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Sutton’s TD(N method aims to provide a representation of the cost 
function in an absorbing Markov chain with transition costs. A sim- 
ple example is given where the representation obtained depends on A. 
For X = 1 the representation is optimal with respect to a least-squares 
error criterion, but as X decreases toward 0 the representation becomes 
progressively worse and, in some cases, very poor. The example sug- 
gests a need to understand better the circumstances under which TD(0) 
and Q-learning obtain satisfactory neural network-based compact rep- 
resentations of the cost function. A variation of TD(0) is also given, 
which performs better on the example. 

1 Introduction 

We consider a Markov chain with states 0,1,2, . . . , n. The transition from 
state i to state j has probability pi,, and cost g(i, j). We assume that state 
0 is cost-free and absorbing, and that it is eventually reached from every 
other state with probability one. In other words, pm = 1 and g(0,O) = 0, 
and from every state i, there is a path of positive probability transitions 
that leads to 0. For each initial state i we want to estimate the expected 
total cost J ( i )  up to reaching state 0. 

We consider approximations within a class of differentiable functions 
y(i,w) parameterized by a vector w. For example, I ( i ,w)  may be the 
output of a neural network when the input is i and the vector of weights 
is w. Sutton’s TD(N method (Sutton 1988) is a gradient-like algorithm for 
obtaining a suitable vector w after observing a large number of simulated 
trajectories of the Markov chain. The method has attracted considerable 
attention, and has been used successfully in a more general setting by 
Tesauro (1992) for the training of a neural network to play backgammon. 
See Barto et al. (1994) for a nice and comprehensive survey of related 
issues. 

For X E [0,1], TD(X) performs an infinite number of simulation runs, 
each ending at the absorbing state 0. Within the total number of runs, 
each state is encountered an infinite number of times. If (il, i2,. . . , iN,  0) 
is the typical trajectory, a positive stepsize y is selected, and the vector 
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w is modified at the end of the kth transition by an increment that is 
proportional to y and to the temporal difference dk given by 

(1.1) 

where iN+1 = 0. The increment also involves the preceding gradients with 
respect to w, Vj(imrw), rn = 1,. . . , k, which are evaluated at the vector 
w prevailing at the beginning of the simulation run. (An alternative 
possibility for which the analysis of this paper also holds is to evaluate 
these gradients at the current value of w.) The method is as follows: 

dk = 8 ( i k r  ikfl) + ?(ik+l, W )  - I(ikr W ) ,  k = 1,. . . , N 

Following the state transition (il, i2), set 

w := w + 7dlVj(i1, w) (1.2) 

Following the state transition (i2, i3), set 

w := w + yd2 [ ~ ~ f ( i l ,  w) + vJ(i2, w)] 
Following the state transition (iN, o), set 

(1.3) 

w := w+ydN [XN-lvJ(il,w) + X N - ~ V ~ ( ~ ~ , W )  + . . .+v f ( iN ,w) ]  
. . .  

By adding equations 1.2-1.4 for X = 1, and by using the temporal 
differences formula 1.1, we see that the TD(1) iteration corresponding to 
a complete trajectory can be written as 

so it is a gradient iteration for minimizing the sum of squares 

It follows, as originally discussed by Sutton (1988), that TD(1) can be 
viewed as a form of incremental gradient or backpropagation method 
for minimizing over w the sum of the squared differences of the sample 
costs of the states i visited by the simulation and the estimates I(i ,w).  
This method has satisfactory convergence behavior, and is supported 
by classical results on stochastic approximation and stochastic gradient 
methods (see, e.g., Poljak and Tsypkin 1973; Kushner and Clark 1978; 
Poljak 1987; Bertsekas and Tsitsiklis 19891, and by more recent analyses 
on deterministic incremental gradient methods by Luo (19911, Luo and 
Tseng (1993), and Mangasarian and Solodov (1993). Thus TD(1) will 
typically tend to yield a value of w that minimizes a weighted sum of 
the squared errors 

Hi)  - J(i, w) l 2  
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where c( i )  is the average sample cost corresponding to state i, and the 
weights of different states are determined by the relative frequencies 
these states are visited during the simulation. An alternative view that 
leads to similar conclusions is to consider TD(1) as a stochastic gradi- 
ent method for minimizing an expected value of the square of the error 

On the other hand for X < 1, the convergence behavior of TD(X) 
is unclear, unless w contains enough parameters to make possible an 
exact representation of J(i) by j(i ,  w) for all states i (a lookup table rep- 
resentation), as shown in various forms by Sutton (19881, Dayan (19921, 
Tsitsiklis (1993), and Jaakkola et al .  (1993). Actually, Sutton’s and Dayan’s 
convergence results apply to the slighly more general case of linear rep- 
resentations, under a restrictive linear independence condition on the 
set of observation vectors. Basically, TD(A) can be viewed as a form of 
incremental gradient method where there are some error terms in the 
gradient direction. These error terms depend on w as well as A, and 
they typically do not diminish when w is equal to the value where TD(1) 
converges, unless A = 1 or a lookup table representation is used. Thus, 
in general, the limit obtained by TD(X) depends on A, as has also been 
shown by Dayan (1992). Nonetheless, there are accounts of good prac- 
tical performance of TD(X), even with X substantially less than 1. For 
example, Tesauro (1 992) reports that his backgammon program performs 
better when trained with small than with high values of A. 

I(i) - i(i, w). 

2 An Example 

In the following example we use a linear approximation of the form 

j(i ,  w) = iw 

and we find that as X is reduced from the value 1, TD(X) converges to 
an increasingly poor value W ( X ) .  For a deliberate choice of the problem 
data, we obtain 

W(0) M -7i(l) 

that is, a reversal of sign of 7(i, w) (see Fig. 2). 
In our example the state transitions and associated costs are deter- 

ministic. In particular, from state i we move to state i - 1 with a given 
cost g,. Let all simulation runs start at state n and end at 0 after visiting 
all the states n - 1, n - 2, . . . ,1 in succession. The temporal difference 
associated with the transition from i to i - 1 is 

g, + j ( i  - 1, w) - 7( i ,  w) = g, - w 

and the corresponding gradient is 

Vj(i, w) = i 
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The iteration of TD(X) corresponding to a complete trajectory is given by 

(2.1) 

and is linear in w. 
Suppose that the stepsize y is either constant and satisfies 

(in which case the iteration 2.1 is contracting), or else y is diminishing 
at a rate that is inversely proportional to the number of simulation runs 
performed thus far. Then the TD(A) iteration 2.1 converges to the scalar 
$(A) for which the increment in the right-hand side of equation 2.1 is 
zero, that is, 

n c [ g k  - .;l(X)] [A"-% + Xn-k-l ( n - l ) + . . . + k ]  = o  
k=l 

In particular, we have 

It can be seen that zb(1) minimizes over w the sum of squared errors 

(2.4) 

where 

J(i) = g l  + ...  +g,, J(i, w)  = iw, V i = 1,.  . . , n  

Indeed the optimality condition for minimization of the function 2.4 over 
w is 

n 
C i ( g , + . . . + g ; - i w ) = O  
r=l 

which when solved for w gives a solution equal to W(1)  as given by 
equation 2.2. 

Figures 1 and 2 show the form of the cost function J( i ) ,  and the repre- 
sentations I [i, W ( l ) ]  and 7 [i, W ( O ) ]  provided by TD(1) and TD(O), respec- 
tively, for n = 50 and for the following two cases: 

l . g l = l ,  g i = O ,  V i # 1  

2. g n = - ( n - l ) ,  g i = l ,  V i # n  
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0 10 20 30 40 50 

State i 

Figure 1: Form of the cost function J(i), and the linear representations f [ i ,  zb(l)], 
and 7 [i.W(O)] provided by TD(1) and TD(O), respectively, for the case gl = 1, 
g ,=O,Vi# l .  

It can be seen that TD(0) can yield a very poor approximation to the cost 
function. 

The above example can be generalized with similar results. For in- 
stance, the cost of transition from i to i - 1 may be random, in which case 
the costs g, must be replaced by their expected values in equations 2.2 
and 2.3. The trajectories need not all start at state n. The results are qual- 
itatively similar if the successor state of state i is randomly chosen. Also, 
similar behavior can be observed in a variety of stochastic examples that 
can be constructed with our deterministic example as a ”building block.” 

The example indicates that for X < 1, TD(X) is in need of further 
justification for the case of a compact cost function representation. The 
example also relates to one of Watkins’ Q-learning methods (Watkins 
1989). These methods have the advantage that they apply to discounted 
Markovian decision problems and stochastic shortest path problems (as 
defined in Bertsekas and Tsitsiklis 19891, where there are multiple ac- 
tions available at each state and the objective is not just to obtain the 
optimal cost, but also to find an optimal action at each state. Strong 
convergence results have been recently shown by Tsitsiklis (1993) for the 
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Figure 2: Form of the cost function J(i), and the linear representations [i,ib(l)], 
and 7 [i,$(O)] provided by TD(1) and TD(O), respectively, for the case g,, = 
- ( n  - l), gi = 1, V i # n. 

most commonly used Q-learning method in the case of a lookup table 
representation. TD(0) can be viewed as a special case of this Q-learning 
method for the situation where there is only one action available at each 
state, so our conclusions also apply to the corresponding neural network 
versions. 

3 A Partial Remedy 

In view of the preceding example, it is interesting to ask whether there is 
a modified version of TD(0) that yields the exact cost values in the case 
of a lookup table representation and approximates the cost values better 
when compact representations are used. 

For the case of a lookup table representation, we know that TD(0) 
can be viewed as a Robbins-Monro method for solving the system of 
equations 

n 

Cpq [g(i , j )  + j ~ ,  w)] - J( i ,  w) = 0, i = I , .  . . , n 
i=l 

(3.1) 
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that is, for finding a w for which the expected value of the temporal dif- 
ference vanishes at each state i. For the case of a compact representation, 
it is thus reasonable to consider a weighted least-squares problem that 
aims at making the size of the expected temporal differences small in an 
aggregate sense, that is, a problem of the form 

where 

d( i .  j )  = g ( i , j )  + y(j, w) - y(i, w) 

denotes the temporal difference associated with the transition from i to 
j ,  E l { .  I i} denotes conditional expected value over j given i, and q ,  is a 
nonnegative weight for each state i. 

A simulation-based gradient method for solving such a problem is to 
update w following a transition from i k  by the iteration 

= w + ?E,{d(iklj) I ik)  (vy(ik, w) - E, { Vj(j9 w) I i k } )  (3.3) 

The relative frequencies of visits to different states determine the relative 
weights in the corresponding least-squares problem (3.2). Note that the 
expected temporal difference 

n 

E,{d(ik, j)  I id = x p , , , d ( i k , j )  
/=1 

at ik and the expected gradient 
n E,{v?u, w, I ik} = cr?fk/V?u> w, 

r=l 

over the successor states j appear in the right-hand side of this iteration. 
Thus the computational requirements per iteration are increased over 
TD(X), unless the system is deterministic. The method (3.3) is apparently 
new, although an iteration similar to 3.3 and its sampled version given 
below (cf. equation 3.6) have been independently developed by Baird 
and are briefly described in Baird (1993) and Harmon et al. (1994) (this 
was pointed out by one of the reviewers). 

For the deterministic example of Section 2, the iteration 3.3 takes the 
form 
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so the iteration corresponding to a full trajectory ( n ,  n - 1, . . . , 1 , O )  is 
n 

w := w + y c ( g k  - w) 
k=l 

When y is smaller than l / n ,  this iteration converges to 

(3.4) 

(3.5) 

This corresponds to a linear approximation, which is exact for state n, that 
is, J ( n )  = y(n, w), regardless of the costs of the other states. In particular, 
for the example of Figure 1, we obtain in the limit w = l / n ,  while for the 
example of Figure 2, we obtain ik = 0. The corresponding approximations 
y(i, w) = iw are not as good as those obtained by TD(l), but they are much 
better than those obtained by TD(0). While it is unclear whether such 
a conclusion can be reached in a more general setting, in the author’s 
limited experimentation with some stochastic problems, iteration 3.3 has 
produced substantially better compact cost representations than TD(0). 

There is a simpler version of iteration 3.3 that does not require aver- 
aging over the successor states j. In this version, the two expected values 
in iteration 3.3 are replaced by two independent single sample values. In 
particular, w is updated by 

(3.6) 

where ik+l and ii+l correspond to two independent transitions starting 
from i k .  It can be seen that this iteration yields in the limit values of 
w that solve the least-squares problem (3.2). It is necessary to use two 
independently generated states ik+l and ii+l in order that the expected 
value of the product d(ik, [Vf(ik, w) - Vy(ii+l, w) given i k  is equal 
to the term E,{d(ik, j) I ik} (V?(ik, w) - E, {Vi(j, w) I ik} 1 appearing in the 
right-hand side of equation 3.3. 

is used, 
that is, 

(3.7) 

w := w f yd(ik, k+l) [vj(ik, w) - vj(ii+1, w)] 

The variant of iteration 3.6 where a single sample ( i k + l  = 

w := w + yd(ik, i k + l )  [Vl(ik, w) - v7(ik+1, w)] 
has been discussed by Dayan (1992). It aims at solving the problem 

where 9, are the nonnegative weights also appearing in equation 3.2, 
which are determined by the relative frequencies of the visits to different 
states during the simulation. This problem involves a weighted sum of 
second moments of the temporal differences, which is not as desirable an 
objective as the weighted sum of the squares of the means of the temporal 
differences, which is minimized by iteration 3.3. In particular, in the case 
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of a lookup table representation, iteration 3.3 yields the exact cost values, 
while solving problem 3.8 can give other values that may also depend on 
the weights 9,. Thus it appears that iteration 3.7 is unsuitable for Markov 
chains that are not deterministic. 
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