τ j is the time gate j begins switching, and i j(t) is the current waveform on the supply obtained
from the table for the type and size of gate in consideration.

The result of this procedure is the high frequency current waveform present on the supply system. In
order to have a significant information on the typical chip operation mode, we need to run the event driven
simulator for hundreds or thousands of clock cycles, varying the inputs of the circuit. Such operation, as
mentioned above is still very fast, having about linear computational complexity both in the size of the circuit
and in the number of simulated clock cycles. Finally, we can apply a Fast Fourier Transform on the time
domain current waveform to obtain the desired spectrum.

Further developments

The technique just described has the disadvantage of calculating the current for a very specific evolution
of the input vectors. It would be of utmost importance to develop instead a technique to calculate an upper
bound for the current spectrum at each clock harmonic for all possible input vector evolutions.

Estimation of the internal capacitance

Capacitance between Vdd and ground can substantially reduce the conducted emissions we are consid-
ering in this section. Some capacitance is already present inside the chip as parasitics of the transistors.
Consider for example the simple CMOS inverter in Fig. 16.2. During the clock periods in which such gate is

Cgsn

Cgsp Cdsp

Cdsn

Gnd

Vdd

Figure 16.2: Simple CMOS inverter showing parasitic capacitances that can supply charge to adjacent gates
when the inverter is not switching.

not switching, Gate-to-Source capacitances Cgs, and Drain-to-Source parasitic capacitances Cds can provide
some charge storage capability from Vdd to ground. Hence, nearby switching gates can use such charge,
reducing the high frequency currents on the global Vdd and ground system. Some discussion with signal
integrity experts during a brief experience in the HP Research Labs in California, together with some prelim-
inary simulations, show that the effect of such capacitance on large chips with reduced switching activity can
be considerable.
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One simple way to estimate this “parasitic” decoupling capacitance is as follows:

� Use a layout parasitic extractor to calculate the capacitance C j for each type and each size of the gates
present on the chip.

� Use the results of the event driven simulation in the previous section to estimate the switching activity
α j of each gate in the circuit.

� Estimate the average capacitance available using

Ctot = ∑
j

(1�α j)Cj (16.4)

16.2.2 Model of the Vdd and ground system

The entire Vdd and ground system needs to be included in this model. In particular we want to capture
any resonance the Vdd and ground system might have. Hence, we apply to all interconnects in the Vdd and
ground system the same full wave PEEC-type discretization we used in Chapter 3 for our EMI simulator. We
obtain a huge equivalent circuit network of type shown in Fig. 3.6. This circuit network can be expressed as
a huge passive linear system. We apply to such system the Multipoint Expansion Reduced Order Modeling
technique described in Part II, obtaining a much smaller linear system with the same poles and resonances
of the original one. This passive linear system can be expressed as a simple circuit which can be connected
to the model developed before for the excitation sources (Fig. 16.1) giving the final simple circuit model in
Fig. 16.3. Building the Vdd and ground reduced order model takes as much time as a system simulation. But

Figure 16.3: Simple circuit models for sizing of decoupling capacitors. On the left we capture the current
spectrum and internal capacitance of a digital switching block. On the right, we capture frequency dependent
impedance and resonances of the Vdd and ground network with a reduce order model containing the dominant
poles of the network.

we can observe that once the model is built, it can be used for the sizing of all decoupling capacitors on the
board (or on the chip).

16.2.3 An alternative approach: exploiting parameterized model order reduction

As an alternative one can think of using the parameterized model produced by the algorithms in Chapter 15
in conjunction with a function optimizer in order to size decoupling capacitors.
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Part IV

Conclusions
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The pervasive development of Systems-on-Package and Systems-on-Chip in future high frequency elec-
tronic system scenario will require design styles based on the assembling of components “encapsulated” and
pre-characterized with respect to all levels of abstraction, from the functional to the physical. In this thesis we
have addressed the physical problem, considering all sorts of electromagnetic interference phenomena, from
the quasi-static electric field cross-talk, or magnetic inductive coupling, all to way to the full-wave propagat-
ing electromagnetic fields. Specifically, we have developed techniques for enabling analysis, modeling and
synthesis of high frequency interconnect:

� Analysis tools should be able to handle extremely large collection of interconnect. Fast solvers exist
with an affordable computational complexity O(n log(n)), where n is the number of discretization basis
functions for the Mixed Potential Integral Equation (MPIE). However, when using the standard piece-
wise constant basis functions to discretize wires into short and thin filaments, the thousands of closely
interacting thin filaments m in each wire cross-section cannot exploit the fast solver acceleration, and
need to be resolved directly resulting in a deleterious computational complexity O(m 2). In order to
overcome such problem, in this thesis we have developed two new sets of higher order basis functions.
Our basis functions are constructed using the same Helmholtz equation that the current is supposed to
satisfy inside each conductor. The conduction modes basis functions are obtained by solving analyt-
ically such equation in rectangular of circular cross-sections. The proximity template basis functions
are obtained by solving instead numerically the same equation for any shape of wire cross-section.
In both our sets, our implementation results show that twenty times fewer basis functions are needed
to produce the same solution accuracy obtained with the piecewise constant basis. Hence our basis
functions reduce runtime and memory requirements by factors of 400.

� Modeling tools should be able to produce models of very large collections of interconnect that are both
as accurate as an electromagnetic field solver, and at the same time small enough to be used effectively
in a higher level circuit simulator in conjunction with other models. When used in a time domain
circuit simulator, it is very important that such interconnect models are numerically well-behaved.
Specifically, we need to guarantee that the produced interconnect models are passive, otherwise en-
ergy can be generated from nothing, and the simulation may easily become numerically unstable. A
recently established procedure to produce small interconnect models is to use a field solver to generate
a large dynamical system description, then reduce such system to an intermediate size system using
not-optimal but computationally efficient Krylov-subspace projection framework methods. Finally one
can use an optimal but computationally demanding Truncated Balance technique to squeeze the inter-
mediate model to the final small model. Algorithms to guarantee passivity of the reduced model are
available only for the first step, and only for the case on a collection of conductors in a quasi-static
assumption. In this thesis we have developed algorithms to guarantee passivity at the first reduction
step for structures that include also dielectrics. Furthermore, we have developed algorithms to guaran-
tee passivity at the first reduction step for distributed systems, i.e. systems with frequency dependent
matrix descriptors E(s);A(s). Such systems are typically encountered when integrated circuit substrate
are present and are treated using special Green functions, or when system dimensions are not small
compared to wavelength and are treated with full-wave analysis, or finally when higher order basis
functions are used for the discretization of the MPIE as our “conduction modes”. We have also devel-
oped a model order reduction technique for the “second reduction step”. Our algorithm has the same
optimal compression properties of Truncated Balance but in addition our procedure can guarantee the
passivity of the reduced interconnect models.

� Synthesis tools for interconnect could be enabled by the availability of parameterized models that
can describe with the accuracy of an electromagnetic field solver performance changes as a function
of geometrical parameter changes (such as wire widths and separations), and in addition are small
enough to be used within an optimization loop. In this thesis we have developed such a geometrically
parameterized model reduction technique. The model generation approach presented is automatic,
and is based on series expansion of the parameter dependence followed by multi-parameter model-
reduction. The effectiveness of the techniques described were tested using a multi-line bus example.
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The experimental results clearly demonstrated the reduction strategies generated models that were
accurate over a wide range of geometric variation.
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