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Abstract

Thevenin’s theorem, one of the most celebrated results of electric circuit theory,
provides a two-parameter characterization of the behavior of an arbitrarily large circuit,
as seen from two of its terminals. We interpret the theorem as a sensitivity result in
an associated minimum energy/network flow problem, and we abstract its main idea to
develop a decomposition method for convex quadratic programming problems with linear
equality constraints, such as those arising in a variety of contexts such as Newton’s method,
interior point methods, and least squares estimation. Like Thevenin’s theorem, our method
is particularly useful in problems involving a system consisting of several subsystems,
connected to each other with a small number of coupling variables.
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1. Introduction

1. INTRODUCTION

This paper is motivated by a classical result of electric circuit theory, Thevenin’s

theorem, 3 that often provides computational and conceptual simplification of the solution

of electric circuit problems involving linear resistive elements. The theorem shows that,

when viewed from two given terminals, such a circuit can be described by a single arc

involving just two electrical elements, a voltage source and a resistance (see Fig. 1). These

elements can be viewed as sensitivity parameters, characterizing how the current across

the given terminals varies as a function of the external load to the terminals. They can be

determined by solving two versions of the circuit problem, one with the terminals open-

circuited and the other with the terminals short-circuited (by solution of a circuit problem,

we mean finding the currents and/or the voltages across each arc). Mathematically, one can

interpret Thevenin’s theorem as the result of systematic elimination of the circuit voltages

and currents in the linear equations expressing Kirchhoff’s laws and Ohm’s law. Based

on this interpretation, one can develop multidimensional versions of Thevenin’s theorem

(Refs. 5-7).

In this paper we interpret the ideas that are implicit in Thevenin’s theorem within an

optimization context, and we use this interpretation to develop a decomposition method for

quadratic programs with linear constraints. Significantly, these are the types of problems

that arise in the context of interior point methods for linear programming, and more

generally in the context of constrained versions of Newton’s method. Our method is not

entirely novel, since it is based on the well-known partitioning (or Benders decomposition)

approach of large-scale optimization. However, the partitioning idea is applied here in a

3 Leon Thevenin (1857-1926) was a French telegraph engineer. He formulated his

theorem at the age of 26. His discovery met initially with skepticism and controversy

within the engineering establishment of the time. Eventually the theorem was published

in 1883. A brief biography of Thevenin together with an account of the development of

his theorem is given by C. Suchet in Ref. 1. For a formal statement of the theorem and a

discussion of its applications in circuit theory, see for example Refs. 2-4.
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Figure 1: Illustration of Thevenin’s theorem. A linear resistive circuit C acts

on a load connected to two of its terminals A and B like a series connection of a

voltage source V and a resistance R. The parameters V and R depend only on

the circuit C and not on the load, so if in particular the load is a resistance L,

the current drawn by the load is

I =
V

L + R
.

The parameters V and R are obtained by solving the circuit for two different

values of L, for example L = ∞, corresponding to open-circuited terminals, and

L = 0 corresponding to short-circuited terminals.

way that does not seem to have been exploited in the past.

Our interpretation is based on a well-known relation between the solution of linear

resistive electric circuit problems and minimum energy optimization problems (Refs. 3,8).

In particular, consider a linear resistive electric network with node set N and arc set A.

Let vi be the voltage of node i and let xij be the current of arc (i, j). Kirchhoff’s current

law says that for each node i, the total outgoing current is equal to the total incoming

current ∑
{j|(i,j)∈A}

xij =
∑

{j|(j,i)∈A}
xji. (1)

Ohm’s law says that the current xij and the voltage drop vi − vj along each arc (i, j) are

related by

vi − vj = Rijxij − tij , (2)
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2. The General Decomposition Framework

where Rij ≥ 0 is a resistance parameter and tij is another parameter that is nonzero when

there is a voltage source along the arc (i, j) (tij is positive if the voltage source pushes

current in the direction from i to j).

Consider also the problem

min
∑

(i,j)∈A

(
1
2Rijx2

ij − tijxij

)
(3a)

s.t.
∑

{j|(i,j)∈A}
xij =

∑
{j|(j,i)∈A}

xji, ∀ i ∈ N . (3b)

(The quadratic cost above has an energy interpretation.) Then it can be shown that a set

of currents {xij | (i, j) ∈ A} and voltages {vi | i ∈ N} satisfy Kirchhoff’s current law and

Ohm’s law, if and only if {xij | (i, j) ∈ A} solve problem (3) and {vi | i ∈ N} are Lagrange

multipliers corresponding to the Kirchoff’s current law constraints (1). The proof consists

of showing that Kirchhoff’s current law and Ohm’s law constitute necessary and sufficient

optimality conditions for problem (3).

In view of the relation just described, it is clear that Thevenin’s theorem can al-

ternatively be viewed as a sensitivity result for a special type of quadratic programming

problem. In Section 2 we use an elimination or partitioning approach to develop this result

for general convex quadratic programming problems with linear equality constraints. In

Sections 3 and 4 we delineate circumstances for which our methodology is most likely to be

fruitfully applied. In particular, in Section 3 we consider network flow problems consisting

of loosely connected subnetworks, while in Section 4 we consider separable problems with

nearly block-diagonal constraint matrix and coupling variables, such as those arising in a

number of large-scale problem contexts, including stochastic programming.

2. THE GENERAL DECOMPOSITION FRAMEWORK

Our starting point is the problem

min F (x) + G(y) (4a)

s.t. Ax + By = c, x ∈ X, y ∈ Y. (4b)
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2. The General Decomposition Framework

Here F : �n → � and G : �m → � are convex functions, X and Y are convex subsets of

�n and �m, respectively, and A is an r × n matrix, B is an r ×m matrix, and c ∈ �r is

a given vector. The optimization variables are x and y, and they are linked through the

constraint Ax + By = c.

We have primarily in mind problems with special structure, where substantial sim-

plification or decomposition would result if the variables x were fixed. Accordingly, we

consider eliminating y by expressing its optimal value as a function of x. This approach

is well-known in the large-scale mathematical programming literature, where it is some-

times referred to as partitioning or Benders decomposition. In particular, we first consider

optimization with respect to y for a fixed value of x, that is,

min G(y) (5a)

s.t. By = c−Ax, y ∈ Y, (5b)

and then minimize with respect to x. Suppose that an optimal solution, denoted y(Ax),

of this problem exists for each x ∈ X. Then if x∗ is an optimal solution of the problem

min F (x) + G
(
y(Ax)

)
(6a)

s.t. x ∈ X, (6b)

it is clear that
(
x∗, y(Ax∗)

)
is an optimal solution of the original problem (4). We call

problem (6) the master problem.

Let us assume that problem (5) has an optimal solution and at least one Lagrange

multiplier for each x ∈ X, that is, a vector λ(Ax) such that

min
y∈Y,By=c−Ax

G(y) = max
λ∈�r

q(λ,Ax) = q
(
λ(Ax), Ax

)
, (7)

where q(·, Ax) is the corresponding dual functional given by

q(λ,Ax) = inf
y∈Y

{
G(y) + λ′(Ax + By − c)

}
= q̃(λ) + λ′Ax, (8)

with

q̃(λ) = inf
y∈Y

{
G(y) + λ′(By − c)

}
. (9)
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2. The General Decomposition Framework

Then the master problem (6) can also be written as

min F (x) + Q(Ax) (10a)

s.t. x ∈ X, (10b)

where

Q(Ax) = max
λ∈�r

q(λ,Ax). (11)

It is possible to characterize the differentiability properties of Q in terms of Lagrange

multipliers of problem (5). In particular, using Eq. (7), one can show that if the function

q̃ of Eq. (9) is strictly concave over the set
{
λ | q̃(λ) > −∞

}
, then Q is differentiable at

Ax, and ∇Q(Ax) is equal to the unique Lagrange multiplier λ(Ax) of problem (5) [which

is also the unique maximizer of q(λ,Ax) in Eq. (7)]. This result can form the basis for an

iterative gradient-based solution of the master problem (6).

In this paper we propose an alternative approach, which is based on calculating

the function Q(Ax) in closed form. A prominent case where this is possible is when

the minimization problem above is quadratic with equality constraints, as shown in the

following proposition.

Proposition 2.1: Assume that the matrix B has rank r, and that

G(y) = 1
2y

′Ry + w′y, Y = {y | Dy = d},

where R is a positive definite m × m matrix, D is a given matrix, and d, w are given

vectors. Assume further that the constraint set {y | By = c − Ax, Dy = d} is nonempty

for all x. Then the function Q of Eq. (11) is given by

Q(Ax) = 1
2 (Ax− b)′M(Ax− b) + γ, (12)

where M is a r × r positive definite matrix, γ is a constant, and

b = c−By, (13)

with

y = arg min
y∈Y

G(y). (14)
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Furthermore, the vector

λ(Ax) = M(Ax− b), (15)

is the unique Lagrange multiplier of the problem

min G(y) (16a)

s.t. By = c−Ax, y ∈ Y. (16b)

Proof: We first note that because R is positive definite and the constraint set {y | By =

c−Ax, Dy = d} is nonempty for all x, problem (5) has a unique optimal solution and at

least one Lagrange multiplier vector. We have by definition [cf. Eq. (8)]

q(λ,Ax) = min
Dy=d

{
1
2y

′Ry + w′y + λ′(Ax + By − c)
}

= min
Dy=d

{
1
2y

′Ry + (w + B′λ)′y
}

+ λ′(Ax− c).

Let us assume without loss of generality that D has full rank; if it doesn’t, we can replace

the constraint Dy = d by an equivalent full rank constraint and the following analysis still

goes through.

By a well-known quadratic programming duality formula, we have

q(λ,Ax) =max
µ

{
− 1

2µ
′DR−1D′µ−

(
d + DR−1(w + B′λ)

)′
µ
}

− 1
2 (w + B′λ)′R−1(w + B′λ) + λ′(Ax− c).

The maximum above is attained at

µ(λ) = −(DR−1D′)−1
(
d + DR−1(w + B′λ)

)

and by substitution in the preceding equation, we obtain

q(λ,Ax) = − 1
2

(
d + DR−1(w + B′λ)

)′(DR−1D′)−1
(
d + DR−1(w + B′λ)

)

− 1
2 (w + B′λ)′R−1(w + B′λ) + λ′(Ax− c).

(17)

Thus we can write

q(λ,Ax) = − 1
2λ

′M−1λ− λ′b + λ′Ax + γ (18)
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2. The General Decomposition Framework

for an appropriate positive definite matrix M , vector b, and constant γ. The unique

Lagrange multiplier λ(Ax) maximizes q(λ,Ax) over λ, so from Eq. (18) we obtain

λ(Ax) = M(Ax− b) (19)

and by substitution in Eq. (18),

Q(Ax) = q
(
λ(Ax), Ax

)
= 1

2 (Ax− b)′M(Ax− b) + γ. (20)

There remains to show that b is given by Eqs. (13) and (14). From Eq. (18), b is the

gradient with respect to λ of q(λ,Ax), evaluated at λ = 0 when x = 0, that is,

b = −∇λq(0, 0). (21)

Since q(λ, 0) is the dual functional of the problem

min G(y) (22a)

s.t. Dy = d, By = c, (22b)

Eqs. (13) and (14) follow from a well-known formula for the gradient of a dual function.

Q.E.D.

Note that the preceding proposition goes through with minor modifications under

the weaker assumption that R is positive definite over the nullspace of the matrix D, since

then G is strictly convex over Y .

One approach suggested by Proposition 2.1 is to calculate M and b explicitly [perhaps

using the formulas (17) and (18) of the proof of Proposition 2.1], and then to solve the

master problem (6) for the optimal solution x∗ using Eqs. (12)-(15). This is the method

of choice when the inversions in Eqs. (17) and (18) are not prohibitively complicated.

However, for many problems, these inversions are very complex; an important example is

when the problem

min 1
2y

′Ry + w′y

s.t. By = c−Ax, Dy = d
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3. Application to Network Optimization

involves a network as in the examples discussed in the next section. In such cases it may

be much preferable to solve the problems (14) and (16) by an iterative method, which,

however, cannot produce as a byproduct M and b via the formulas (17) and (18).

An alternative approach, which apparently has not been suggested earlier, is to solve

the problem

min 1
2y

′Ry + w′y (23a)

s.t. Dy = d (23b)

to obtain the vector b [cf. Eqs. (13) and (14)], and then solve certain quadratic programs

to obtain the matrix M . In particular, suppose that the matrix A has rank r, and suppose

that we solve r problems of the form (16) with x equal to each of r vectors such that

the corresponding vectors Ax − b are linearly independent. Then based on the relation

λ(Ax) = M(Ax − b) [cf. Eq. (15)], the Lagrange multipliers of these problems together

with b yield the matrix M . This approach is particularly attractive for problems where

the dimension of x is relatively small, and subproblems of the form (14) and (16) are

best solved using an iterative method. An added advantage of an iterative method in the

present context is that the final solution of one problem of the form (16) typically provides

a good starting point for solution of the others. In the sequel we will restrict ourselves to

this second approach.

3. APPLICATION TO NETWORK OPTIMIZATION

Let us apply the decomposition method just described to network optimization prob-

lems with convex separable quadratic cost problem

min
∑

(i,j)∈A

(
1
2Rijx2

ij − tijxij

)
(24a)

s.t.
∑

{j|(i,j)∈A}
xij =

∑
{j|(j,i)∈A}

xji, ∀ i ∈ N , (24b)
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3. Application to Network Optimization

where Rij is a given positive scalar and tij is a given scalar. Such problems arise in an

important context. In particular, the quadratic programming subproblems of interior point

methods, as applied to linear network optimization problems with bound constraints on

the arc flows, are of this type. The same is true for the subproblems arising when barrier

methods or multiplier methods are used to eliminate the bound constraints of differentiable

convex network flow problems and Newton’s method is used to solve the corresponding

“penalized” subproblems.

Let us first show that Thevenin’s theorem can be derived as the special case of our

decomposition approach where x consists of the current of a single arc.

Example 3.1: Derivation of Thevenin’s Theorem.

Let us fix a specific arc (̄i, j̄) of the network, and let us represent by x the arc flow xīj̄ , and

by y the vector of the flows of all arcs other than (̄i, j̄), that is,

y =
{
xij | (i, j) �= (̄i, j̄)

}
.

Then the coupling constraint is Ax + By = c, where c = 0, A = 1, and B is a row

vector of zeroes, ones, and minus ones, where the ones correspond to the outgoing arcs from

node ī, except for arc (̄i, j̄), and the minus ones correspond to the incoming arcs to node

ī. Calculating explicitly the function G(Ax) using the formula (17) is complicated, so we

follow the approach of computing b and M . To apply this approach, we should solve two

problems:

(1) The corresponding problem (23). This is the same as the original network

optimization problem (24) but with the conservation of flow constraints corre-

sponding to nodes ī and j̄ eliminated.

(2) The corresponding problem (5) with the flow xīj̄ fixed at zero; this amounts to

removing arc (̄i, j̄).

These two problems will give us M and b, which are scalars because x is one-dimensional in

this example. The corresponding master problem is

min 1
2Rīj̄x

2
īj̄ − tīj̄xīj̄ + 1

2Mx2
īj̄ −Mbxīj̄ (25a)

s.t. xīj̄ ∈ � (25b)
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3. Application to Network Optimization

so the optimal value of xīj̄ is

x∗
īj̄ =

tīj̄ + Mb

Rīj̄ + M
. (26)

The above expression is precisely the classical Thevenin’s theorem. To see this, we

recall the connection between the quadratic program (24) and linear resistive electric circuit

problems given in the introduction. Then we can view both the original problem (25) as

well as the corresponding subproblems (1) and (2) above as electric circuit problems. These

subproblems are:

(1) The original circuit problem with arc (̄i, j̄) short-circuited. By Eq. (13), b is the

short-circuit current of arc (̄i, j̄).

(2) The original circuit problem with arc (̄i, j̄) removed or open-circuited. By Eq.

(15), Mb is the open-circuit voltage drop vī − vj̄ across arc (̄i, j̄).

Consider the circuit C obtained from the original after arc (̄i, j̄) is removed. Equation

(26) shows that, when viewed from the two terminals ī and j̄, circuit C can be described by

a single arc involving just two electrical elements, a voltage source Mb and a resistance M .

This is Thevenin’s theorem.

Example 3.2: Decomposition Involving Two Subnetworks.

Note that in the preceding example, the parameters b and M depend only on the charac-

teristics of the subnetwork C and the nodes ī and j̄, and not on the characteristics of the

arc (̄i, j̄). In particular, given two subnetworks C1 and C2, connected at just two nodes A

and B (see Fig. 2), one of the subnetworks, say C1, can be replaced by its equivalent two-

parameter arc, and the resulting subnetwork can be solved to determine the flows within

C2, as well as the flow going from C1 to C2, which in turn can be used to finally obtain the

flows within C1. The problem involving the interconnection of C1 and C2, can be solved by

solving smaller-dimensional problems as follows (see Fig. 2):

(a) Two problems involving just C1 to determine its two-parameter Thevenin rep-

resentation.

(b) One problem involving just C2 to find the flow x∗ going from C1 to C2, as well

as the flows within C2.

11
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(c) One problem involving just C1 and the flow x∗ to determine the flows within

C1.

Note that the computational effort to solve a quadratic network problem is generically

proportional to the cube of its size, so if C1 and C2 are of comparable size, the overall

computational effort is cut in half through the use of Thevenin’s theorem. Furthermore, the

two parameters describing C1 can be reused if C2 is replaced by a different subnetwork.

Alternatively we can represent as vector x the flow going from C1 to C2, and as y the

set of flows of the arcs of C1 and C2, and apply our general decomposition method. Then, to

determine x∗ through the corresponding parameters M and b of Eq. (12)-(15), it is necessary

to solve two problems, one with the terminals shortcircuited and another with x = 0 (see

Fig. 3). Each of these problems involves the solution of two independent subproblems, one

involving subnetwork C1 and the other involving subnetwork C2. However, one additional

problem involving C1 and another involving C2 must now be solved to determine the flows

within C1 and C2 using the value of x∗. Still the computational effort is smaller than the

one required to solve the original network problem without decomposition.

Figure 3: The optimal flow going from subnetwork C1 to subnetwork C2 can

be found by constructing the two-parameter representations of C1 and C2, and

solving for the current x∗ in the equivalent two-arc network.
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Figure 2: Using Thevenin’s theorem for decomposition of a problem involving

the solution of two subnetworks connected at two nodes as in (a). The Thevenin

parameters M1 and b1 are first obtained by solving two subnetwork problems in-

volving C1 as in (b). Then the problem involving C2 and the Thevenin equivalent

of C1 is solved to obtain the flow x∗ going from C1 to C2 as in (c). This flow is

used to find the currents in C1 as in (d).

Example 3.3: Decomposition Involving Several Subnetworks.

The decomposition procedure outlined in Figs. 2 and 3 can be extended to the case of several
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subnetworks. Consider the quadratic network optimization problem (24), and suppose that

we select n arcs (ik, jk), k = 1, . . . , n, such that after these arcs are deleted, the correspond-

ing quadratic network optimization problem simplifies substantially. Then we can consider

(n + 1) quadratic network optimization problems: one corresponding to problem (24) with

all arcs (ik, jk), k = 1, . . . , n, shortcircuited, and n others corresponding to the flow of one

arc (ik, jk) fixed at a nonzero value, and the other (n − 1) arcs deleted. The first of these

problems will yield the n dimensional vector b of Eq. (13), and the remaining problems will

yield the matrix M using Eq. (15). The optimal flows of the arcs (ik, jk), k = 1, . . . , n, are

then obtained by solving the corresponding n-dimensional master program (6).

This procedure can be useful in problems involving networks that consist of compo-

nent networks that are interconnected through a few arcs. The subproblems obtained by

deleting these arcs separate into simpler component problems, and once the parameters

of the components are determined, the final solution is obtained by solving a quadratic

program involving just the flows of the interconnecting arcs.

There are potential computational savings with this approach, which can be quantified

if we assume a specific interconnection structure. For example, assume that the network

consists of (n+1) subnetworks such that each pair of subnetworks (Ck, Ck+1), k = 1, . . . , n,

is connected by (m+1) arcs. Assume that the number of nodes of all subnetworks is bounded

by a constant N . Then the computation involved if we ignore the structure of the problem is

O
(
n3(N +m)3

)
. Suppose that we apply the decomposition method outlined in the present

example. Then, (n + 1) problems of size N must be solved to find the vector b, and mN

problems involving two adjacent subnetworks and two inteconnecting arcs, as per Example

2, must also be solved to obtain the matrix M for a total of O
(
mnN3

)
computation. For

large N , the Thevenin decomposition approach is substantially superior if m is substantially

less than n2.

The approach illustrated in the preceding example may also be fruitfully applied

to more complex network problems, involving for example arcs with gains and multiple

commodities, as long as the basic structure of loosely connected subnetworks is present.
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4. SEPARABLE QUADRATIC PROGRAMS WITH COUPLING VARIABLES

Consider the quadratic program

min 1
2x

′Px− v′x +
J∑

j=1

(
1
2y

′
jRjyj + w′

jyj
)

(27a)

s.t. Ex = e, Ajx + Bjyj = cj , Djyj = dj , j = 1, . . . , J, (27b)

where x ∈ �n, the matrices and vectors above have appropriate dimensions, and P and Rj

are positive definite. This block-diagonal constraint structure with coupling variables arises

frequently in practice. For example, it arises in stochastic programming problems, that is,

two-stage stochastic optimal control problems, for which there is much recent interest. In

the context of these latter problems, x is the decision variable of the first stage, and yj is

the decision variable of the second stage, corresponding to the jth (stochastic) outcome of

the first stage. Our methodology is applicable to linear stochastic programming problems,

when they are approached via interior point methods, since the subproblem to be solved

in each iteration of the interior point method is a quadratic program of the form (27).

By representing (y1, . . . , yJ) by the vector y, we can apply our decomposition method.

The matrix M in this example is block-diagonal with blocks denoted Mj , j = 1, . . . , J ,

and this results in great simplification. The method consists of the following steps:

(a) Find the optimal solution yj of each of the J subproblems

min 1
2y

′
jRjyj + w′

jyj

s.t. Djyj = dj ,

to obtain the vector b = (b1, . . . , bJ) from

bj = cj −Bjyj , j = 1, . . . , J,

[cf. Eq. (13)].
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(b) Find the columns of each block Mj , j = 1, . . . , J , by solving subproblems of the

form

min 1
2y

′
jRjyj + w′

jyj

s.t. Ajx + Bjyj = cj , Djyj = dj

for a sufficient number of values of Ajx, and by using the corresponding La-

grange multipliers λj(Ajx) in the relation

λj(Ajx) = Mj(Ajx− bj).

It is necessary to solve rj such subproblems, where rj is the dimension of Mj .

(c) Find x by solving the master program (6), which has the form

min 1
2x

′Px− v′x + 1
2

J∑
j=1

(Ajx− bj)′Mj(Ajx− bj)

s.t. Ex = e.

When the constraint Ex = e is absent (E = 0 and e = 0), the optimal solution of

the master problem is given in closed form as

x∗ =


P +

J∑
j=1

A′
jMjAj




−1
J∑

j=1

(v + A′
jMjbj). (28)

When x is one-dimensional, the optimal solution x∗ can also be represented as the solution

of a resistive electric circuit as shown in Fig. 4.

We note that the idea of partitioning of linear-quadratic problems through the use

of coupling variables has been applied recently by Chang et. al. (Ref. 9) and Ralph (Ref.

10) in the context of discrete-time linear-quadratic optimal control, and by Nikoukhah et.

al. (Ref. 11) in the context of least-squares estimation. In these methods, the time horizon

is partitioned in blocks, with coupling between the blocks provided by the state vectors at

the block boundaries (these boundary state vectors constitute the vector x in our context).

The subproblems needed to obtain the matrices Mj and vectors Bj corresponding to the

blocks are linear-quadratic optimal control or estimation problems with fixed initial and/or

terminal state, which can be solved in parallel.
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Figure 4: Electrical circuit analog of the optimal solution x∗ of the master

problem of Eq. (28) for the case where x is one-dimensional.
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